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We show that the double � of the nontrivially associated tensor category constructed from
left coset representatives of a subgroup of a finite group X is a modular category. Also we
give a definition of the character of an object in this category as an element of a braided Hopf
algebra in the category. This definition is shown to be adjoint invariant and multiplicative
on tensor products. A detailed example is given. Finally, we show an equivalence of cate-
gories between the nontrivially associated double � and the trivially associated category of
representations of the Drinfeld double of the group D(X).
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1. Introduction. This paper will make continual use of formulae and ideas from

[2], and these definitions and formulae will not be repeated, as they would add very

considerably to the length of the paper. The paper [2] is itself based on the papers

[3, 4], but is mostly self-contained in terms of notation and definitions. The book [6]

has been used as a standard reference for Hopf algebras, and [1, 8] as references for

modular categories.

In [2], there is a construction of a nontrivially associated tensor category � from data

which is a choice of left coset representatives M for a subgroup G of a finite group X.

This introduces a binary operation “·” and a G-valued “cocycle” τ onM . There is also a

double construction where X is viewed as a subgroup of a larger group. This gives rise

to a braided category �, which is the category of reps of an algebra D, which is itself in

the category, and it is the category that we concentrate on in this paper.

It is our aim to show that the nontrivially associated algebra D has reps which have

characters in the same way that the reps of a finite group have characters, and also that

the category of its representations has a modular structure in the same way that the

category of reps of the double of a group has a modular structure.

We begin by describing the indecomposable objects in �, in a manner similar to that

used in [4]. A detailed example is given using the group D6. Then we show how to find

the dual objects in the category, and again illustrate this with an example.

Next, we show that the rigid braided category � is a ribbon category. The ribbon

maps are calculated for the indecomposable objects in our example category.

In the next section, we explicitly evaluate in � the standard diagram for trace in

a ribbon category [6]. Then we define the character of an object in � as an element

of the dual of the braided Hopf algebra D. This element is shown to be right adjoint

invariant. Also we show that the character is multiplicative for the tensor product of
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objects. A formula is found for the character in � in terms of characters of group

representations.

The last ingredient needed for a modular category is the trace of the double braiding,

and this is calculated in � in terms of group characters. Then the matrices S, T , and C ,

implementing the modular representation, are calculated explicitly in our example.

Finally, we show an equivalence of categories between the nontrivially associated

double � and the category of representations of the Drinfeld double of the groupD(X).
Throughout the paper, we assume that all groups mentioned are finite, and that all

vector spaces are finite-dimensional. We take the base field to be the complex num-

bers C.

2. Indecomposable objects in �. The objects of � are the right representations of

the algebra A described in [2]. We now look at the indecomposable objects in �, or the

irreducible representations of A, in a manner similar to that used in [4].

Theorem 2.1. The indecomposable objects in � are of the form

V =
⊕
s∈�

Vs, (2.1)

where � is an orbit in M under the G action �, and each Vs is an irreducible right

representation of the stabilizer of s, stab(s). Every object T in � can be written as a

direct sum of indecomposable objects in �.

Proof. For an object T in �, we can use the M-grading to write

T =
⊕
s∈M
Ts, (2.2)

but as M is a disjoint union of orbits �s = {s�u :u∈G} for s ∈M , T can be rewritten

as a disjoint sum over orbits:

T =
⊕

�

T�, (2.3)

where

T� =
⊕
s∈�

Ts. (2.4)

Now we will define the stabilizer of s ∈ �, which is a subgroup of G, as

stab(s)= {u∈G : s�u= s}. (2.5)

As 〈η�̄u〉 = 〈η〉�u for all η ∈ T , Ts is a representation of the group stab(s). Now fix

a base point t ∈ �. Because stab(t) is a finite group, Tt is a direct sum of irreducible

group representations Wi for i= 1, . . . ,m, that is,

Tt =
m⊕
i=1

Wi. (2.6)
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Suppose that �= {t1, t2, . . . , tn}, where t1 = t, and take ui ∈G so that ti = t�ui. Define

Ui =
n⊕
j=1

Wi�̄uj ⊂
⊕
s∈�

Ts. (2.7)

We claim that each Ui is an indecomposable object in �. For any v ∈ G and ξ�̄uk ∈
Wi�̄uk,

(
ξ�̄uk

)
�̄v = (ξ�̄(ukvuj−1))�̄uj, (2.8)

where ukvuj−1 ∈ stab(t) for some uj ∈G. This shows that Ui is a representation of G.

By the definition of Ui, any subrepresentation of Ui which contains Wi must be all of

Ui. Thus Ui is an indecomposable object in � and

T� =
m⊕
i=1

Ui. (2.9)

Theorem 2.2 (Schur’s lemma). Let V andW be two indecomposable objects in � and

let α : V →W be a morphism. Then α is zero or a scalar multiple of the identity.

Proof. V and W are associated to orbits � and �′ so that V =⊕s∈�Vs and W =⊕
s∈�′Ws . As morphisms preserve grade, if α �= 0, then � = �′. Now, if we take s ∈ �,

we will find that α : Vs → Ws is a map of irreps of stab(s), so by Schur’s lemma for

groups, any nonzero map is a scalar multiple of the identity, and we have Vs =Ws as

representations of stab(s). Now we need to check that the multiple of the identity is the

same for each s ∈ �. Suppose that α is a multiplication by λ on Vs . Given t ∈ �, there is

a u∈G so that t�u= s. Then, for η∈ Vt ,

α(η)=α(η�̄u)�̄u−1 = λ(η�̄u)�̄u−1 = λη. (2.10)

Lemma 2.3. Let V be an indecomposable object in � associated to the orbit �. Choose

s,t ∈ � and u ∈ G so that s �u = t. Then Vs and Vt are irreps of stab(s) and stab(t),
respectively, and the group characters obey χVt (v)= χVs (uvu−1).

Proof. Note that �̄u is an invertible map from Vs to Vt . Then we have the commut-

ing diagram

Vs

�̄u

�̄uvu−1

Vs

�̄u

Vt
�̄v Vt

(2.11)

which implies that trace(�̄uvu−1 : Vs → Vs)= trace(�̄v : Vt → Vt).

3. An example of indecomposable objects. We give an example of indecomposable

objects in the categories discussed in the last section. As we will later want to have a
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Table 3.1

Irreps {e} {
a3
} {

b,ba2,ba4
} {

ba,ba3,ba5
} {

a2,a4
} {

a,a5
}

11 21 1 1 1 1 1 1

12 22 1 −1 −1 1 1 −1

13 23 1 −1 1 −1 1 −1

14 24 1 1 −1 −1 1 1

15 25 2 −2 0 0 −1 1

16 26 2 2 0 0 −1 −1

Table 3.2

Irreps e a a2 a3 a4 a5

30 40 1 1 1 1 1 1

31 41 1 ω1 ω2 ω3 ω4 ω5

32 42 1 ω2 ω4 1 ω2 ω4

33 43 1 ω3 1 ω3 1 ω3

34 44 1 ω4 ω2 1 ω4 ω2

35 45 1 ω5 ω4 ω3 ω2 ω1

category with braiding, we use the double construction in [2]. We also use Lemma 2.3

to list the group characters [5] for every point in the orbit in terms of the given base

points.

Take X to be the dihedral group D6 = 〈a,b : a6 = b2 = e, ab = ba5〉, whose elements

we list as {e,a,a2,a3,a4,a5,b,ba,ba2,ba3,ba4,ba5}, and G to be the nonabelian nor-

mal subgroup of order 6 generated by a2 and b, that is, G = {e,a2,a4,b,ba2,ba4}. We

choose M = {e,a}. The center of D6 is the subgroup {e,a3}, and it has the following

conjugacy classes: {e}, {a3}, {a2,a4}, {a,a5}, {b,ba2,ba4}, and {ba,ba3,ba5}.
The category � consists of right representations of the group X = D6 which are

graded by Y =D6 (as a set), using the actions �̃ : Y ×X → Y and 	̃ : Y ×X →X which are

defined as follows:

y�̃x = x−1yx, vt	̃x = v−1xv′ = txt′−1, (3.1)

for x ∈X, y ∈ Y , v,v′ ∈G, and t,t′ ∈M , where vt�̃x = v′t′.
Now let V be an indecomposable object in �. We get the following cases.

Case (1). Take the orbit {e} with base point e, whose stabilizer is the whole of D6.

There are six possible irreducible group representations of the stabilizer, with their

characters given by Table 3.1 [7].

Case (2). Take the orbit {a3} with base point a3, whose stabilizer is the whole of D6.

There are six possible irreps {21,22,23,24,25,26}, with characters given by Table 3.1.

Case (3). Take the orbit {a2,a4} with base point a2, whose stabilizer is {e,a,a2,a3,
a4,a5}. There are six irreps {30,31,32,33,34,35}, with characters given by Table 3.2,

where ω= eiπ/3. Applying Lemma 2.3 gives χVa4
(v)= χVa2

(bvb).
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Table 3.3

Irreps e a3 b ba3

5++ 1 1 1 1

5+− 1 1 −1 −1

5−+ 1 −1 1 −1

5−− 1 −1 −1 1

Table 3.4

Irreps e a3 ba ba4

6++ 1 1 1 1

6−+ 1 −1 1 −1

6+− 1 1 −1 −1

6−− 1 −1 −1 1

Case (4). Take the orbit {a,a5} with base point a, whose stabilizer is {e,a,a2,a3,
a4,a5}. There are six irreps {40,41,42,43,44,45} with characters given in Table 3.2. Ap-

plying Lemma 2.3 gives χVa5
(v)= χVa (ba2vba2).

Case (5). Take the orbit {b,ba2,ba4} with base point b, whose stabilizer is {e,a3,
b,ba3}. There are four irreps with characters given by Table 3.3. Applying Lemma 2.3

gives χVba2
(v)= χVb (a4va2) and χVba4

(v)= χVb (a2va4).
Case (6). Take the orbit {ba,ba3,ba5} with base point ba, whose stabilizer is {e,a3,

ba,ba4}. There are four irreps with characters given by Table 3.4. Applying Lemma 2.3

gives χVba3
(v)= χVba (a4va2) and χVba5

(v)= χVba (a2va4).

4. Duals of indecomposable objects in �. Given an irreducible object V with asso-

ciated orbit � in �, how do we find its dual V∗? The dual would be described, as in

Section 2, by an orbit, a base point in the orbit, and a right group representation of the

stabilizer of the base point. Using the formula (sL ·s)�u= (sL�(s	u))·(s�u)= e, we

see that the left inverse of a point in the orbit containing s is in the orbit containing sL.
By using the evaluation map from V∗⊗V to the field, we can take (V∗)sL = (Vs)∗ as vec-

tor spaces. We use �̌ as the action of stab(s) on (Vs)∗, that is, (α�̌z)(ξ�̄z)=α(ξ) for

α ∈ (Vs)∗ and ξ ∈ Vs . The action �̄ of stab(sL) on (V∗)sL is given by α�̄(s	z) = α�̌z
for z ∈ stab(s). In terms of group characters, this gives

χ(V∗)sL
(s	z)= χ(Vs)∗ (z), z ∈ stab(s). (4.1)

If we take �L = {sL : s ∈ �} to have base point p, and choose u ∈ G so that p�u = sL,
then using Lemma 2.3 gives

χ(V∗)sL
(s	z)= χ(Vs)∗ (z)= χ(V∗)p

(
u(s	z)u−1), z ∈ stab(s). (4.2)

This formula allows us to find the character of V∗ at its base point p as a representation

of stab(p) in terms of the character of the dual of Vs as a representation of stab(s).
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Lemma 4.1. In �, (V ⊗W)∗ can be regarded as W∗⊗V∗ with the evaluation

(α⊗β)(ξ⊗η)= (α�̄τ(〈β〉,〈ξ〉·〈η〉))(η)(β�̄τ(〈ξ〉,〈η〉)−1)(ξ). (4.3)

Given a basis {ξ} of V and a basis {η} of W , the dual basis {ξ̂⊗η} of W∗⊗V∗ can be

written in terms of the dual basis of V∗ and W∗ as

ξ̂⊗η= η̂�̄τ(〈ξ〉L�τ(〈ξ〉,〈η〉),〈ξ〉·〈η〉)−1⊗ ξ̂�̄τ(〈ξ〉,〈η〉). (4.4)

Proof. Applying the associator to (α⊗β)⊗(ξ⊗η) gives

α�̄τ
(〈β〉,〈ξ〉·〈η〉)⊗(β⊗(ξ⊗η)), (4.5)

and then applying the inverse associator gives

α�̄τ
(〈β〉,〈ξ〉·〈η〉)⊗((β�̄τ(〈ξ〉,〈η〉)−1⊗ξ)⊗η). (4.6)

Applying the evaluation map first to β�̄τ(〈ξ〉,〈η〉)−1⊗ξ then to α�̄τ(〈β〉,〈ξ〉·〈η〉)⊗η
gives the first equation. For the evaluation to be nonzero, we need (〈β〉�τ(〈ξ〉,〈η〉)−1)·
〈ξ〉 = ewhich implies 〈β〉�τ(〈ξ〉,〈η〉)−1 = 〈ξ〉L or, equivalently, 〈β〉 = 〈ξ〉L�τ(〈ξ〉,〈η〉).
This gives the second equation.

Example 4.2. Using (4.2), we calculate the duals of the objects given in the last

section.

Case (1). The orbit {e} has left inverse {e}, so χ(V∗)e = χ(Ve)∗ . By a calculation with

group characters, all the listed irreps of stab(e) are self-dual, so 1∗r = 1r for r ∈
{1, . . . ,6}.

Case (2). The orbit {a3} has left inverse {a3}, so χ(V∗)a3 = χ(Va3 )∗ . As in the last case,

the group representations are self-dual, so 2∗r = 2r for r ∈ {1, . . . ,6}.
Case (3). The left inverse of the base point a2 is a4, which is still in the orbit. As

group representations, the dual of 3r is 36−r (mod6). Applying Lemma 2.3 to move the

base point, we see that the dual of 3r in the category is 3r .

Case (4). The left inverse of the base point a is a5, which is still in the orbit. As in

the last case, the dual of 4r in the category is 4r .

Case (5). The left inverse of the base point is itself, and as group representations, all

Case (5) irreps are self-dual. We deduce that in the category the objects are self-dual.

Case (6). Self-dual as in Case (5).

5. The ribbon map on the category �

Theorem 5.1. The ribbon transformation θV : V → V for any object V in � can be

defined by θV(ξ)= ξ�̂‖ξ‖.
Proof. In the following lemmas, we show that the required properties hold.

Lemma 5.2. θV is a morphism in the category.
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Proof. Begin by checking the X-grade: for ξ ∈ V ,

∥∥θV(ξ)∥∥= ∥∥ξ�̂‖ξ‖∥∥= ‖ξ‖�̃‖ξ‖ = ‖ξ‖. (5.1)

Now we check the X-action, that is, that θV(ξ�̂x)= θV(ξ)�̂x:

θV
(
ξ�̂x

)= (ξ�̂x)�̂∥∥ξ�̂x∥∥= (ξ�̂x)�̂(‖ξ‖�̃x)
= ξ�̂xx−1‖ξ‖x = (ξ�̂‖ξ‖)�̂x = θV(ξ)�̂x. (5.2)

Lemma 5.3. For any two objects V and W in �,

θV⊗W = Ψ−1
V⊗W ◦Ψ−1

W⊗V ◦
(
θV ⊗θW

)= (θV ⊗θW )◦Ψ−1
V⊗W ◦Ψ−1

W⊗V . (5.3)

This can also be described by the following:

WV

θWθV

WV

WV

θWθV

WV

WV

θV⊗W

WV

= = (5.4)

Proof. First calculate Ψ(Ψ(ξ⊗η)) for ξ ∈ V and η∈W , beginning with

Ψ
(
Ψ(ξ⊗η))= Ψ(η�̂(〈ξ〉�|η|)−1⊗ξ�̂|η|). (5.5)

To simplify what follows, we will use the substitutions

η′ = ξ�̂|η|, ξ′ = η�̂(〈ξ〉�|η|)−1, (5.6)

so (5.5) can be rewritten as

Ψ
(
Ψ(ξ⊗η))= Ψ(ξ′ ⊗η′)= η′�̂(〈ξ′〉�|η′|)−1⊗ξ′�̂|η′|. (5.7)

As η′ = ξ�̂|η| = ξ�̄|η|, then |η′| = |ξ�̄|η|| = (〈ξ〉	|η|)−1|ξ||η|, so

ξ′�̂|η′| = η�̂(〈ξ〉�|η|)−1(〈ξ〉	|η|)−1|ξ||η|
= η�̂((〈ξ〉	|η|)(〈ξ〉�|η|))−1|ξ||η|
= η�̂|η|−1〈ξ〉−1|ξ||η|.

(5.8)

Hence, if we put y = ‖ξ⊗η‖ = ‖ξ‖◦‖η‖ = |η|−1|ξ|−1〈ξ〉〈η〉,

Ψ
(
Ψ(ξ⊗η))�̂‖ξ⊗η‖ = ξ�̂|η|(〈ξ′〉�|η′|)−1(p	̃‖ξ⊗η‖)⊗η�̂|η|−1〈η〉, (5.9)
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where, using (5.8),

p = ∥∥ξ′�̂|η′|∥∥= ∣∣ξ′�̄|η′|∣∣−1〈ξ′�̄|η′|〉= ‖η‖�̃‖η‖y−1 = ‖η‖�̃y−1,

p	̃‖ξ⊗η‖ = (‖η‖�̃y−1)	̃y = (‖η‖	̃y−1)−1.
(5.10)

As ‖ξ′�̄|η′|‖ = v′t′ = ‖η‖�̃y−1, by unique factorization, t′ = 〈ξ′〉�|η′|. Then ‖η‖	̃y−1

= 〈η〉y−1t′−1, which implies that

|η|(〈ξ′〉�|η′|)−1(‖η‖	̃y−1)−1 = |η|t′−1t′y〈η〉−1 = ‖ξ‖. (5.11)

Substituting this into (5.9) gives

Ψ
(
Ψ(ξ⊗η))�̂‖ξ⊗η‖ = ξ�̂‖ξ‖⊗η�̂‖η‖. (5.12)

Lemma 5.4. For the unit object 1= C in �, θ1 is the identity.

Proof. For any object V in �, θV : V → V is defined by

θV(ξ)= ξ�̂‖ξ‖ for ξ ∈ V. (5.13)

If we choose V = 1= C, then θ1(ξ)= ξ�̂e= ξ as ‖ξ‖ = e.
Lemma 5.5. For any object V in �, (θV )∗ = θV∗ :

V∗

θV∗

V∗

V∗

θV

V∗

= (5.14)

Proof. Begin with

coevV (1)=
∑

ξ∈ basis of V

ξ�̂τ̃
(‖ξ‖L,‖ξ‖)−1⊗ ξ̂

=
∑

ξ∈ basis of V

ξ�̂τ
(〈ξ〉L,〈ξ〉)−1⊗ ξ̂.

(5.15)

For α∈ V∗, we follow (5.14) and calculate

(
θV
)∗(α)= (evalV ⊗ id

) ∑
ξ∈ basis of V

Φ−1(α⊗(θV (ξ�̂τ(〈ξ〉L,〈ξ〉)−1)⊗ ξ̂)). (5.16)
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Now, as τ(〈ξ〉L,〈ξ〉)= 〈ξ〉L〈ξ〉,
∥∥ξ�̂τ(〈ξ〉L,〈ξ〉)−1∥∥= ‖ξ‖�̃(〈ξ〉L〈ξ〉)−1

= 〈ξ〉L〈ξ〉|ξ|−1〈ξ〉〈ξ〉−1〈ξ〉L−1

= 〈ξ〉L〈ξ〉|ξ|−1〈ξ〉L−1,

θV
(
ξ�̂τ

(〈ξ〉L,〈ξ〉)−1)= (ξ�̂τ(〈ξ〉L,〈ξ〉)−1)�̂∥∥ξ�̂τ̃(‖ξ‖L,‖ξ‖)−1∥∥
= ξ�̂〈ξ〉−1〈ξ〉L−1〈ξ〉L〈ξ〉|ξ|−1〈ξ〉L−1

= ξ�̂|ξ|−1〈ξ〉L−1.

(5.17)

The next step is to find

Φ−1(α⊗((ξ�̂|ξ|−1〈ξ〉L−1)⊗ ξ̂))
= (α�̂τ̃(∥∥ξ�̂|ξ|−1〈ξ〉L−1

∥∥,∥∥ξ̂∥∥)−1⊗(ξ�̂|ξ|−1〈ξ〉L−1))⊗ ξ̂. (5.18)

As

∥∥ξ�̂|ξ|−1〈ξ〉L−1
∥∥

= ‖ξ‖�̃|ξ|−1〈ξ〉L−1

= 〈ξ〉L|ξ||ξ|−1〈ξ〉|ξ|−1〈ξ〉L−1

= τ(〈ξ〉L,〈ξ〉)|ξ|−1〈ξ〉L−1

= τ(〈ξ〉L,〈ξ〉)|ξ|−1〈ξ〉τ(〈ξ〉L,〈ξ〉)−1

= τ(〈ξ〉L,〈ξ〉)|ξ|−1(〈ξ〉	τ(〈ξ〉L,〈ξ〉)−1)(〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1),

(5.19)

then, as ‖ξ̂‖ = ‖ξ‖L = |ξ|τ(〈ξ〉L,〈ξ〉)−1〈ξ〉L,

Φ−1(α⊗((ξ�̂|ξ|−1〈ξ〉L−1)⊗ ξ̂))
= (α�̂τ(〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1,〈ξ〉L)−1⊗(ξ�̂|ξ|−1〈ξ〉L−1))⊗ ξ̂. (5.20)

Put v = τ(〈ξ〉L,〈ξ〉)−1 = 〈ξ〉−1〈ξ〉L−1 and w = τ(〈ξ〉�v,〈ξ〉L)−1 = ((〈ξ〉�v)〈ξ〉L)−1;

then substituting in (5.16) gives

(
θV
)∗(α)= (evalV ⊗ id

) ∑
ξ∈ basis of V

((
α�̂w

)⊗(ξ�̂|ξ|−1〈ξ〉L−1))⊗ ξ̂. (5.21)

For a given term in the sum to be nonzero, we require that

‖α‖ = ∥∥ξ̂∥∥= ‖ξ‖L = |ξ|〈ξ〉−1, (5.22)

and we proceed under this assumption. Now calculate

evalV
((
α�̂w

)⊗(ξ�̂|ξ|−1〈ξ〉L−1))= (β�̂(‖ξ‖	̃p))(ξ�̃p)= β(ξ), (5.23)
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where p = |ξ|−1〈ξ〉L−1 and β = α�̂w(‖ξ‖	̃p)−1. Next, we want to find ‖ξ‖	̃p. To do

this, we first find

‖ξ‖�̃p = 〈ξ〉L|ξ||ξ|−1〈ξ〉|ξ|−1〈ξ〉L−1

= v−1|ξ|−1〈ξ〉v = v−1|ξ|−1(〈ξ〉	v)(〈ξ〉�v), (5.24)

and hence

‖ξ‖	̃p = 〈ξ〉p(〈ξ〉�v)−1

= 〈ξ〉|ξ|−1〈ξ〉v(〈ξ〉�v)−1

= 〈ξ〉|ξ|−1(〈ξ〉	v).
(5.25)

Thus

β=α�̂w(〈ξ〉	v)−1|ξ|〈ξ〉−1

=α�̂〈ξ〉L−1(〈ξ〉�v)−1(〈ξ〉	v)−1|ξ|〈ξ〉−1

=α�̂〈ξ〉v(〈ξ〉v)−1|ξ|〈ξ〉−1 =α�̂|ξ|〈ξ〉−1.

(5.26)

Now, substituting these last equations in (5.21) gives

(
θV
)∗(α)= ∑

ξ∈ basis of V, |ξ|〈ξ〉−1=‖α‖

(
α�̂‖α‖)(ξ)· ξ̂. (5.27)

Take a basis ξ1,ξ2, . . . ,ξn with (α�̂‖α‖)(ξi) being 1 if i= 1, and 0 otherwise. Then

(
θV
)∗(α)= ξ̂1+0=α�̂‖α‖ = θV∗(α), (5.28)

where ξ̂1, ξ̂2, . . . , ξ̂n is the dual basis of V∗ defined by ξ̂i(ξj)= δi,j .
Example 5.6. We return to the example of Section 3. First, we calculate the value of

the ribbon map on the indecomposable objects. For an irreducible representation V , we

have θV : V → Vdefined by θV(ξ) = ξ�̂‖ξ‖ for ξ ∈ V . At the base point s ∈ �, we have

θV(ξ) = ξ�̄s for ξ ∈ V and θ : Vs → Vs is a multiple ΘV , say, of the identity or, more

explicitly, trace(θ : Vs → Vs)=ΘV dimC(Vs), that is,

ΘV = group character (s)
dimC

(
Vs
) . (5.29)

And then, for the different cases we will get Table 5.1.
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Table 5.1

Irreps ΘV Irreps ΘV
11 1 34 ω2

12 1 35 ω4

13 1 40 1

14 1 41 ω1

15 1 42 ω2

16 1 43 −1

21 1 44 ω4

22 −1 45 ω5

23 −1 5++ 1

24 1 5+− −1

25 −1 5−+ 1

26 1 5−− −1

30 1 6++ 1

31 ω2 6−+ 1

32 ω4 6+− −1

33 1 6−− −1

6. Traces in the category �

Definition 6.1 [8]. The trace of a morphism T : V → V for any object V in � is

defined by the following diagram:

V∗V

T

θ−1

(6.1)

Theorem 6.2. If the diagram of Definition 6.1 is evaluated in �, the following is

found:

trace(T)=
∑

ξ∈ basis of V

ξ̂
(
T(ξ)

)
. (6.2)

Proof. Begin with

coevV (1)=
∑

ξ∈ basis of V

ξ�̂τ̃
(‖ξ‖L,‖ξ‖)−1⊗ ξ̂

=
∑

ξ∈ basis of V

ξ�̂τ
(〈ξ〉L,〈ξ〉)−1⊗ ξ̂,

(6.3)
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and applying T ⊗ id to this gives

∑
ξ∈ basis of V

T
(
ξ�̂τ

(〈ξ〉L,〈ξ〉)−1)⊗ ξ̂ = ∑
ξ∈ basis of V

T(ξ)�̂τ
(〈ξ〉L,〈ξ〉)−1⊗ ξ̂. (6.4)

Next, apply the braiding map to the last equation to get

∑
ξ∈ basis of V

Ψ
(
T(ξ)�̂τ

(〈ξ〉L,〈ξ〉)−1⊗ ξ̂)= ∑
ξ∈ basis of V

ξ̂�̂
(〈ξ′〉�∣∣ξ̂∣∣)−1⊗ξ′�̂∣∣ξ̂∣∣, (6.5)

where ξ′ = T(ξ)�̂τ(〈ξ〉L,〈ξ〉)−1, so

〈ξ′〉 = 〈T(ξ)�̂τ(〈ξ〉L,〈ξ〉)−1〉= 〈T(ξ)�̄τ(〈ξ〉L,〈ξ〉)−1〉
= 〈T(ξ)〉�τ(〈ξ〉L,〈ξ〉)−1 = 〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1.

(6.6)

To calculate |ξ̂|, we start with

∥∥ξ̂∥∥= ‖ξ‖L = (|ξ|−1〈ξ〉)L = |ξ|τ(〈ξ〉L,〈ξ〉)−1〈ξ〉L, (6.7)

which implies that |ξ̂| = τ(〈ξ〉L,〈ξ〉)|ξ|−1. Then

ξ̂�̂
(〈ξ′〉�∣∣ξ̂∣∣)−1 = ξ̂�̂(〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1τ

(〈ξ〉L,〈ξ〉)|ξ|−1)−1

= ξ̂�̂(〈ξ〉�|ξ|−1)−1,

ξ′�
∣∣ξ̂∣∣= (T(ξ)�̂τ(〈ξ〉L,〈ξ〉)−1)�̂(τ(〈ξ〉L,〈ξ〉)|ξ|−1)= T(ξ)�̂|ξ|−1,

(6.8)

which gives
∑

ξ∈ basis of V

ξ̂�̂
(〈ξ′〉�∣∣ξ̂∣∣)−1⊗ξ′�̂∣∣ξ̂∣∣

=
∑

ξ∈ basis of V

ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗T(ξ)�̂|ξ|−1.

(6.9)

Next,

θ−1(T(ξ)�̂|ξ|−1)= (T(ξ)�̂|ξ|−1)�̂∥∥T(ξ)�̂|ξ|−1
∥∥−1

= (T(ξ)�̂|ξ|−1)�̂(∥∥T(ξ)∥∥�̃|ξ|−1)−1

= T(ξ)�̂|ξ|−1(‖ξ‖�̃|ξ|−1)−1

= T(ξ)�̂|ξ|−1(|ξ||ξ|−1〈ξ〉|ξ|−1)−1

= T(ξ)�̂|ξ|−1|ξ|〈ξ〉−1 = T(ξ)�̂〈ξ〉−1,

(6.10)

and finally we need to calculate

eval
(
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗T(ξ)�̂〈ξ〉−1)= (ξ̂�̂(〈ξ〉�|ξ|−1)−1)(T(ξ)�̂〈ξ〉−1). (6.11)

We know from the definition of the action on V∗ that

(
ξ̂�̂
(∥∥T(ξ)∥∥	̃x))(T(ξ)�̂x)= ξ̂(T(ξ)). (6.12)
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If we put x = 〈ξ〉−1, we want to show that ‖T(ξ)‖	̃x = (〈ξ〉�|ξ|−1)−1, so

‖ξ‖�̃x = |ξ|−1〈ξ〉�̃〈ξ〉−1 = 〈ξ〉|ξ|−1 = (〈ξ〉	|ξ|−1)(〈ξ〉�|ξ|−1)= v′t′, (6.13)

which implies that t′ = 〈ξ〉�|ξ|−1, and hence

∥∥T(ξ)∥∥	̃x = ‖ξ‖	̃x = |ξ|−1〈ξ〉	̃〈ξ〉−1 = t〈ξ〉−1t′−1

= 〈ξ〉〈ξ〉−1(〈ξ〉�|ξ|−1)−1 = (〈ξ〉�|ξ|−1)−1.
(6.14)

7. Characters in the category �

Definition 7.1 [6]. The right adjoint action in � of the algebraD on itself is defined

by the following diagram:
DD

S
(7.1)

Definition 7.2. The character χV of an object V in � is defined by the following

diagram:
D

V V∗

θ−1

(7.2)

Lemma 7.3. For an object V in �, the following holds:

DVV∗

S=

DVV∗

(7.3)
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Proof.

L.H.S.

= ε

η
S

= =
S

=
S

=
S

=
S

=
S

= R.H.S.

(7.4)
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Proposition 7.4. The character is right adjoint invariant, that is, for an object V
in �, the following holds:

DDDD

εχvAd

χv

= (7.5)

Proof.

L.H.S. =

S

θ−1

S

θ−1

=

S

θ−1

S

θ−1

S

==
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SS

θ−1

S

θ−1

==

= =

S

θ−1

S

θ−1

==

S

ε

θ−1 θ−1

= R.H.S.

ε

(7.6)
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Proposition 7.5. The character of a tensor product of representations is the product

of the characters, that is, for two objects V and W in �, the following holds:

=

D

χV⊗W

D

χV χW

(7.7)

Proof.

coev(V)

coev(W)

L.H.S. =

θ−1

=

θ−1

=

θ−1 θ−1

=

coev(V)
coev(W)

θ−1 θ−1
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=

θ−1 θ−1

=

coev(V)

coev(W)

θ−1

θ−1

=

θ−1

θ−1

coev(W)

coev(V)

= R.H.S.

(7.8)

Theorem 7.6. The following formula holds for the character:

χV
(
δy⊗x

)= ∑
ξ∈ basis of V, y=〈ξ〉|ξ|−1

ξ̂
(
ξ�̂〈ξ〉−1x〈ξ〉), (7.9)

for xy =yx, otherwise χV (δy⊗x)= 0.
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Proof. Set a= δy⊗x. To have χV (a)≠ 0, we must have ‖a‖ = e, that is, y =y�̃x,

which implies that x and y commute. Assuming this, we continue with the diagram-

matic definition of the character, starting with


 ∑
ξ∈ basis of V

ξ�̂τ̃
(‖ξ‖L,‖ξ‖)−1⊗ ξ̂


⊗a= ∑

ξ∈ basis of V

(
ξ�̂τ

(〈ξ〉L,〈ξ〉)−1⊗ ξ̂)⊗a.
(7.10)

Next, we calculate

Ψ
(
ξ�̂τ

(〈ξ〉L,〈ξ〉)−1⊗ ξ̂)= ξ̂�̂(〈ξ′〉�∣∣ξ̂∣∣)−1⊗ξ′�̂∣∣ξ̂∣∣, (7.11)

where ξ′ = ξ�̂τ(〈ξ〉L,〈ξ〉)−1, so

〈ξ′〉 = 〈ξ�̂τ(〈ξ〉L,〈ξ〉)−1〉= 〈ξ�̄τ(〈ξ〉L,〈ξ〉)−1〉= 〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1. (7.12)

From a previous calculation, we know that |ξ̂| = τ(〈ξ〉L,〈ξ〉)|ξ|−1, so

ξ̂�̂
(〈ξ′〉�∣∣ξ̂∣∣)−1 = ξ̂�̂(〈ξ〉�τ(〈ξ〉L,〈ξ〉)−1τ

(〈ξ〉L,〈ξ〉)|ξ|−1)−1

= ξ̂�̂(〈ξ〉�|ξ|−1)−1,

ξ′�
∣∣ξ̂∣∣= (ξ�̂τ(〈ξ〉L,〈ξ〉)−1)�̂(τ(〈ξ〉L,〈ξ〉)|ξ|−1)= ξ�̂|ξ|−1,

(7.13)

which gives the next stage in the evaluation of the diagram:

∑
ξ∈ basis of V

Ψ
(
ξ�̂τ

(〈ξ〉L,〈ξ〉)−1⊗ ξ̂)⊗a
=

∑
ξ∈ basis of V

(
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗ξ�̂|ξ|−1)⊗a. (7.14)

Now we apply the associator to the last equation to get

∑
ξ∈ basis of V

Φ
((
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗ξ�̂|ξ|−1)⊗a)

=
∑

ξ∈ basis of V

ξ̂�̂
(〈ξ〉�|ξ|−1)−1τ̃

(∥∥ξ�̂|ξ|−1
∥∥L,‖a‖)⊗(ξ�̂|ξ|−1⊗a)

=
∑

ξ∈ basis of V

ξ̂�̂
(〈ξ〉�|ξ|−1)−1τ

(〈
ξ�̂|ξ|−1〉,e)⊗(ξ�̂|ξ|−1⊗a)

=
∑

ξ∈ basis of V

ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗(ξ�̂|ξ|−1⊗(δy⊗x))

(7.15)

as τ(〈ξ�̂|ξ|−1〉,e)= e. Now apply the action �̂ to ξ�̂|ξ|−1⊗(δy⊗x) to get

(
ξ�̂|ξ|−1)�̂(δy⊗x)= δy,‖ξ�̂|ξ|−1‖

(
ξ�̂|ξ|−1)�̂x = δy,‖ξ‖�̃|ξ|−1ξ�̂|ξ|−1x, (7.16)

and to get a nonzero answer, we must have

y = ‖ξ‖�̃|ξ|−1 = |ξ|−1〈ξ〉�̃|ξ|−1 = |ξ||ξ|−1〈ξ〉|ξ|−1 = 〈ξ〉|ξ|−1. (7.17)
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Thus the character of V is given by

χV
(
δy⊗x

)= ∑
ξ∈ basis of V, y=〈ξ〉|ξ|−1

eval
(
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗θ−1(ξ�̂|ξ|−1x

))
. (7.18)

Next,

θ−1(ξ�̂|ξ|−1x
)= (ξ�̂|ξ|−1x

)
�̂
∥∥ξ�̂|ξ|−1x

∥∥−1

= (ξ�̂|ξ|−1x
)
�̂
(‖ξ‖�̃|ξ|−1x

)−1

= (ξ�̂|ξ|−1x
)
�̂
(
x−1|ξ||ξ|−1〈ξ〉|ξ|−1x

)−1

= ξ�̂|ξ|−1xx−1|ξ|〈ξ〉−1x = ξ�̂〈ξ〉−1x.

(7.19)

Now we need to calculate eval(ξ̂�̂(〈ξ〉�|ξ|−1)−1⊗ξ�̂〈ξ〉−1x). Start with ‖ξ‖�̃〈ξ〉−1x =
〈ξ〉|ξ|−1�̃x = 〈ξ〉|ξ|−1, as we only have nonzero summands for y = 〈ξ〉|ξ|−1. Then

eval
(
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗ξ�̂〈ξ〉−1x

)
= eval

((
ξ̂�̂
(〈ξ〉�|ξ|−1)−1⊗ξ�̂〈ξ〉−1x

)
�̂〈ξ〉)

= eval
(
ξ̂�̂
(〈ξ〉�|ξ|−1)−1(〈ξ〉|ξ|−1	̃〈ξ〉)⊗ξ�̂〈ξ〉−1x〈ξ〉).

(7.20)

To find 〈ξ〉|ξ|−1	̃〈ξ〉, first find 〈ξ〉|ξ|−1�̃〈ξ〉 = |ξ|−1〈ξ〉, so

〈ξ〉|ξ|−1	̃〈ξ〉 = (〈ξ〉	|ξ|−1)(〈ξ〉�|ξ|−1)	̃〈ξ〉
= (〈ξ〉�|ξ|−1)〈ξ〉〈ξ〉−1 = 〈ξ〉�|ξ|−1.

(7.21)

Lemma 7.7. Let V be an object in �. For δy ⊗x ∈ D, the character of V is given by

the following formula, where y = su−1 with s ∈M and u∈G:

χV
(
δy⊗x

)= ∑
ξ∈ basis of Vu−1s

ξ̂
(
ξ�̂s−1xs

)= χVu−1s

(
s−1xs

)
, (7.22)

where xy = yx, otherwise χV (δy ⊗x) = 0. Here, χVu−1s
is the group representation

character of the representation Vu−1s of the group stab(u−1s).

Proof. From Theorem 7.6, we know that

χV
(
δy⊗x

)= ∑
ξ∈ basis of V, y=〈ξ〉|ξ|−1

ξ̂
(
ξ�̂〈ξ〉−1x〈ξ〉), (7.23)

for xy =yx. Set s = 〈ξ〉 and u= |ξ|, so y = su−1. We note that s−1xs is in stab(u−1s),
because

u−1s�̃s−1xs = s−1x−1su−1ss−1xs = s−1x−1xsu−1s =u−1s. (7.24)

It just remains to note that ‖ξ‖ = |ξ|−1〈ξ〉 =u−1s.
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8. Modular categories. Let � be a semisimple ribbon category. For objects V andW
in �, define S̃VW ∈ 1 as follows:

S̃VW =

θ−1
V θ−1

W

coev(V) coev(W)

(8.1)

There are standard results [1, 8]:

S̃VW = S̃WV = S̃V∗W∗ = S̃W∗V∗ , S̃V1 = dim(V). (8.2)

Here, dim(V) is the trace in � of the identity map on V .

Definition 8.1. Call an object U in an abelian category � simple if, for any V in

�, any injection V ↩ U is either 0 or an isomorphism [1]. A semisimple category is an

abelian category whose objects split as direct sums of simple objects [8].

Definition 8.2 [1]. A modular category is a semisimple ribbon category � satisfy-

ing the following properties:

(1) there are only a finite number of isomorphism classes of simple objects in �,

(2) Schur’s lemma holds, that is, the morphisms between simple objects are zero

unless they are isomorphic, in which case the morphisms are a multiple of the

identity,

(3) the matrix S̃VW with indices in isomorphism classes of simple objects is invert-

ible.

Definition 8.3 [1]. For a simple object V , the ribbon map on V is a multiple of the

identity, and ΘV is used for the scalar multiple. The numbers P± are defined as the

following sums over simple isomorphism classes:

P± =
∑
V
ΘV±1(dim(V)

)2, (8.3)

and the matrices T and C are defined using the Kronecker delta function by

TVW = δVWΘV , CVW = δVW∗ . (8.4)
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Theorem 8.4 [1]. In a modular category, if the matrix S is defined by

S = S̃√
P+P−

, (8.5)

then the following matrix equations hold:

(ST)3 =
√
P+

P−
S2, S2 = C, CT = TC, C2 = 1. (8.6)

We now give some results which allow us to calculate the matrix S̃ in �.

Lemma 8.5.

coev(V∗)

=

coev(V)

u , where u =
(8.7)

Proof.

R.H.S. =

V∗ V∗∗

=

= =

= = L.H.S.

(8.8)
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Lemma 8.6.

V∗V

=θ−1
V∗

θ−1
V

V

u

V∗

where u = and θ−1
V∗ =

θ−1
V

(8.9)

Proof.

θ−1
V

L.H.S. = =θ−1
V

=
θ−1
V

=
θ−1
V

= R.H.S.

(8.10)

Lemma 8.7. For V , W indecomposable objects in �, trace(ΨV∗W ◦ΨWV∗)= S̃VW .
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Proof.

coev(W)

coev(V∗)

L.H.S. = =

θ−1

coev(W)

coev(V∗)

θ−1
W

θ−1
V∗

=

u

coev(W)

coev(V)

θ−1
W

θ−1
V∗

=

u

θ−1
W

θ−1
V∗

=
u

θ−1
W

θ−1
V∗

=

u θ−1
V∗ θ−1

W

=

u θ−1
V∗ θ−1

W

=

θ−1
V θ−1

W

coev(W)coev(V)

= R.H.S.

(8.11)
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Lemma 8.8. For two objects V and W in �,

trace
(
ΨW⊗V ◦ΨV⊗W

)
=

∑
ξ⊗η∈ basis of V⊗W

|ξ|−1〈ξ〉 commutes with |η|〈η〉−1

η̂
(
η�̂|η|−1〈ξ〉−1|ξ||η|)ξ̂(ξ�̂|η|〈η〉−1). (8.12)

Proof. From Theorem 6.2, we know that

trace
(
ΨW⊗V ◦ΨV⊗W

)= ∑
(ξ⊗η)∈ basis of V⊗W

(̂ξ⊗η)(Ψ2(ξ⊗η)). (8.13)

From the definition of the ribbon map, we know that Ψ(Ψ(ξ⊗η))�̂‖ξ⊗η‖ = ξ�̂‖ξ‖⊗
η�̂‖η‖, so

Ψ
(
Ψ(ξ⊗η))= (ξ�̂‖ξ‖⊗η�̂‖η‖)�̂‖ξ⊗η‖−1

= (ξ�̂|ξ|−1〈ξ〉⊗η�̂|η|−1〈η〉)�̂〈η〉−1〈ξ〉−1|ξ||η|
= (ξ�̂|ξ|−1〈ξ〉)�̂(∥∥η�̂‖η‖∥∥	̃〈η〉−1〈ξ〉−1|ξ||η|)
⊗η�̂|η|−1〈η〉〈η〉−1〈ξ〉−1|ξ||η|

= ξ�̂|ξ|−1〈ξ〉(‖η‖	̃〈η〉−1〈ξ〉−1|ξ||η|)⊗η�̂|η|−1〈ξ〉−1|ξ||η|.

(8.14)

Put Ψ(Ψ(ξ⊗η))= ξ′ ⊗η′ and ξ̂⊗η=α⊗β, and then from Lemma 4.1 we get

(
ξ̂⊗η)(ξ′ ⊗η′)= (α�̄τ(〈β〉,〈ξ′〉·〈η′〉))(η′)(β�̄τ(〈ξ′〉,〈η′〉)−1)(ξ′). (8.15)

As ξ̂⊗η is part of a dual basis, the last expression can only be nonzero if ‖ξ′‖ = ‖ξ‖
and ‖η′‖ = ‖η‖. A simple calculation shows that ‖η′‖ = ‖η‖ if and only if |ξ|−1〈ξ〉
commutes with |η|〈η〉−1. We use this to find

‖η‖�̃〈η〉−1〈ξ〉−1|ξ||η| = |η|−1|ξ|−1〈ξ〉〈η〉|η|−1〈η〉〈η〉−1〈ξ〉−1|ξ||η|
= |η|−1〈η〉|η|−1|ξ|−1〈ξ〉〈ξ〉−1|ξ||η| = |η|−1〈η〉, (8.16)

and then

‖η‖	̃〈η〉−1〈ξ〉−1|ξ||η| = 〈η〉〈η〉−1〈ξ〉−1|ξ||η|〈η〉−1 = 〈ξ〉−1|ξ||η|〈η〉−1. (8.17)

Now, using the formula for ξ̂⊗η=α⊗β from Lemma 4.1 gives the result.
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Lemma 8.9. Let V and W be objects in �. Then in terms of group characters,

trace
(
Ψ2
V⊗W

)= ∑
u,v∈G, s,t∈M

su commutes with vt

χWus
(
s−1t−1v−1s

)
χVvt

(
u−1s−1). (8.18)

Proof. This is more or less immediate from Lemma 8.8. Put ‖η‖ =u−1s and ‖ξ‖ =
v−1t and sum over basis elements of constant degree first.

9. An example of a modular category. Using the order of the indecomposable ob-

jects in Table 5.1, we get T to be a diagonal 32×32 matrix whose diagonal entries are

taken from the table. As every indecomposable object in our example is self-dual, the

matrix C is the 32×32 identity matrix.

To find S, we calculate the trace of the double braiding trace(ΨVW ◦ΨWV). We do this

using the result from Lemma 8.8, split into different cases for the objects V andW , and

move the points the characters are evaluated at to the base points for each orbit using

Lemma 2.3. The following examples are given.

(I) Case (1) ⊗ Case (1) (i.e., the orbit of W is {e} and the orbit of V is {e}):

trace
(
Ψ2)= χWe(e)χVe(e). (9.1)

(II) Case (2) ⊗ Case (5) (i.e., the orbit of W is {a3} and the orbit of V is {b,ba2,ba4}):

trace
(
Ψ2)= (χWa3

(
ba2)+χWa3

(
ba4)+χWa3

(b)
)
χVb

(
a3). (9.2)

(III) Case (5) ⊗ Case (3) (i.e., the orbit ofW is {b,ba2,ba4} and the orbit of V is {a2,a4}):

trace
(
Ψ2)= 0. (9.3)

(IV) Case (6) ⊗ Case (5) (i.e., the orbit ofW is {ba,ba3,ba5} and the orbit of V is {b,ba2,
ba4}):

trace
(
Ψ2)= 3

(
χWba

(
ba4)χVb (ba3)). (9.4)

Noting that the dimension in D of each V is the same as its usual dimension, we get

P+ = P− = 12.
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From these cases, we get S to be one twelfth of the following 32× 32 symmetric

matrix:

S̃=




1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

1 1 1 1 2 2 −1 −1 −1 −1 −2 −2 2 2 2 2 2 2 −2 −2 −2 −2 −2 −2 −3 −3 −3 −3 3 3 3 3

1 1 1 1 2 2 −1 −1 −1 −1 −2 −2 2 2 2 2 2 2 −2 −2 −2 −2 −2 −2 3 3 3 3 −3 −3 −3 −3

1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 −3 −3 −3 −3 −3 −3 −3 −3

2 2 2 2 4 4 −2 −2 −2 −2 −4 −4 −2 −2 −2 −2 −2 −2 2 2 2 2 2 2 0 0 0 0 0 0 0 0

2 2 2 2 4 4 2 2 2 2 4 4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 0 0 0 0 0 0 0

1 −1 −1 1 −2 2 1 −1 −1 1 −2 2 2 −2 2 −2 2 −2 2 −2 2 −2 2 −2 3 3 −3 −3 3 −3 3 −3

1 −1 −1 1 −2 2 −1 1 1 −1 2 −2 2 −2 2 −2 2 −2 −2 2 −2 2 −2 2 −3 −3 3 3 3 −3 3 −3

1 −1 −1 1 −2 2 −1 1 1 −1 2 −2 2 −2 2 −2 2 −2 −2 2 −2 2 −2 2 3 3 −3 −3 −3 3 −3 3

1 −1 −1 1 −2 2 1 −1 −1 1 −2 2 2 −2 2 −2 2 −2 2 −2 2 −2 2 −2 −3 −3 3 3 −3 3 −3 3

2 −2 −2 2 −4 4 −2 2 2 −2 4 −4 −2 2 −2 2 −2 2 2 −2 2 −2 2 −2 0 0 0 0 0 0 0 0

2 −2 −2 2 −4 4 2 −2 −2 2 −4 4 −2 2 −2 2 −2 2 −2 2 −2 2 −2 2 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 2 2 2 2 −2 −2 4 −2 −2 4 −2 −2 4 −2 −2 4 −2 −2 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 −2 −2 −2 −2 2 2 −2 −2 4 −2 −2 4 2 −4 2 2 −4 2 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 2 2 2 2 −2 −2 −2 4 −2 −2 4 −2 −2 −2 4 −2 −2 4 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 −2 −2 −2 −2 2 2 4 −2 −2 4 −2 −2 −4 2 2 −4 2 2 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 2 2 2 2 −2 −2 −2 −2 4 −2 −2 4 −2 4 −2 −2 4 −2 0 0 0 0 0 0 0 0

2 2 2 2 −2 −2 −2 −2 −2 −2 2 2 −2 4 −2 −2 4 −2 2 2 −4 2 2 −4 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 2 −2 −2 2 2 −2 4 2 −2 −4 −2 2 4 2 −2 −4 −2 2 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 −2 2 2 −2 −2 2 −2 −4 −2 2 4 2 2 −2 −4 −2 2 4 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 2 −2 −2 2 2 −2 −2 2 4 2 −2 −4 −2 −4 −2 2 4 2 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 −2 2 2 −2 −2 2 4 2 −2 −4 −2 2 −4 −2 2 4 2 −2 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 2 −2 −2 2 2 −2 −2 −4 −2 2 4 2 −2 2 4 2 −2 −4 0 0 0 0 0 0 0 0

2 −2 −2 2 2 −2 −2 2 2 −2 −2 2 −2 2 4 2 −2 −4 2 4 2 −2 −4 −2 0 0 0 0 0 0 0 0

3 −3 3 −3 0 0 3 −3 3 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 −3 3 −3 3 −3 −3 3

3 −3 3 −3 0 0 3 −3 3 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 3 −3 3 −3 3 3 −3

3 −3 3 −3 0 0 −3 3 −3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 −3 3 −3 −3 3 3 −3

3 −3 3 −3 0 0 −3 3 −3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 3 −3 3 3 −3 −3 3

3 3 −3 −3 0 0 3 3 −3 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 −3 −3 3 3 3 −3 −3

3 3 −3 −3 0 0 −3 −3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 3 3 −3 3 3 −3 −3

3 3 −3 −3 0 0 3 3 −3 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 3 3 −3 −3 −3 3 3

3 3 −3 −3 0 0 −3 −3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 −3 −3 3 −3 −3 3 3




.

(9.5)

Now it is possible to check that the matrices S, T , and C satisfy the following relations:

S2 = (ST)3, CS = SC, CT = TC. (9.6)

10. An equivalence of tensor categories. In this section, we will generalize some

results of [3] which considered group double cross products, that is, a groupX factoring

into two subgroups G and M .



2258 M. M. AL-SHOMRANI AND E. J. BEGGS

Definition 10.1 [3]. For the double cross product group X =GM , there is a quan-

tum double D(X)= k(X)�kX which has the following operations:

(
δy⊗x

)(
δy′ ⊗x′

)= δx−1yx,y′
(
δy⊗xx′

)
, ∆

(
δy⊗x

)= ∑
ab=y

δa⊗x⊗δb⊗x,

1=
∑
y
δy⊗e, ε

(
δy⊗x

)= δy,e, S
(
δy⊗x

)= δx−1y−1x⊗x−1,

(
δy⊗x

)∗ = δx−1yx⊗x−1, R =
∑
x,z
δx⊗e⊗δz⊗x.

(10.1)

The representations ofD(X) are given by X-graded left kX-modules. The kX-action will

be denoted by 	̇ and the grading by |||·|||. The grading and X-action are related by

|||x	̇ξ||| = x|||ξ|||x−1, x ∈X, ξ ∈ V, (10.2)

and the action of (δy⊗x)∈D(X) is given by

(
δy⊗x

)
	̇ξ = δy,|||x	̇ξ|||x	̇ξ. (10.3)

Proposition 10.2. There is a functor χ from � to the category of representations

of D(X) given by the following: as vector spaces, χ(V) is the same as V , and χ is the

identity map. The X-grading |||·||| on χ(V) and the action of us ∈ kX are defined by

∣∣∣∣∣∣χ(η)∣∣∣∣∣∣= 〈η〉−1|η| for η∈ V,
us	̇χ(η)= χ(((s�|η|−1)	̄η)�̄u−1), s ∈M, u∈G. (10.4)

A morphism φ : V → W in � is sent to the morphism χ(φ) : χ(V) → χ(W) defined by

χ(φ)(χ(ξ))= χ(φ(ξ)).
Proof. First, we show that 	̇ is an action, that is, vt	̇(us	̇χ(η))= vtus	̇χ(η) for

all s,t ∈M and u,v ∈G. Note that

vt	̇
(
us	̇χ(η)

)= vt	̇χ(((s�|η|−1)	̄η)�̄u−1)
= χ(((t�|η̄|−1)	̄η̄)�̄v−1), (10.5)

where η̄= ((s�|η|−1)	̄η)�̄u−1. On the other hand, we have

vtus = v(t	u)τ(t�u,s)((t�u)·s), (10.6)

where v(t	u)τ(t�u,s)∈G and (t�u)·s ∈M , so

vtus	̇χ(η)= χ(((((t�u)·s)�|η|−1)	̄η)�̄τ(t�u,s)−1(t	u)−1v−1). (10.7)

We need to show that

(
t�|η̄|−1)	̄η̄= ((((t�u)·s)�|η|−1)	̄η)�̄τ(t�u,s)−1(t	u)−1

= (((t�u(s	|η|−1))·(s�|η|−1))	̄η)�̄τ(t�u,s)−1(t	u)−1.
(10.8)
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Put s̄ = s � |η|−1 and η′ = s̄	̄η which give η̄ = η′�̄u−1. Then, using the connections

between the gradings and actions,

|η̄| = ∣∣η′�̄u−1
∣∣= (〈η′〉	u−1)−1|η′|u−1. (10.9)

Putting t̄ = t�u|η′|−1, the left-hand side of (10.8) will become

(
t�|η̄|−1)	̄η̄= (t�u|η′|−1(〈η′〉	u−1))	̄(η′�̄u−1)

= (t̄ �(〈η′〉	u−1))	̄(η′�̄u−1)
= (t̄	̄η′)�̄((t̄ �|η′|)	u−1).

(10.10)

Now, from (10.8) and the fact that (t	u)−1 = (t̄�|η′|)	u−1, we only need to show that

t̄	̄η′ = (((t�u(s	|η|−1))·(s�|η|−1))	̄η)�̄τ(t�u,s)−1. (10.11)

From the formula for the composition of the M “action,” the right-hand side of (10.11)

becomes p̄	̄(s̄	̄η) = p̄	̄η′, where p̄′ = t�u(s 	 |η|−1) and p̄ = p̄′�τ(s̄,〈η〉)τ(〈s̄	̄η〉,
s̄ �|η|)−1. We have used the fact that τ(t�u,s)= τ(p̄′�(s̄	|η|), s̄ �|η|). Now we just

have to prove that p̄ = t̄. Because τ(s̄,〈η〉)−1(s̄ 	 |η|) = τ(〈s̄	̄η〉, s̄ � |η|)−1|s̄	̄η| and

knowing that (s̄ 	|η|)= (s	|η|−1)−1, we can write p̄ as follows:

p̄ = p̄′�(s̄ 	|η|)∣∣s̄ 	η∣∣−1

= t�u(s	|η|−1)(s	|η|−1)−1|η′|−1

= t�u|η′|−1 = t̄.
(10.12)

Next, we show that |||us	̇χ(η)||| =us|||χ(η)|||(us)−1, where u∈G and s ∈M :

∣∣∣∣∣∣x	̇χ(η)∣∣∣∣∣∣= ∣∣∣∣∣∣χ(((s�|η|−1)	̄η)�̄u−1)∣∣∣∣∣∣
= 〈η′�̄u−1〉−1∣∣η′�̄u−1

∣∣
=u〈η′〉−1|η′|u−1

=u〈s̄	̄η〉−1∣∣s̄	̄η∣∣u−1

=u(s̄ �|η|)〈η〉−1|η|(s̄ �|η|)−1u−1

=us〈η〉−1|η|s−1u−1.

(10.13)

Theorem 10.3. The functor χ is invertible.

Proof. We have already proved in Proposition 10.2 that the X-grading ||| · ||| and

the action 	̇ give a representation of D(X), so we only need to show that χ is a one-

to-one correspondence, which we do by giving its inverse χ−1 as follows: let W be a

representation of D(X), with kX-action 	̇ and X-grading |||·|||. Define a D representa-

tion as follows: χ−1(W) will be the same as W as a vector space. There will be G- and

M-gradings given by the factorization

|||ξ|||−1 = ∣∣χ−1(ξ)
∣∣−1〈χ−1(ξ)

〉
, ξ ∈W, 〈χ−1(ξ)

〉∈M, ∣∣χ−1(ξ)
∣∣∈G. (10.14)
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The actions of s ∈M and u∈G are given by

s	̄χ−1(ξ)= χ−1((s�∣∣χ−1(ξ)
∣∣)	̇ξ), χ−1(ξ)�̄u= χ−1(u−1	̇ξ

)
. (10.15)

Checking the rest is left to the reader.

Proposition 10.4. For δy⊗x ∈�, χ(ξ�̂(δy⊗x))= δy,‖ξ‖x−1	̇χ(ξ).

Proof. Starting with the left-hand side,

χ
(
ξ�̂
(
δy⊗x

))= χ(δy,‖ξ‖ξ�̂x)= δy,‖ξ‖χ(ξ�̂x). (10.16)

Putting x =us for u∈G and s ∈M ,

ξ�̂x = ξ�̂us = (ξ�̄u)�̂s = ((sL�u−1|ξ|−1)	̄ξ)�̄(sL	u−1)−1τ
(
sL,s

)
. (10.17)

Now put ū= τ(sL,s)−1(sL	u−1) and s̄ = sL�u−1. Then

χ
(
ξ�̂
(
δy⊗x

))= δy,‖ξ‖χ(((s̄ �|ξ|−1)	̄ξ)�̄ū−1)= δy,‖ξ‖ūs̄	̇χ(ξ)
= δy,‖ξ‖τ

(
sL,s

)−1(sL	u−1)(sL�u−1)	̇χ(ξ)
= δy,‖ξ‖s−1sL−1sLu−1	̇χ(ξ)

= δy,‖ξ‖(us)−1	̇χ(ξ)

= δy,‖ξ‖x−1	̇χ(ξ).

(10.18)

Proposition 10.5. Define a map ψ :D→D(X) by ψ(δy ⊗x) = δx−1yx⊗x−1. Then

ψ satisfies the equation χ(ξ�̂(δy⊗x))=ψ(δy⊗x)	̇χ(ξ).
Proof. Use the previous proposition.

The reader will recall that D is in general a nontrivially associated algebra (i.e., it is

only associative in the category � with its nontrivial associator). Thus, in general, it

cannot be isomorphic to D(X), which is really associative. In general, ψ cannot be an

algebra map.

Proposition 10.6. For a and b elements of the algebra D in the category �,

ψ(b)ψ(a)=ψ(ab)

 ∑
y∈Y

δy⊗τ
(〈a〉,〈b〉)−1


. (10.19)

Proof. By Proposition 10.5, we have

χ
((
ξ�̂a

)
�̂b
)=ψ(b)	̇χ(ξ�̂a)=ψ(b)	̇(ψ(a)	̇χ(ξ))
=ψ(b)ψ(a)	̇χ(ξ). (10.20)

But also, where f =∑y δy⊗τ(〈a〉,〈b〉),
χ
((
ξ�̂a

)
�̂b
)= χ((ξ�̂τ̃(‖a‖,‖b‖))�̂ab)=ψ(ab)	̇χ(ξ�̂τ̃(‖a‖,‖b‖))
=ψ(ab)	̇χ(ξ�̂τ̃(〈a〉,〈b〉))=ψ(ab)ψ(f)	̇χ(ξ). (10.21)
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Definition 10.7. Let V andW be objects of �. The map c : χ(V)⊗χ(W)→ χ(V⊗W)
is defined by

c
(
χ(η)⊗χ(ξ))= χ(((〈ξ〉�|η|−1)	̄η)⊗ξ). (10.22)

Proposition 10.8. The map c, defined above, is a D(X) module map, that is,

∣∣∣∣∣∣c(χ(η)⊗χ(ξ))∣∣∣∣∣∣= ∣∣∣∣∣∣χ(η)⊗χ(ξ)∣∣∣∣∣∣,
x	̇c

(
χ(η)⊗χ(ξ))= c(x	̇(χ(η)⊗χ(ξ))) ∀x ∈X. (10.23)

Proof. We will begin with the grading first. It is known that

∣∣∣∣∣∣χ(η)⊗χ(ξ)∣∣∣∣∣∣= ∣∣∣∣∣∣χ(η)∣∣∣∣∣∣∣∣∣∣∣∣χ(ξ)∣∣∣∣∣∣= 〈η〉−1|η|〈ξ〉−1|ξ|. (10.24)

But, on the other hand, we know from the definition of c that

∣∣∣∣∣∣c(χ(η)⊗χ(ξ))∣∣∣∣∣∣= ∣∣∣∣∣∣χ((〈ξ〉�|η|−1)	̄η⊗ξ)∣∣∣∣∣∣
= 〈(〈ξ〉�|η|−1)	̄η⊗ξ〉−1∣∣(〈ξ〉�|η|−1)	̄η⊗ξ∣∣
= 〈ξ〉−1〈η̄〉−1|η̄||ξ|
= 〈ξ〉−1〈s̄	̄η〉−1∣∣s̄	̄η∣∣|ξ|
= 〈ξ〉−1(s̄ �|η|)〈η〉−1|η|(s̄ �|η|)−1|ξ|
= 〈η〉−1|η|〈ξ〉−1|ξ|,

(10.25)

where s̄ = 〈ξ〉�|η|−1 and η̄= (〈ξ〉�|η|−1)	̄η= s̄	̄η, which gives the result.

For the G-action, we know from the definitions that

u	̇
(
χ(η)⊗χ(ξ))= χ(η�̄u−1)⊗χ(ξ�̄u−1),

c
(
u	̇
(
χ(η)⊗χ(ξ)))= χ(((〈ξ�̄u−1〉�∣∣η�̄u−1

∣∣−1)	̄(η�̄u−1))⊗(ξ�̄u−1)). (10.26)

By using the properties of the G- and M-gradings,

〈
ξ�̄u−1〉�∣∣η�̄u−1

∣∣−1 = (〈ξ〉�u−1)�u|η|−1(〈η〉	u−1)
= 〈ξ〉�|η|−1(〈η〉	u−1),

(〈
ξ�̄u−1〉�∣∣η�̄u−1

∣∣−1)	̄(η�̄u−1)= ((〈ξ〉�|η|−1)�(〈η〉	u−1))	̄(η�̄u−1)
= ((〈ξ〉�|η|−1)	̄η)�̄(((〈ξ〉�|η|−1)�|η|)	u−1)
= ((〈ξ〉�|η|−1)	̄η)�̄(〈ξ〉	u−1).

(10.27)

Now we can write

c
(
u	̇
(
χ(η)⊗χ(ξ)))= χ(((〈ξ〉�|η|−1)	̄η)�̄(〈ξ〉	u−1)⊗(ξ�̄u−1)). (10.28)
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On the other hand,

u	̇c
(
χ(η)⊗χ(ξ))=u	̇χ(((〈ξ〉�|η|−1)	̄η)⊗ξ)

= χ((((〈ξ〉�|η|−1)	̄η)⊗ξ)�̄u−1), (10.29)

which gives the same as (10.28).

Now we show that c preserves the M-action. For s ∈M ,

s	̇
(
χ(η)⊗χ(ξ))= χ((s�|η|−1)	̄η)⊗χ((s�|ξ|−1)	̄ξ),

c
(
s	̇
(
χ(η)⊗χ(ξ)))= χ((〈(s�|ξ|−1)	̄ξ〉�∣∣(s�|η|−1)	̄η∣∣−1)	̄((s�|η|−1)	̄η)

⊗((s�|ξ|−1)	̄ξ)).
(10.30)

Using the “action” property for 	̄, we get

(〈(
s�|ξ|−1)	̄ξ〉�∣∣(s�|η|−1)	̄η∣∣−1)	̄((s�|η|−1)	̄η)
= ((p′ · t̄)	̄η)�̄τ(p′�(t̄ 	|η|), t̄ �|η|)−1,

(10.31)

where t̄ = s�|η|−1 and

p′ = 〈(s�|ξ|−1)	̄ξ〉�∣∣t̄	̄η∣∣−1τ
(〈
t̄	̄η

〉
, t̄ �|η|)τ(t̄,〈η〉)−1. (10.32)

But, using the connections between the gradings and the actions, we know that |t̄	̄η|−1=
(t̄	|η|)−1τ(t̄,〈η〉)τ(〈t̄	̄η〉, t̄ �|η|)−1, so

p′ = 〈(s�|ξ|−1)	̄ξ〉�(t̄ 	|η|)−1

= 〈(s�|ξ|−1)	̄ξ〉�((s�|η|−1)	|η|)−1

= 〈(s�|ξ|−1)	̄ξ〉�(s	|η|−1).
(10.33)

Substituting in the equation above gives

(〈(
s�|ξ|−1)	̄ξ〉�∣∣(s�|η|−1)	̄η∣∣−1)	̄((s�|η|−1)	̄η)
= (((〈(s�|ξ|−1)	̄ξ〉�(s	|η|−1))·(s�|η|−1))	̄η)�̄τ(〈(s�|ξ|−1)	̄ξ〉,s)−1

= (((〈(s�|ξ|−1)	̄ξ〉·s)�|η|−1)	̄η)�̄τ(〈(s�|ξ|−1)	̄ξ〉,s)−1

= ((((s�|ξ|−1)·〈ξ〉)�|η|−1)	̄η)�̄τ(〈(s�|ξ|−1)	̄ξ〉,s)−1.
(10.34)

On the other hand, we know that

s	̇c
(
χ(η)⊗χ(ξ))= s	̇χ(((〈ξ〉�|η|−1)	̄η)⊗ξ)

= s	̇χ(η̄⊗ξ)= χ((s�|η̄⊗ξ|−1)	̄(η̄⊗ξ)), (10.35)
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where η̄= (〈ξ〉�|η|−1)	̄η. Next, we calculate

|η̄⊗ξ| = τ(〈η̄〉,〈ξ〉)−1|η̄||ξ|,
s�|η̄⊗ξ|−1 = s�|ξ|−1|η̄|−1τ

(〈η̄〉,〈ξ〉). (10.36)

If we put s̄ = s�|ξ|−1|η̄|−1, then

(
s�|η̄⊗ξ|−1)	̄(η̄⊗ξ)

= (s̄ �τ(〈η̄〉,〈ξ〉))	̄(η̄⊗ξ)
= (s̄	̄η̄)�̄τ(s̄ �|η̄|,〈ξ〉)τ(〈(s̄ �|η̄|)	̄ξ〉, s̄ �|η̄||ξ|)−1⊗(s̄ �|η̄|)	̄ξ
= (s̄	̄η̄)�̄τ(s�|ξ|−1,〈ξ〉)τ(〈(s�|ξ|−1)	̄ξ〉,s)−1⊗(s�|ξ|−1)	̄ξ.

(10.37)

Using the “action” property again,

s̄	̄η̄= (s�|ξ|−1|η̄|−1)	̄((〈ξ〉�|η|−1)	̄η)
= ((q′ ·(〈ξ〉�|η|−1))	̄η)�̄τ(q′�((〈ξ〉�|η|−1)	|η|),〈ξ〉)−1

= ((q′ ·(〈ξ〉�|η|−1))	̄η)�̄τ(q′�(〈ξ〉	|η|−1)−1,〈ξ〉)−1,

(10.38)

where

q′ = (s�|ξ|−1|η̄|−1)�τ(〈(〈ξ〉�|η|−1)	η〉,〈ξ〉)τ(〈ξ〉�|η|−1,〈η〉)−1

= (s�|ξ|−1)�(〈ξ〉	|η|−1), (10.39)

as

|η̄|−1 = ((〈ξ〉�|η|−1)	|η|)−1τ
(〈ξ〉�|η|−1,〈η〉)τ(〈(〈ξ〉�|η|−1)	η〉,〈ξ〉)−1.

(10.40)

Hence, substituting with the value of q′, we get

s̄	̄η̄= ((((s�|ξ|−1)�(〈ξ〉	|η|−1))·(〈ξ〉�|η|−1))	̄η)�̄τ((s�|ξ|−1),〈ξ〉)−1

= ((((s�|ξ|−1)·〈ξ〉)�|η|−1)	̄η)�̄τ(s�|ξ|−1,〈ξ〉)−1,
(10.41)

giving the required result

(s̄	̄η̄)�̄τ
(
s�|ξ|−1,〈ξ〉)τ(〈(s�|ξ|−1)	̄ξ〉,s)−1

= ((((s�|ξ|−1)·〈ξ〉)�|η|−1)	̄η)�̄τ(〈(s�|ξ|−1)	̄ξ〉,s)−1.
(10.42)
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