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Abstract

Background: One of the most interesting issues in obesity research is why certain humans are
obesity-prone (OP) while others are obesity-resistant (OR) upon exposure to a high-calorie
diet. However, the pathways responsible for these phenotypic differences are still largely
unknown. Methods: In order to discover marker molecules determining susceptibility and/
or resistance to obesity in response to high fat diet (HFD) or anti-obesity herbal medicine
(TH), we conducted comparative proteomic analysis of white adipose tissue (WAT) from OP,
OR, as well as TH-treated mice. Results: OP mice fed HFD gained approximately 33% more
body weight than OR mice, and TH significantly reduced body weight gain in HFD-fed mice
by 30%. These mice were further subjected to proteomic analysis using two-dimensional
electrophoresis (2-DE) combined with matrix-assisted laser desorption/ionization-time
of flight mass spectrometry (MALDI-TOF-MS). Proteomic data revealed 59 spots that were
differentially regulated from a total of 1,045 matched spots, and 57 spots of these were
identified as altered WAT proteins between OP and OR mice by peptide mass finger printing.
Interestingly, 45 proteins were similarly regulated in OR mice in response to TH treatment.
Of these, 10 proteins have already been recognized in the context of obesity; however, other
proteins involved in obesity susceptibility or resistance were identified for the first time in the
present study. Conclusion: Our results suggest that TH actively contributed to body weight
reduction in HFD-fed obese mice by altering protein regulation in WAT, and it was also found
that TH-responsive proteins can be used as potent molecules for obesity treatment.
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Introduction

Obesity is a multifactorial disorder that is influenced by both genetic and environmental
factors, leading to physical and external complications as well as progression of various
diseases such as cardiovascular risks, hypertension, dyslipidemia, endothelial dysfunction,
and type 2 diabetes mellitus [1-3].

Susceptibility to weight gain can vary considerably among individuals due to external
influences such as excessive energy intake and low physical activity [4-6]. However, there
exist large inter-individual differences in obesity development despite exposure to similar
conditions. For example, some may readily gain body weight and become obese (obesity-
prone, OP), whereas others may not (obesity-resistant, OR) [7]. However, the pathways
responsible for these phenotypic differences are still largely unknown [8].

Nowadays, prevention and management of obesity are major public health challenges
and no longer considered to be only cosmetic problems. Although weight loss and weight
control drugs are common, their medical effects are far from satisfactory since many
pharmaceuticals have unwanted side effects [9]. Due to concerns over currently available
Western medicine treatments, some have turned to their interest to alternative medicines,
including traditional Oriental medicine, for therapeutic treatment of obesity [10-12].

Recent research has demonstrated that natural products may be an excellent alternative
strategy for developing safe anti-obesity drugs. Medicinal plants and their extracts have
been verified as beneficial and are the oldest and most widespread form of medication
to prevent diet-induced obesity [12-14]. Multiple natural products containing numerous
bioactive compounds may result in synergistic activity that increases their bioavailability
and action on multiple molecular targets. The anti-obesity effects of these compounds are
mediated by regulation of various metabolic processes, including feeding-inhibitory actions,
elevation of lipolysis, reduction of lipogenesis, and differentiation of preadipocytes [15-17].
Taeumjowi-tang (designated as “TH”) is a traditional Korean medicine that is widely used to
treat several diseases [18, 19]. This product consists of multiple compounds and has become
the standard treatment regimen for obesity by Korean medical professionals, and its use
has been expanded to all types of obesity [20, 21]. In previous studies, TH and TH modified
prescription have been evaluated for its inhibitory effects on obesity, suggesting that its
modified prescription can clinically be useful as anti-obesity drugs and can be useful for the
improvement of hyperlipidemia [22, 23]. Previous clinical results have supported the anti-
obesity and hypolipidemic effects of TH, but the results of clinical studies are still insufficient
[18].

To discover marker molecules that could be helpful in elucidating the mechanisms
underlying obesity susceptibility, various animal tissues have been studied and their whole
proteomes were analyzed in order to characterize protein functions and post-translational
modifications [24, 25]. Separation, identification, and characterization of proteins as well
as their interactions with other proteins are the essential goals of proteomic analysis. Two-
dimensional electrophoresis (2-DE) coupled with MALDI-TOF-MS is considered a powerful
tool for the separation of thousands of adipose tissue proteins [26, 27]. This approach
enables comparison between normal and disease samples revealing differentially expressed
proteins.

Obesity-related factors in adipose tissue proteins play major roles in the development
of metabolic disorders [26, 28]. Adipose tissue acts as an active endocrine organ, which
secretes adipokines contributing to the regulation of physiological processes such as energy
homeostasis, reproduction, and inflammation. Several studies based on gene profiling have
focused on WAT reprogramming after weight loss [29, 30]. Although DNA array is a powerful
tool for this purpose, the predictive value of mRNA expression is limited with respect to
cellular physiology. Expression levels of mRNA often do not parallel protein expression levels
of a particular gene [31, 32]. Further, protein turnover and post-translational modifications,
which are essential for cellular behavior, are not covered by the information obtained from
DNA data [33]. Consequently, a broader understanding of the effects of diet on WAT requires
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independent examination of protein expression and function in conjunction with mRNA
expression analyses.

In the present study, we addressed the anti-obesity effects of natural traditional herbal
medicines based on their abilities to alter expression of WAT proteins in HFD-induced obese
mice. To the best of our knowledge, this is the first proteomics study profiling WAT protein
modulation by traditional herbal medicines in an obese animal model.

Materials and Methods

Animals and breeding conditions

Four-week-C57BL/6] male mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA). All
mice were provided water and standard chow ad libitum for 1 week for acclimatization before the start
of any experimental procedures. The mice were then randomly divided into two groups, viz. normal diet
group (ND, n=10) and HFD-fed group (60% fat, n=30), and bred for 12 weeks. HFD-fed mice were further
subdivided into three groups; OP mice showed the highest body weight gain (OP group, n=10) while OR mice
showed the lowest body weight gain (OR group, n=10). Among 20 HFD-fed mice, 10 mice were randomly
selected and treated with TH (TH group, n=10). Taeumjowi-tang (TH) was purchased from I-world Pharm.
Co. Ltd. (Incheon, Korea). TH is a decoction consisting of eight herbal ingredients, and the ingredients of TH
are Semen Coicis (11.25g), Semen Castaneae (11.25g), Semen Raphani (7.5g), Schisandrae Fructus (3.75g),
Liriopis Tuber (3.75g), Herba Ephedrae (3.75g), Radix Platycodi (3.75g), and Acori Tatarinowii Rhizoma
(3.75g). Dietary compositions used in this study are presented in Table 1. Mice had free access to food and
distilled water during the experimental period. Food intakes and body weights were measured daily and
weekly, respectively. On the 12th week, mice were anaesthetized with diethyl ether and sacrificed after 12
h of fasting. Blood was taken from the inferior vena cava and then centrifuged at 1,000xg for 15 min at 4°C,
after which plasma was isolated to characterize plasma biochemistry. After blood collection, epididymal
adipose tissues were promptly removed, rinsed, weighed, frozen in liquid nitrogen, and stored at -80°C. This
animal study was approved by the Ethics Committee for Animal Studies at Kyungpook National University,
Republic of Korea.

Preparation of protein samples

WAT were excised from mice immediately following anesthetization with diethyl ether after overnight
fasting. The resulting tissues were then washed with cold saline solution and pulverized under liquid
nitrogen and stored at -80°C. Tissues were lysed in 200 mL of rehydration buffer solution containing 7 M
urea, 2 M thiourea, 4% CHAPS, 20 mM DTT, 1 mM PMSF, 2% IPG buffer (Ampholyte 3/10, Bio-Rad), and a
trace of bromophenol blue. Lysed tissues were then homogenized by a homogenizer (PT 1200E, Kinematica,
Luzern, Switzerland) on ice, after which extracts from homogenized WAT tissues were centrifuged at
13,000xg for 20 min. The supernatant was then stored at -80°C until analysis. Protein content of whole WAT
tissue was determined using RC DC™ protein assay (Bio-Rad).

Table 1. Dietary compositions ND HFD TH

of normal diet (ND), high-fat diet  Composition by weight, g/kg

(HFD), and high-fat diet with  Casein 200 265 265

Taeumjowi-tang (TH) Corn starch 397.486 0 0
Sucrose 100 90 60
Maltodextrin 132 160 160
Cellulose 50 65.6 65.6
Soybean oil 70 30 30
Lard ] 310 310
Mineral mix 35 48 48
Calcium phosphate, dibasic 0 34 34
Vitamin mix 10 21 21
TBHQ antioxidant 0.014 0 0
L-cystine 3 4 4
Choline bitartrate 2.5 3 3
Taeumjowi-tang 30
Total (kcal/kg) 3,800 5,100 4,980
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Two-dimensional electrophoresis (2-DE)

2-DE was performed in duplicate using WAT protein samples from six mice per group, which consisted
of ND, OP, OR, and TH mice. 2-DE experiments were conducted using the previous methods outlined by our
laboratory [26, 27, 34]. Briefly, immobilized pH gradient (IPG)-isoelectric focusing (IEF) of WAT samples
was performed on pH 3-10 and 18 cm IPG DryStrips (GE Healthcare, Buckinghamshire, UK) in a PROTEIN
IEF cell (Bio-Rad) using the protocol recommended by the manufacturer. IPG strips were rehydrated
passively for 12 h in strip holders with 350 pL of rehydration solution, which included 7 M urea (Bio Basic,
Ontario, Canada), 2 M thiourea (Sigma, St. Louis, MO, USA), 4% CHAPS (Bio Basic), 1 mM PMSF (Sigma),
20 mM DTT (GE Healthcare), 2% IPG buffer (Bio-Rad), and 150 pug of WAT proteins. IEF was executed as
follows: 15 min at 250 V, 3 h at 250-10,000 V, 6 h at 10,000 V, and then held at 500 V until ready to run in
the second dimension. After focusing, the gel strips were equilibrated in a solution containing 6 M urea, 2%
SDS (Generay Biotech, Shanghai, China), 1% DTT, 30% glycerol (Bio Basic), and 50 mM Tris-HCI (pH 6.8)
for 15 min, followed by further incubation in the same solution, except for replacement of DTT with 2.5%
iodoacetamide (Bio-Rad) for an additional 15 min period. Gel strips were then placed onto a 20 x 20 cm
12% polyacrylamide gel for resolution in the second dimension. Fractionation was performed using the
Laemmli SDS discontinuous system at a constant voltage of 15 mA per gel for 14 h. For image analysis and
peptide mass fingerprinting (PMF), a total of 48 gels, including two gels per group with separated proteins,
were visualized by silver staining. Silver staining was performed as follows: gels were fixed over a period of
2 h in 50% ethanol and 5% acetic acid, followed by 10 min in 30% ethanol and washing in water for 5 min
three times. Gels were sensitized for 10-15 min in 0.02% sodium thiosulfate (Sigma), followed by washing
in water for 0.5 min three times and incubation for 1 h in 0.3% silver nitrate (Kojima Chemicals, Sayama,
Japan). After washing in water two times for 1 min, proteins were visualized with developing solution
containing 3% sodium carbonate, 0.02% sodium thiosulfate, and 0.05% formalin and then stopped using
6% acetic acid.

Image acquisition and data analysis

Gels were imaged on a UMAX PowerLook 1120 (Maxium Technologies, Akron, OH, USA), and modified
ImageMaster 2-D software V4.95 (GE Healthcare) was used for comparison of images. A reference gel was
selected from gels of the normal group, and detected spots from other gels were matched with those in the
reference gel. Relative optical density and relative volume were calculated in order to correct differences in
gel staining. Each spot intensity volume was processed by background subtraction and total spot volume
normalization, and the resulting spot volume percentage was used for comparison.

Protein identification

For protein identification by PMF, protein spots were excised, digested with trypsin (Promega, Madison,
WI, USA), mixed with CHCA in 50% ACN/0.1% TFA, and subjected to MALDI-TOF analysis (Microflex LRF 20,
Bruker Daltonics). Spectra were collected from 300 shots per spectrum over an m/z range of 600-3000 and
calibrated by two-point internal calibration using trypsin auto-digestion peaks (m/z 842.5099, 2211.1046).
Peak list was generated using Flex Analysis (ver 3.0). The threshold used for selecting peaks was as follows:
500 for minimum resolution of monoisotopic mass, 5.0 for S/N. Peptide masses were matched with the
theoretical peptides of all proteins in the NCBI database using MASCOT developed by Matrixscience (http://
www.matrixscience.com). The following parameters were used for the database search: trypsin as the
cleaving enzyme, a maximum of one missed cleavage, iodoacetamide (Cys) as a complete modification,
oxidation (Met) as a partial modification, monoisotopic masses, and a mass tolerance of + 0.1 Da. Protein
scoreis-10 * Log (p), where p is the probability that the observed match is a random event, and greater than
61 is significant (p<0.05).

Immunoblot analysis

Tissue lysates were prepared with RIPA buffer (Sigma), homogenized, and centrifuged at 12,000xg
for 20 min. The extract was diluted in sample buffer (50 mM Tris of pH 6.8, 2% SDS, 10% glycerol, 0.1%
bromophenol blue, and 5% (-mercaptoethanol) and heated for 5 min in a boiling bath. Samples were then
subjected to SDS-polyacrylamide gel electrophoresis and transferred to Poly-Screen membranes (NEN,
Boston, MA, USA). Membranes were subsequently blocked with 5% nonfat dry milk in TBS (10 mM Tris-
HCl, 150 mM NacCl, pH 7.5) containing 0.1% Tween-20 (TBS-T). After washing with TBS-T, membranes were
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Table 2. List of RT-PCR primers. ¢ F, sequence from sense
strands; ? R, sequence from anti-sense strands

Genes Primer sequence (5’ - 3")
al Fa ACCAACCCCATTGCTTCCAT
nxa R AAGCCAGCCTCAATGGTCTC
F GACCAGCAGGAGCTTTCCTC
Fabp# R TGGCACACTTCAGGATGGTT
b F ATCGACTTGGGGACCACCTA
R CAATCAGACGCTCCCCTTCA

Internal control

.

AGAACAACAGCCTTCCACCTT

. R GGCTGTGGAGTAAGTCCTGT

incubated for 2 h with a 1:1000 dilution of primary polyclonal mice antibody (anti-CEBPa, anti-CEBP, anti-
PPARY, anti-LPL, anti-FABP4, and anti-f-actin; Santa Cruz Biotechnology, Santa Cruz, CA, USA), followed by
HRP-conjugated anti-rabbit IgG, anti-goat IgG, and anti-mouse IgG secondary antibody (1:1000; Santa Cruz
Biotechnology) for 1 h and development using enhanced chemiluminescence (iNtRON Biotechnology, Seoul,
Korea). Western blot was analyzed by scanning with UMAX PowerLook 1120 (Maxium Technologies) and
digitalization using image analysis software (KODAK 1D, Eastman Kodak, Rochester, NY, USA).

Network analysis

Associations of differentially expressed genes with broadly defined molecular networks were carried
out using IPA (Ingenuity Pathway Analysis, http://www.ingenuity.com) tools. Molecular networks were
predicted based on the direct and indirect relationships between differentially expressed molecules and
members of the networks in the IPA database. When using IPA, we analyzed up-regulated and down-
regulated proteins for each group as separate groups. Only values that were significant at p<0.01 showing
FDR correction and at least a 2-fold change in protein levels were included in the analysis.

Real-time RT-PCR

Transcription levels of genes were quantitatively determined by real-time RT-PCR (Stratagene Mx
3000p QPCR System, Santa Clara, CA, USA). Total RNA was isolated from WAT tissues using an easy-spin TM
(DNA-free) Total RNA Extraction kit, and reverse-transcription was carried out using a Maxime RT Premix
kit (iNtRON Biotechnology). We employed FastStart Universal SYBR Green Master (Roche Diagnostics,
Indianapolis, IN, USA) for real-time RT-PCR. Transcription levels of each gene (Anxal, Fabp4, and Idh1) were
normalized to Gusb transcription levels. Oligonucleotide sequences are shown in Table 2.

Statistical analysis

All experimental results were compared by One-way Analysis of Variance (ANOVA) using the Statistical
Package of Social Science (SPSS, version 14.0K) program; data are expressed as the mean+SEM. A protected
least-significant difference (LSD) test, which is a method for multiple comparison consisting of single-step
procedures in One-way ANOVA, was used to demonstrate significant differences between means (p<0.05).

Results

Effects of TH treatment in HFD-fed obese mice

Changes in body weight among individuals during the experimental period are shown in
Fig. 1A. Body weights of mice were the same among all groups at the beginning of this study.
However, after inducing obesity with HFD for 4 weeks, OP mice were heavier (p<0.01) than
normal controls and OR mice at all subsequent time points (data not shown). Accordingly,
body weight gain in OP mice was approximately 33% higher than that in OR mice (Fig. 1A). No
significant difference was observed in energy intake (total food intake) per total body weight
between OP, OR, and TH mice (Fig. 1B). Moreover, total WAT weight in OP mice was higher
(p<0.01) than those in normal, OR, and TH mice (Fig. 1C). After TH treatment for 12 weeks,
total WAT per body weight was significantly reduced by up to 15% (p<0.01) compared to the
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Fig. 1. (A) Average body weight gain, (B) energy in-
take, (C) average weight of WAT per body weight in

mice fed normal diet (ND), HFD-fed obesity-prone

mice (OP), HFD-fed obesity-resistant mice (OR), and
HFD-fed obese mice treated with the herbal medici-
ne Taeumjowi-tang (TH). Statistical significance was
determined by One-way ANOVA test, where p values
are *p<0.05 and **p<0.01 for significance. Error bars
represent means * S.E.M (n=6).

Fig. 2. Representative silver-stained 2-DE gel images
of mice WAT proteome. (A) Up-regulated and (B)
down-regulated proteins in OP mice compared to
ND-fed mice. Differentially regulated proteins and
proteins of interest are marked with circles and ar-
rows. The numbers in gels are listed in Table 3.

OP group. Collectively, these results suggest that TH inhibited fat accumulation in HFD-fed
obese mice, prompting us to perform further proteomic studies.

Proteomic analysis of WAT

For identification of differentially expressed proteins among the four groups (ND, OP,
OR, and TH group), WAT protein samples were separated by 2-DE (Fig. 2), protein spots
were identified by MALDI-TOF-MS (Table 3), and database searches were performed with
high confidence based on high score and sequence coverage. For the results, a total of 1,045
individual matched spots ranging in mass from 6 to 240 kDa between pH 3-10 were detected,
and obtained WAT protein maps represented patterns that were similar to our previous
results [26-28, 34]. Fifty-nine spots were identified with statistically different intensities
between the ND and OP groups. These differentially altered spots dramatically changed in
response to TH, suggesting that TH played a pivotal role in obesity prevention in HFD-fed
obese mice.
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Table 3. List of identified proteins showing differential expression (2=fold change) in white adipose tissue
(WAT) between mice fed normal diet or high fat diet (OP, OR, and TH groups). * NCBInr/SWISS database
accession number. ® The nominal mass is the integer mass of the most abundant naturally occurring stable
isotope of an element.  MASCOT probability-based molecular-weight search score calculated for PMF. Pro-
tein score is - 10 x log(P), where P is the probability that the observed match is a random event; it is based
on the NCBInr database using the MASCOT searching program as MS/MS data and protein scores >61 are
significant (P<0.05). ¢ ND means not detected. Spot Id is same numbers in gel image of Fig. 2

SpotlD  Description Acc. Noa Nomina  Calculated Scorec
| mass PI
(Mi)o

1200 Alanyl-tRNA editing protein Aarsd1 AASD1_MOUSE 45228 6.00 47
1211 Pyruvate carboxylase, mitochondrial isoform 2 gi|251823978 129618 6.25 154
1237 Heat shock protein 90, beta (Grp94), member 1 gi|14714615 92432 4.74 97
1250 Elongation factor 2 £i]33859482 95253 6.41 65
1315 PHD and RING finger domain-containing protein 1 PHRF1_MOUSE 185622 8.87 30
1320 78 kDa glucose-regulated protein precursor gi|254540166 72378 5.01 207
1347 PREDICTED: WD repeat-containing protein 1 isoform X1 gi|568934035 58889 6.52 98
1348 Transketolase gi|11066098 60545 6.54 73
1368 EH domain-containing protein 2 gi|55742711 61136 6.08 142
1376 Mel protein 8i|13096987 63799 6.87 133
1416 Bicaudal D-related protein 2 BICRZ_MOUSE 57607 4.93 39
1417 Triacylglycerol hydrolase gi|14269427 61848 6.30 156
1419 PREDICTED: zinc finger protein 787 isoform X1 gi|568946454 49505 9.15 69
1428 Aldehyde dehydrogenase family 6, subfamily Al gi|23271115 57924 8.25 102
1429 Katanin p60 ATPase-containing subunit A-like 1 KATL1 _MOUSE 55472 6.67 52
1435 NDd ND ND ND ND
1447 Endonuclease 8-like 2 NEILZ_MOUSE 37210 8.76 36
1459 mRMNA turnover protein 4 homolog MRT4_MOUSE 27642 8.63 34
1475 Aldehyde dehydrogenase, mitochondrial precursor gi|6753036 56502 7.53 103
1498 Enolase 1B, retrotransposed gi|70794816 47111 6.37 89
1516 Serine (or cysteine) peptidase inhibitor, clade H, member 1, isoform CRA_a gi| 148684430 44954 9.01 87
1517 Serine (or cysteine) peptidase inhibitor, clade H, member 1, isoform CRA_a gi]148684430 44954 9.01 159
1519 Exosome complex component RRP40 EX0S3_MOUSE 30041 8.35 35
1524 PACRG-like protein PACRL_MOUSE 27615 9.92 58
1543 NADP-dependent isocitrate dehydrogenase gi|3641400 46630 6.48 79
1558 Dual specificity phosphatase 28 DUS28_MOUSE 17779 7.66 48
1573 Cell division control protein 6 homolog CDCe_MOUSE 63658 9.43 50
1597 Conserved oligomeric Golgi complex subunit 4 COG4_MOUSE 89574 5.06 40
1632 Aldo-keto reductase family 1, member A4 gi|148698648 30208 6.35 110
1634 Aldolase A gi|7548322 39526 8.55 137
1673 Centrosomal protein of 85 kDa CEP85_MOUSE 86085 5.86 46
1674 Glyceraldehyde-3-phosphate dehydrogenase gi|55153885 35751 7.59 126
1684 DNA-directed RNA polymerases | and [1l subunit RPAC1 RPAC1_MOUSE 39310 5.09 44
1693 Transcription elongation factor A protein 2 TCEAZ_MOUSE 34325 932 32
1695 Monoglyceride lipase isoform a gi|261878516 35234 7.21 103
1708 Annexin A5 gi|6753060 35730 4.83 186
1740 Annexin Al gl|124517663 38710 6.97 68
1764 Parp3 protein gi|15928823 60003 6.53 38
1777 mRNA turnover protein 4 homolog MRT4_MOUSE 27642 8.63 46
1795 GTP:AMP phosphotransferase AK3, mitochondrial gi]23956104 25467 8.87 68
1797 Glutathione S-transferase Mu 1 gi|6754084 25953 7.71 103
1808 Unnamed protein product gi|74191773 38749 6.22 115
1811 PREDICTED: serine/threonine-protein kinase 25 isoform X2 gi|568909449 29514 551 73
1830 Major vault protein MVP_MOUSE 96150 5.43 38
1840 Galectin-7 g2i|31543120 15250 6.37 42
1853 Sdecagl protein 8i|54887337 47900 6.21 53
1855 Calcium-binding mitochondrial carrier protein SCaMC-3 SCMC3_MOUSE 52692 7.19 46
1873 Cytochrome b5 type B precursor gi|31542438 16308 4.79 70
1874 Cytochrome b5 type B precursor gi|31542438 16308 4,79 103
1892 Cofilin-1 gi|6680924 18548 8.22 96
1904 Cytochrome b5 gi[13385268 15232 4.96 143
1912 Peroxisomal membrane protein 20 gi|6746357 17004 7.71 175
1920 Adenylate kinase 8 gi|152963553 55437 6.62 46
1926 Alpha-(1,3)-fucosyltransferase 11 FUT11_MOUSE 56068 5.81 38
1931 Fatty acid-binding protein, adipocyte gi|14149635 14641 8.53 139
1934 ND ND ND ND ND
1937 FYVE, RhoGEF and PH domain-containing protein 6 FGD6_MOUSE 156954 8.09 45
1946 Hemoglobin, beta adult t chain £i|31982300 15738 7.14 85
1949 Hemoglobin alpha, adult chain 2 gi|145301549 15103 7.96 71

Differential expression of obesity-associated proteins in WAT

Prior to comparison of differentially altered proteins between OP and OR mice, we first
compared WAT protein levels among ND, OP, and OR mice. Most of the identified proteins
showed significantly altered protein expression between OP and ND-fed mice in response
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Fig. 3. Differentially regulated pro-
teins in WAT from OP mice com-
pared with ND/OR/TH mice. (A)
Up-regulated and (B) down-regu-
lated proteins in OP mice. Each bar
shows an average volume density
(%) in 2-DE analysis. Statistical sig-
nificances between ND and OP were
determined by One-way ANOVA test,
where p<0.05.

to TH treatment, whereas 45
proteins showed similar levels
in OR mice (Fig. 3). A total of 26
proteins were up-regulated in
OP mice while also maintained
at low levels in ND and OR
mice. Furthermore, analysis
of WAT samples identified
31 proteins that were down-
regulated in HFD-fed OP mice
but up-regulated in normal
and OR mice. Until now, most
of these proteins have not been
shown as being differentially
expressed in WAT in response
to HFD. Therefore, these
proteins can be considered as
potential marker proteins for
determination of phenotypic
differences in WAT between OP
and OR mice.

We also investigated
differential expression of WAT
proteins between OP and
TH mice based on the above
results for ND and OP mice. A
total of 10 proteins showed
significantly altered protein
expression upon TH treatment
between OP and TH mice.
Among these, five proteins
were up-regulated while five
proteins were down-regulated

in OP mice. Interestingly, all of these proteins showed opposite expression patterns between
OP as well as OR and TH mice (Fig. 4), thereby confirming a role for TH in metabolic balance

in adipose tissue.
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Fig. 4. Comparison of expression patterns of obesity-related proteins between OP and ND/OR/TH mice. (A)
Up-regulated and (B) down-regulated proteins in OP mice. For full name of each protein, see Abbreviations.
Band intensity was calculated by ImageMaster 2D software version 4.95, and relative intensity (%) refers to
the values of target proteins normalized to those of -actin. Statistical significance was determined by One-
way ANOVA test, where p values are *p<0.05 and **p<0.01.
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Distinct expression of adipogenic factors between OP and OR mice

We also examined differential expression patterns of adipogenic factors that could not
be detected by 2-DE analysis in WAT from each group of mice. It is well known that C/EBPq,
C/EBPB, and PPARy are master regulators of adipogenesis that induce expression of lipid
metabolic proteins such as FABP4 and LPL. Immunoblot analysis was performed on five
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Fig. 6. Networks generated by Ingenuity Pathway Analysis using up- or down-regulated proteins in res-
ponse to HFD and TH treatments. Network was constructed using human homologues of identified mouse
proteins, where connections represent direct (solid lines) or indirect interactions (dashed lines).

WAT proteins of interest, including FABP4, PPARy, C/EBPa, C/EBPf, and LPL. Four proteins
(FABP4, PPARY, C/EBPq, and C/EBP{3) were markedly up-regulated in OP mice compared to
OR and ND mice, whereas LPL levels were not altered upon HFD feeding (data not shown) or
TH treatment (Fig. 5). Most proteins were also down-regulated in response to TH treatment
in HFD-induced obese mice.

Network analysis of proteomic data

To further investigate the biological roles of molecules identified in this study, we
performed network analysis using Ingenuity Pathway Analysis (IPA) based on the proteomic
data. The representative network in WAT is shown in Fig. 6, and these genes were found to
be associated with lipid metabolism, molecular transport, and small molecule biochemistry
when ranked by p-value significance. IPA network analysis predicted possible interactions
between Fabp4, Ppary, Anxal, and Idh1. Unfortunately, PPARY could not be detected using
2-DE, although it was activated by TH treatment in the network analysis.

Validation of results of IPA network analysis using real-time RT-PCR

To evaluate the results of the IPA network analysis, the predicted target genes (4Anxal,
Fabp4, and Idh1) were further confirmed by determining their mRNA levels using real-time
RT-PCR (Fig. 7). HFD treatment remarkably activated these predicted targets. Moreover,
expression levels of these genes were markedly reduced by TH treatment.

Discussion

In the present study, we performed a comparative analysis of WAT protein expression
profiles in HFD-induced obese mice treated with anti-obesity herbal medicine by 2-DE
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Fig. 7. Validation of proteomic data and predicted
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independent experiments. Statistical significance
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**p<0.01.
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Importantly, there were higher levels T 10”4
of Annexin Al (ANXA1) and Annexin § 1' |_| . ._

A5 (ANXA5) in OP mice, which may be
associated with elevated lipid synthesis in ND opP OR TH
WAT. ANXA1 is a glucocorticoid-regulated protein that has been implicated in cell signaling
and proliferation, and several isoforms of ANXA1 in 2-DE have been identified in adipose
tissue of rodents [35]. Significant reduction of ANXA1 protein levels in both OR and TH mice
may be due to decreased lipid formation. Similarly, ANXA5 was also up-regulated in OP mice
but markedly down-regulated in OR and TH mice. ANXAS5 is known to exhibit high affinity
for anionic phospholipids in lipid membranes and protects the lipid membrane barrier
against damage caused by inflammation [36]. Moreover, there is an association between
inflammatory molecule levels and visceral obesity [37, 38]. A recent study demonstrated that
SNPs of ANXAS are associated with susceptibility to being overweight or obese in Koreans
[39]. Taken together, both ANXA1 and ANXA5 may play important roles in lipid metabolism
and may be associated with obesity development in HFD-fed mice.

Cofilin-1 (CFL1) showed increased expression in WAT from obese mice along with
reduced expression in OR and TH groups. CFL1 is a well known actin cytoskeleton-regulating
protein [40]. There are limited reports concerning differential expression of CFL1 in the
context of obesity. Recently, it was demonstrated that protein levels of CFL1 are increased
during differentiation of 3T3-L1 preadipocytes due to PKA activity [41]. Although the
physiological role of CFL1 in WAT has not yet been demonstrated, CFL1 overexpression is
known to inhibit brown fat deposition as well as repress expression of browning marker
genes such as UCP1, PRDM16, and PGC-1a [42]. Therefore, altered protein expression of
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CFL1 in OR and TH mice is likely associated with possible browning characteristics of WAT,
thereby affecting obesity resistance [43].

Elevated expression levels of cytochrome b5 type B (CYB5B) in obese mice also
drew our attention. There are contradictory results concerning expression patterns of
genes involved in mitochondrial oxidative metabolism in WAT from obese subjects. For
instance, Marrades et al. [44] showed that orchestrated down-regulation of genes involved
in oxidative metabolic pathways, including the cytochrome family, contributes to weight
gain susceptibility in humans. In contrast, a recent study reported a 3.83-fold increase in
cytochrome P450 expression in obese mice [45]. Our proteomic data also indicate increased
protein expression of CYB5B in HFD-fed obese mice as well as reduced expression in OR
and TH-treated mice. Taken together, other mechanisms seem to be responsible for these
differences and thus further studies are required to clarify this issue.

As another interesting result, fatty acid binding protein 4 (FABP4) was highly expressed
in OP mice. FABP4 is one of the most abundant proteins in mature adipocytes and is also
detected at high concentrations in human serum. Although the biological role of FABP4 is not
fully understood, it has been linked to insulin sensitivity, lipid metabolism, and inflammation
[46]. Previously, we have shown that FABP4 levels are elevated in obese and diabetic
individuals, and such increased levels are closely correlated with adverse lipid profiles,
insulin resistance, and vascular smooth muscle cell proliferation [47-50]. In this study,
protein and mRNA expression of FABP4 were reduced in OR and TH mice, which suggests
alleviation of fat accumulation in adipocytes. In support of this, data from previous studies
have shown that FABPs are involved in systemic regulation of lipid and glucose metabolism,
and blood levels of FABP4 are positively associated with body weight and fat mass [51, 52].

One of the most important findings in the current proteomic study was significant
up-regulation of serine/cysteine peptidase inhibitor (SERPIN) in obese mice, whereas its
expression was reduced in both OR and TH-treated mice. Data from our previous study
showed that SERPIN expression is significantly higher in males than in females in both
ND and HFD rats [26]. Other studies have also demonstrated that SERPINs could play an
important role in obesity development [53, 54]. For example, SERPIN family vaspin is highly
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expressed in WAT from obese rats at the peak of obesity, and elevated blood vaspin levels
are associated with obesity and insulin sensitivity [53]. However, long-term physical training
combined with weight loss has been shown to increase blood vaspin levels, suggesting there
is no clear link between vaspin and fat accumulation [53]. As OR mice showed decreased
SERPIN levels in WAT, this protein may be associated with obesity resistance.

As another important finding, GTP:AMP phosphotransferase AK3 (AK3) and PARP3
showed lower expression levels in HFD-induced obese mice. One of the main functions of
AK3 is to maintain homeostasis of cellular nucleotides by catalyzing the interconversion of
nucleoside phosphates, and it is a central player in cellular energy metabolism [55]. PARP3
is a member of the PARP family catalyzing ADP ribosylation, which is a key post-translational
modification step for proteins involved in various signaling pathways such as DNA damage
and energy metabolism [56]. However, to date, no evidence has linked AK3 or PARP3 to
lipid metabolism and obesity. Thus, higher expression of AK3 and PARP3 in response to
TH treatment may regulate obesity by maintaining homeostasis of cellular nucleotides and
energy metabolism. This is the first report demonstrating possible roles for AK3 and PARP3
in HFD-induced obesity.

Similarly, reduced protein expression of transketolase (TKT) was also observed in
obese mice. Indeed, TKT is a ubiquitous protein used in multiple metabolic pathways, and
disruption of a single TKT allele can slow growth of adipose tissue [57]. A previous study
demonstrated that TKT-null mice display preferential reduction of adipose tissue, suggesting
that obesity may be treated by inhibition of TKT in adipose tissue [57].

In this study, we also determined expression levels of key players during adipocyte
differentiation such as peroxisome proliferator-activated receptor-gamma (PPARy) and
CCAAT /enhancer binding proteins (C/EBPs) [58], which were not detected by our proteomic
analysis. In addition to adipose tissue development, members of the C/EBP and PPAR family
are involved in regulation of lipid metabolism [59-61]. C/EBPf is the first transcription factor
induced following exposure of preadipocytes to differentiation, and is thus postulated to be
involved in directing the differentiation process. In accordance with this opinion, expression
of C/EBPP in preadipocytes accelerates the rate of C/EBPa induction and adipogenesis
in response to hormonal inducers, indicating its stimulatory factor in adipogenesis [62].
Interestingly, protein levels of PPARy and C/EBPs were reduced in OR and TH groups,
suggesting that TH played a crucial role in alleviating adiposity in HFD-fed obese mice.
Similarly, numerous natural compounds such as catethins, capsaicin, and berberine have
been shown to act as inhibitors of adipogenesis by reducing expression of adipogenic factors
[63-65].

[PA network analysis predicted interactions between Fabp4, Ppary, Anxal, and Idh1.
One important network was identified involving Fabp4. However, the mechanisms by which
FABP4 promote insulin resistance and inflammation are not fully understood. Ppary has
been reported to be a potent modulator of adipogenesis, acting as a transcription factor of
Fabp4 expressed in mature adipocytes [66]. A recent study found that FABP4 is up-regulated
while PPARy is down-regulated in human visceral fat and mouse epididymal fat compared
to subcutaneous fat [49]. Furthermore, suppression of PPARy by FABP4 in visceral fat may
explain the reported role of FABP4 in the development of obesity-related morbidities such
as insulin resistance and diabetes.

In addition to our proteomic data, we observed elevated expression of Idh1 encoding
isocitrate dehydrogenase (IDH) in HFD-induced obese mice. Elevated transcription
and protein expression of Idh1 can increase cellular levels of NADPH, which causes lipid
deposition in adipocytes as well as obesity and fatty liver [67]. Reduction of cellular NADPH
levels resulting from suppression of Idh1 expression in OR and TH mice was associated with
less lipid deposition in adipocytes. Therefore, by taking advantage of the suppressive or
inhibitory effects of IDH inhibitors, pharmaceutically effective materials for the treatment of
obesity, hyperlipidemia, and fatty liver can be developed [68].

In conclusion, the current study demonstrated that TH, a traditional herbal medicine,
shows promising anti-obesity effects through alteration of WAT protein expression in HFD-
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fed obese mice. Further, several of the identified proteins are recognized for the first time in
the context of obesity. Multi-components from TH might regulate numerous genes/proteins
involved in adipogenesis and lipid metabolism, which was further confirmed by IPA network
analysis. This study is the first to link TH, a natural anti-obesity medicine, to its regulatory
actions (Fig. 8). However, more research should be carried out to further unravel the cellular
pathways behind the multi-components of TH.
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