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Signal detection is one of the fundamental problems in three-dimensional multiple-input multiple-output (3D-MIMO) wireless
communication systems. This paper addresses a signal detection problem in 3D-MIMO system, in which spatial modulation (SM)
transmission scheme is considered due to its advantages of low complexity and high-energy efficiency. SMbased signal transmission
typically results in the block-sparse structure in received signals.Hence, structured compressed sensing (SCS) based signal detection
is proposed to exploit the inherent block sparsity information in the received signal for the uplink (UL). Moreover, normalization
preprocessing is considered before iteration process with the purpose of preventing the noise from being overamplified by the
column vector with inadequately large elements. Simulation results are provided to show the stable and reliable performance of the
proposed algorithm under both Gaussian and non-Gaussian noise, in comparison with methods such as compressed sensing based
detectors, minimum mean square error (MMSE), and zero forcing (ZF).

1. Introduction

Multiple-input multiple-output (MIMO) systems improve
reliability and spectral efficiency of communication systems
as a result of multiple antennas and have been included in
the fourth generation (4G)mobile communication standards
[1, 2]. Nowadays, three-dimensional multiple-inputmultiple-
output (3D-MIMO) system, equipped in a 2D planar array
with a large number of active antennas, has shown large
potential in increasing system capacity [3–5]. In 3rd Gen-
eration Partnership Project (3GPP) Release 12, 3D-MIMO
system has been considered as an important technique for
throughput enhancement and multiuser interference miti-
gation [6, 7]. Signal detection is one of the fundamental
problems in 3D-MIMOwireless communication systems due
to the requirement of synchronization between the antennas
and the strong interchannel interference (ICI) between each
of the receive antennas [8].

Spatial modulation (SM) has attracted much research
attention as a novelmultiantenna transmission scheme due to
its advantages of low complexity and high-energy efficiency
[9, 10]. In addition to phase and amplitude modulation, SM

can also utilize transmit antennas’ indices as the third dimen-
sion in order to invoke for more transmitting information.
Unlike the traditional MIMO systems, the SM transmitter
in 3D-MIMO systems uses massive transmit antennas but
a small number of radio frequency (RF) chains, which
significantly improves energy efficiency of the whole system,
because the hardware cost and power consumption increase
highly with the number of RF chains [10, 11].With only one or
several transmit antennas being active at each time slot, ICI at
the receiver and the need to synchronize the transmit anten-
nas can be largely reduced [12–15]. Moreover, with only one
or several nonzero components in transmit signal at each slot,
the inherent sparsity of SM-3D-MIMO signals can be utilized
in signal detection. Since users have the same active antenna
selection scheme and share the same spatial constellation
symbol, the received signal has the block-sparse structure
which can be utilized in signal detection via structure
compressed sensing.

For the novel transmit systems, suitable signal detection
algorithms are required to obtain signals. The maximum-
likelihood (ML) detector has too high complexity which will
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Figure 1: Signal constellation symbol and spatial constellation
symbol in the SM 3D-MIMO system, where 𝑁�푡 = 4, 𝑁�푎 = 1, and
4QAM are taken into account as an example.

linearly increase with the size of the symbol constellation
and the numbers of transmit and receive antennas [16].
Sphere decoding (SD) based [17] and linear minimum mean
square error (LMMSE) based signal detecting method will
suffer from large and considerable performance reduction
in the SM-MIMO systems [18]. Compressed sensing (CS)
theory should be used to reliably improve the signal detecting
performance due to the exploiting of the inherent sparsity
information in SM signals [19, 20]. In [21], CS theory is used
for signal detection inmultiple access large-scale channels. In
[22], a structured compressed sensing based signal detecting
algorithm is proposed for the massive spatial modulation
MIMO systems. Paper [23] gives a performance evaluation
of the existing signal detecting algorithms such as SCS
based SSP algorithm, CS based SP algorithm, and other
conventional methods. On the basis of existing near-optimal
signal detection algorithms, this paper proposes a modified
SCS based algorithm for the spatial modulation 3D-MIMO
systems.

The rest of this paper is organized as follows. Section 2
presents spatial modulation, maximum-likelihood detection,
and compressed sensing. Section 3 introduces the proposed
normalized structured subspace pursuit algorithm. Section 4
gives simulation results and performance analysis of several
signal detectors.

2. System Model

Spatial Modulation. In spatial modulation MIMO systems,
the transmitter has 𝑁�푡 transmit antennas and 𝑁�푎 < 𝑁�푡
active antennas, and the receiver has𝑁�푟 receive antennas.The
information bit stream is grouped into two parts: the first part
with ⌊log2 (

�푁𝑡�푁𝑎 )⌋ bits is mapped onto the spatial constellation
symbols which indicate different selection schemes of the
active transmit antennas, and the second part with log2 𝐿 bits
is mapped onto the signal constellation symbols derived from
the signal constellation set of 𝐿-ary.Therefore, the total infor-
mation carried by each SM signal is 𝑁�푎 log2 𝐿 + ⌊log2 (

�푁𝑡�푁𝑎 )⌋
bits. Figure 1 shows an example of signal constellation symbol

and spatial constellation symbol in the spatial modulation
3D-MIMO system.

At the receiver, the received signal y ∈ C�푁𝑟×1 is equal to

y = Hx + w, (1)

where x ∈ C�푁𝑡×1 is the SM signal generated from the
transmitter and w ∈ C�푁𝑟×1 is the additive noise vector. H =
R1/2�푟 H̃R1/2�푡 ∈ C�푁𝑟×�푁𝑡 represents the correlated flat Rayleigh-
fading MIMO channel, and H̃ is composed of the entries
which obey the independent and identical distribution
CN(0, 1). R�푟 is the correlation matric of the receiver and
R�푡 is the correlation matric of the transmitter [24]. R is the
correlation matrix composed of 𝑟�푖�푗 = 𝑟|�푖−�푗| and 𝑟 is the corre-
lation coefficient between neighboring antennas. Obviously,
it is a nondeterministic polynomial hard (NP-hard) detection
problem at the receiver.

Maximum-Likelihood (ML) Detection. ML signal detection is
the optimal signal detector to the NP-hard problem [25]. It
can be expressed as

x̂ML=arg min
supp(x)∈A,x∈B

‖y−Hx‖2 . (2)

However, the ML signal detector is unrealistic with the

high computational complexity of O(𝑀�푁𝑎2⌊log2(
�푁𝑡�푁𝑎 )⌋) when

𝑁�푡, 𝑁�푎, and 𝑀 are large [16, 26].

Compressed Sensing (CS). Using sparsity, compressed sensing
can provide reliable detection for 𝑠-sparse signals. CS is
formulated as y = Φx, where y ∈ R�푚 is the measurement
vector and Φ ∈ R�푚×�푛 is the measurement matrix with 𝑚 <
𝑛. Moreover, Φ is a matrix satisfying the restricted isometry
property (RIP) [27, 28], 𝑚 is greater than 𝑐1𝑠 log(𝑛/𝑠) for
some small constant 𝑐1, and x can be reconstructed by ℓ1-
minimization as

x̂ = arg min
y=Φ𝑥 ‖x‖ℓ1 . (3)

Note that RIP identifies the so-called isometry constant 𝛿�푠
of the measurement matrix Φ as the smallest number such
that (1 − 𝛿�푠)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + 𝛿�푠)‖x‖22 holds for 𝑠-sparse
vector x. The perfect reconstruction of 𝑠-sparse vector can
be achieved if the sampling matrixΦ is properly designed to
satisfy 𝛿�푐2�푠 < 𝜃 for some constant 𝑐2 [26, 29].

3. The Proposed Signal Detection Algorithm in
SM 3D-MIMO Systems

3.1. Grouped Transmission Scheme. The SM signal x�푘 is trans-
mitted from the 𝑘th user in one time slot and is expressed
as x�푘 = e�푘s�푘. It is composed of two parts: the first part of
spatial constellation symbol e�푘 ∈ C�푛𝑡 and the second part
of signal constellation symbol s�푘 ∈ L which is generated by
𝐿-ary modulation. Because each user employs only one RF
chain, there is just one nonzero entry of e�푘 which is on behalf
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of the active transmit antenna. Hence, the rest of the entries
in e�푘 are all equal to zero; that is,

supp (e�푘) ∈ A,
e�푘

0 = 1,
e�푘

2 = 1,

(4)

where A = {1, 2, . . . , 𝑛�푡} represents the spatial constellation
symbol set. Therefore, every SM signal x�푘 contains log2(𝐿) +
log2(𝑛�푡) bits per channel use (bpcu), so the entire throughput
coming from the transmitter is 𝐾(log2(𝐿) + log2(𝑛�푡)) bpcu.

At the transmitter, it is set that one group contains 𝐺
consecutive SM signals. The SM signals form one group have
the same spatial constellation symbol and active antenna
selection scheme; that is,

supp (x1�푘) = supp (x2�푘) = ⋅ ⋅ ⋅ = supp (x�퐺�푘 ) , (5)

where x1�푘, x
2
�푘, . . . , x

�퐺
�푘 are SM signals of the 𝑘th user in 𝐺

consecutive symbol slots.Thus they show the feature of struc-
tured sparsity, which can be exploited as a priori information
to improve the performance of the signal detection.

At the receiver, only 𝑀RF receive antennas are needed to
receive signals because of the reductive numbers of RF chains
at the BS. With 𝐾 users concurrently served at the BS, the
received signal y�푞 ∈ C�푀RF which is form the 𝑞th time slot can
be expressed as

y�푞 =
�퐾
∑
�푘=1

y�푘,�푞 + w�푞 =
�퐾
∑
�푘=1

H�푘x�푘 + w�푞, (6)

where H�푘 ∈ C�푀×�푛𝑡 represents the MIMO channel matrix
from the 𝑘th user.

3.2. Normalized Structured Subspace Pursuit Algorithm. The
proposed NSSP algorithm is described in Algorithm 1. In the
NSSP algorithm, there is normalization preprocessing before
the iteration process, after which (1) can be written as

y = H�耠Cx + w, (7)

where C ∈ R�푁𝑡×�푁𝑡 is a diagonal matrix and its diagonal
elements are the ℓ2-norm of H−,�푖 denoting the 𝑖th column of
H.H�耠 is of dimension𝑁�푟×𝑁�푡. Let x�耠 = Cx; (8) can be written
as

y = H�耠x�耠 + w. (8)

Different from conventional compressed sensing based
detectors, where the sensing and recovery processes share the
same measurement matrix, the normalization preprocessing
allows different matrices during the two processes. After the
normalization preprocessing, the noise will not be overam-
plified by the column vector with inadequately large elements
[26].

On the other hand, the spatial constellation set will be
exploited as a priori information in the NSSP algorithm. It
means that the estimated support set during each iteration

Input: y(�푡): the received signal
H(�푡): the channel matrix
𝑁�푎: the number of active antennas

Output: x̂(�푡): the recovery signal for 1 ≤ 𝑡 ≤ 𝐺
(1) for 𝑠 = 1 to 𝑁�푎
(2) letH�耠(�푡)−,�푠 be normalized 𝑠th columnH(�푡)−,�푠 ofH

(�푡)

(3) H�耠(�푡) = [H�耠(�푡)−,1 ⋅ ⋅ ⋅H
�耠(�푡)
−,�푁𝑎 ]

(4) 𝑘 = 1, 𝑇0 = 𝜑, r(�푡) = y(�푡)
(5) for 𝑘 ≤ 𝑁�푎
(6) u(�푡) = (H�耠(�푡))∗r(�푡)

(7) 𝑃 = argmax�푃 {∑
�퐺
�푡=1 ‖u

(�푡)
�푃‖
2
2, 𝑃�耠 ∈ A}

(8) Ω = 𝑇�푘−1 ∪ 𝑃
(9) w(�푡) = (H�耠(�푡)Ω )†y(�푡)

(10) 𝑇�푘 = argmax�푇 {∑
�퐺
�푡=1 ‖w

(�푡)
�푇‖
2
2, 𝑇�耠 ∈ A}

(11) r(�푡) = y(�푡) − H�耠(�푡)(H�耠(�푡)�푇𝑘 )
†y(�푡)

(12) 𝑘 = 𝑘 + 1
(13) x̂(�푡) = (H(�푡)�푇𝑘 )

†y(�푡)

Algorithm 1:Our proposedNSSP based signal detection algorithm
in spatial modulation 3D-MIMO systems.

should belong to the predefined spatial constellation set.
During each iteration, the potential true indices will be
obtained according to the correlation between the MIMO
channels and the residual in the previous iteration, and then
the estimated support set will be updated after the least
squares.

It is proved that the recovery performance of SCS based
signal detectors is better than the traditional CS based signal
detectors with themeasurement vectors of the same size [30].
The structured compressed sensing based algorithm can solve
multiple sparse signalswith common support set but different
measurement matrices [22].

The description of the NSSP algorithm is given as follows:

(1) The parameters of input are the measurement vector
y, the number of active antennas 𝑁�푎, and the channel
matrixH.

(2) The normalization preprocessing performs before
iteration process. H�耠 is of dimension 𝑁�푟×𝑁�푡 and C ∈
R�푁𝑡×�푁𝑡 is a diagonal matrix whose diagonal elements
are the ℓ2-norm ofH−,�푖 denoting the 𝑖th column ofH.

(3) In the support merging section, according to the
correlation u(�푡) between the previous residual iter-
ation and the MIMO channels, a potential support
set P which makes the correlation u(�푡) largest will be
selected from the predefined spatial constellation set.

(4) After updating the current support set T�푘, wrong
indices will be removed and most likely indices will
be selected according to the least squares.

(5) The normalization preprocessing allows different
measurement matrices during the sensing and recov-
ery process; the matrix during the sensing process
is H�耠 in lines (6)∼(12) and the matrix during the
recovery process isH in line (13).
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Table 1: Simulation parameters.

Parameters Value
Transmit antenna number at BS 96
Transmit antenna number in
each user 1

Receive antenna number at BS 64
Modulate mode 16-QAM

Noise model Gaussian/non-Gaussian
noise
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SNR (dB)

BE
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Figure 2: BER versus SNR performance of ZF, MF, MMSE, SP, and
NSSP over uncorrelated Rayleigh-fading MIMO channels, where
𝐾 = 24, 𝑁�푎 = 24, 𝑁�푡 = 96, 𝑁�푟 = 64, 𝐺 = 1, and 16QAM and
Gaussian noise are considered.

(6) The parameter of output is the estimated signal x̂(�푡) =
(H(�푡)�푇𝑘 )

†y(�푡).

4. Performance Analysis

Here we present the bit error rate (BER) performance of the
proposed algorithm and several signal detection algorithms.
The ZF, MF, and MMSE detection is simulated for compar-
isons. And the SP algorithm is chosen as CS based signal
detection for comparison.Theparameters are listed inTable 1.
𝑁�푡 is the number of transmit antennas, 𝑁�푎 is the number of
active antennas in each user, and 𝑁�푟 is the number of receive
antennas at the receiver. 16QAM signal constellation set is
considered.

Figure 2 showsBERversus signal to noise ratio (SNR) per-
formance of ZF, MF, MMSE, SP, and NSSP over uncorrelated
Rayleigh-fading MIMO channels, where 𝐾 = 24, 𝑁�푎 = 24,
𝑁�푡 = 96, 𝑁�푟 = 64, 𝐺 = 1, and 16QAM and Gaussian noise
are considered. It can be observed that the proposed NSSP
algorithm outperforms the conventional signal detectors
since the normalization preprocessing is considered and the

5 10 15 20 25
SNR (dB)

BE
R

non-Gaussian, ZF
non-Gaussian, MF
non-Gaussian, MMSE

non-Gaussian, SP
non-Gaussian, NSSP

10
0

10
−1

10
−2

10
−3

Figure 3: BER versus SNR performance of ZF, MF, MMSE, SP, and
NSSP over uncorrelated Rayleigh-fading MIMO channels, where
𝐾 = 24, 𝑁�푎 = 24, 𝑁�푡 = 96, 𝑁�푟 = 64, 𝐺 = 1, and 16QAM and
non-Gaussian noise are considered.

structured sparsity of sparse signals is exploited. The perfor-
mance of the NSSP algorithm and the SP algorithm is similar
under the Gaussian noise.

Figure 3 shows BER versus SNR performance of ZF,
MF, MMSE, SP, and NSSP over uncorrelated Rayleigh-fading
MIMO channels, where 𝐾 = 24, 𝑁�푎 = 24, 𝑁�푡 = 96, 𝑁�푟 = 64,
𝐺 = 1, and 16QAMand non-Gaussian noise are considered. It
is obvious that the NSSP algorithm gives better performance
than conventional signal detectors especially when the SNR is
comparatively high.Moreover,TheNSSP algorithmperforms
much better than the SP algorithm under the non-Gaussian
noise.

Figures 4 and 5 shows BER versus SNR performance of
the NSSP algorithm under Gaussian noise and non-Gaussian
noise, respectively, with different numbers of transmit anten-
nas and receive antennas. For example, NSSP-64 ∗ 48 means
there are 64 transmit antennas and 48 receive antennas in
this simulation. It may be concluded that the NSSP algorithm
has stable and reliable performance under both Gaussian and
non-Gaussian noise. Moreover, it performs better when the
numbers of transmit and receive antennas are larger.

5. Conclusion

This paper proposed a structured compressed sensing based
signal detection for the SM-3D-MIMO system. Firstly, nor-
malization preprocessing is considered before iteration pro-
cess with the purpose of preventing the noise from being
overamplified by the column vector with inadequately large
elements. Secondly, the inherent sparsity of 3D-SM-MIMO
signals is utilized in signal detection to reduce computation.
Finally, simulation results have been provided to confirm the
merits of the proposed methods in detection.
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Figure 4: BER versus SNR performance of the NSSP algorithm
underGaussian noisewith different numbers of transmit and receive
antennas.
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Figure 5: BER versus SNR performance of the NSSP algorithm
under non-Gaussian noise with different numbers of transmit and
receive antennas.
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