SOME INEQUALITIES IN $B(H)$

C. DUYAR and H. SEFEROGLU

(Received 1 December 1998 and in revised form 15 November 1999)

Abstract

Let H denote a separable Hilbert space and let $B(H)$ be the space of bounded and linear operators from H to H. We define a subspace $\Delta(A, B)$ of $B(H)$, and prove two inequalities between the distance to $\Delta(A, B)$ of each operator T in $B(H)$, and the value $\sup \left\{\left\|A^{n} T B^{n}-T\right\|: n=1,2, \ldots\right\}$.

2000 Mathematics Subject Classification. Primary 43-XX.

1. Notations. Throughout this paper H denotes a separable Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ an orthonormal basis. Let L_{A} and R_{B} be left and right translation operators on $B(H)$ for $A, B \in B(H)$, satisfying $\|A\| \leq 1$ and $\|B\| \leq 1$. Then the set $\Delta(A, B)$ is defined by

$$
\begin{equation*}
\Delta(A, B)=\{T \in B(H): A T B=T\}=\{T \in B(H): S T=T\} \tag{1.1}
\end{equation*}
$$

where $S=L_{A} R_{B}$.
An operator $C \in B(H)$ is called positive, if $\langle C x, x\rangle \geq 0$ for all $x \in H$. Then for any positive operator $C \in B(H)$ we define $\operatorname{tr} C=\sum_{n=1}^{\infty}\left\langle e_{n}, C e_{n}\right\rangle$. The number $\operatorname{tr} C$ is called the trace of C and is independent of the orthonormal basis chosen. An operator $C \in B(H)$ is called trace class if and only if $\operatorname{tr}|C|<\infty$ for $|C|=\left(C^{*} C\right)^{1 / 2}$, where C^{*} is adjoint of C. The family of all trace class operators is denoted by $L_{1}(H)$. The basic properties of $L_{1}(H)$ and the functional $\operatorname{tr}(\cdot)$ are the following:
(i) Let $\|\cdot\|_{1}$ be defined in $L_{1}(H)$ by $\|C\|_{1}=\operatorname{tr}|C|$. Then $L_{1}(H)$ is a Banach space with the norm $\|\cdot\|_{1}$ and $\|C\| \leq\|C\|_{1}$.
(ii) $L_{1}(H)$ is $*$ - ideal, that is,
(a) $L_{1}(H)$ is a linear space,
(b) if $C \in L_{1}(H)$ and $D \in B(H)$, then $C D \in L_{1}(H)$ and $D C \in L_{1}(H)$,
(c) if $C \in L_{1}(H)$, then $C^{*} \in L_{1}(H)$.
(iii) $\operatorname{tr}(\cdot)$ is linear.
(iv) $\operatorname{tr}(C D)=\operatorname{tr}(D C)$ if $C \in L_{1}(H)$ and $D \in B(H)$.
(v) $B(H)=L_{1}(H)^{*}$, that is, the map $T \rightarrow \operatorname{tr}(T)$ is an isometric isomorphism of $B(H)$ onto $L_{1}(H)^{*}$, (see [3]).
Let X be a Banach space. If $M \subset X$, then

$$
\begin{equation*}
M^{\perp}=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=0, x \in M\right\} \tag{1.2}
\end{equation*}
$$

is called the annihilator of M. If $N \subset X^{*}$, then

$$
\begin{equation*}
{ }^{\perp} N=\left\{x \in X:\left\langle x, x^{*}\right\rangle=0, x^{*} \in N\right\} \tag{1.3}
\end{equation*}
$$

is called the preannihilator of N. Rudin [4] proved for these subspaces:
(i) ${ }^{\perp}\left(M^{\perp}\right)$ is the norm closure of M in X.
(ii) $\left({ }^{\perp} N\right)^{\perp}$ is the weak- $*$ closure of N in X^{*}.

2. Main results

Lemma 2.1. Let X be a Banach space. If P is a continuous operator in the weak-* topology on the dual space X^{*}, then there exists an operator T on X such that $P=T^{*}$.

Proof. If $P: X^{*} \rightarrow X^{*}$, then $P^{*}: X^{* *} \rightarrow X^{* *}$. We know that the continuous functionals in the weak-* topology on X^{*} are simply elements of X, (see [4]). Then we must show that $P^{*} x$ is continuous in the weak-* topology on X^{*} for all $x \in X$. Let $\left(x_{n}^{\prime}\right)$ be a sequence in X^{*} such that $x_{n}^{\prime} \rightarrow x^{\prime}, x^{\prime} \in X^{*}$. Then we have

$$
\begin{equation*}
\left\langle P^{*} x, x_{n}^{\prime}\right\rangle=\left\langle x, P x_{n}^{\prime}\right\rangle \rightarrow\left\langle x, P x^{\prime}\right\rangle=\left\langle P^{*} x, x^{\prime}\right\rangle . \tag{2.1}
\end{equation*}
$$

Hence $P^{*} x$ is continuous in the weak-* topology on X^{*} for all $x \in X$, so $P^{*} x \in X$. If T is the restriction to X of P^{*}, then we have

$$
\begin{equation*}
\left\langle x, T^{*} x^{\prime}\right\rangle=\left\langle T x, x^{\prime}\right\rangle=\left\langle P^{*} x, x^{\prime}\right\rangle=\left\langle x, P x^{\prime}\right\rangle \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $x^{\prime} \in X^{*}$. Hence $P=T^{*}$.
Definition 2.2. If P_{*} is the operator T in Lemma 2.1, then P_{*} is called the preadjoint operator of P.

The operator $x \otimes y \in B(H)$ for each $x, y \in H$ is defined by $(x \otimes y) z=\langle z, y\rangle x$ for all $z \in H$. It is easy to see that this operator has the following properties:
(i) $T(x \otimes y)=T x \otimes y$.
(ii) $(x \otimes y) T=x \otimes T^{*} y$.
(iii) $\operatorname{tr}(x \otimes y)=\langle y, x\rangle$.

The following lemma is an easy application of some properties of the operator $x \otimes y(x, y \in H)$ and the functional $\operatorname{tr}(\cdot)$.

Lemma 2.3. (i) Suppose K is a closed subset in the weak-* topology of $B(H)$. Then K is closed in the weak-* topology of $B(H)$.
(ii) $S=L_{A} R_{B}$ is continuous in the weak-* topology of $B(H)$ for all $A, B \in B(H)$, satisfying $\|A\| \leq 1$ and $\|B\| \leq 1$.

Lemma 2.4. There exists a linear subspace M of $L_{1}(H)$ such that $\Delta(H)=M^{\perp}$ and M is closed linear span of $\left\{S_{*} X-X: X \in L_{1}(H)\right\}$, where S_{*} is the preadjoint operator of S.

Proof. Note that

$$
\begin{equation*}
{ }^{\perp} \Delta(A, B)=\left\{U \in L_{1}(H):\left\langle U, U^{*}\right\rangle=0, U^{*} \in \Delta(A, B)\right\} . \tag{2.3}
\end{equation*}
$$

It is known that $\left({ }^{\perp} \Delta(A, B)^{\perp}\right)$ is the weak $-*$ closure of $\Delta(A, B)$ (see [4]). Then we can write $\left({ }^{\perp} \Delta(A, B)\right)^{\perp}=\Delta(A, B)$, since $\Delta(A, B)$ is a closed set in the weak-* topology of $B(H)$. We say ${ }^{\perp} \Delta(A, B)=M$. Now we show that M is the closed linear span of $\left\{S_{*} U-U\right.$: $\left.U \in L_{1}(H)\right\}$. For this, it is sufficient to prove that $\left\langle S_{*} U-U, T\right\rangle=0$ for all $T \in \Delta(A, B)$.

Indeed since $S T=T$, we have

$$
\begin{equation*}
\left\langle S_{*} X-X, T\right\rangle=\left\langle\left(S_{*}-I\right) X, T\right\rangle=\left\langle X,\left(S_{*}-I\right)^{*} T\right\rangle=\langle X,(S-I) T\rangle=0 . \tag{2.4}
\end{equation*}
$$

Lemma 2.5. Let $K(T)$ be the closed convex hull of $\left\{S^{n} T: n=1,2, \ldots\right\}$ in the weak operator topology, for a fixed $T \in B(H)$. Then we have

$$
\begin{equation*}
K(T) \cap \Delta(A, B) \neq 0 \tag{2.5}
\end{equation*}
$$

Proof. Assume $K(T) \cap \Delta(A, B)=0$. By Lemma 2.3, $K(T)$ is closed in the weak-* topology. It is easy to see that $K(T)$ is bounded. Then $K(T)$ is compact in the weak-* topology by Alaoglu, [1]. Since S is continuous in the weak-* topology, if $U_{\alpha} \rightarrow U$ for $\left(U_{\alpha}\right)_{\alpha \in I} \subset \Delta(A, B)$, then $S U_{\alpha}=U_{\alpha} \rightarrow S U$. Hence $\Delta(A, B)$ is closed in the weak-* topology. This shows that $U \in \Delta(A, B)$.

Since $K(T)$ is compact and convex in the weak-* topology, and $\Delta(A, B)$ is closed in the weak-* topology, and $K(T) \cap \Delta(A, B)=0$, there exist some $U_{0} \in M$ and $\sigma>0$ such that

$$
\begin{equation*}
\left|\operatorname{tr}\left(T U_{0}\right)\right| \geq \sigma \tag{2.6}
\end{equation*}
$$

for all $T \in \Delta(A, B)$, (see [2]). Now we define the operators $T_{n} \sum_{k=1}^{n} S^{k} T$ for all positive integer n. These operators are clearly in $K(T)$. It is easy to show that the operators T_{n} is bounded. Also by Lemma 2.4, there is a $U \in L_{1}(H)$ such that $U_{0}=S_{*} U-U$. Then we have

$$
\begin{align*}
\left|\left\langle T_{n}, U_{0}\right\rangle\right| & =\left|\left\langle T_{n}, S_{*} U-U\right\rangle\right|=\left|\left\langle S T_{n}, U\right\rangle-\left\langle T_{n}, U\right\rangle\right| \\
& =\left|\left\langle S\left(\frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}\right), U\right\rangle-\left\langle\frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}, U\right\rangle\right| \\
& =\left|\left\langle\frac{1}{n} \sum_{k=1}^{n} A^{k+1} T B^{k+1}, U\right\rangle-\left\langle\frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}, U\right\rangle\right| \tag{2.7}\\
& =\frac{1}{n}\left|\left\langle A^{n+1} T B^{n+1}-A T B, U\right\rangle\right| \\
& \leq \frac{1}{n} 2\|T\| \cdot\|U\| .
\end{align*}
$$

This implies that $\left|\left\langle T_{n}, X_{0}\right\rangle\right| \rightarrow 0$, which is a glaring contradiction to (2.6).
Theorem 2.6. Let H be separable Hilbert space and $T \in B(H)$. Then we have
(i) $d(T, \Delta(A, B)) \geq(1 / 2) \sup _{n}\left\|S^{n} T-T\right\|$,
(ii) $d(T, \Delta(A, B)) \leq \sup _{n}\left\|S^{n} T-T\right\|$.

Proof. (i) We can write

$$
\begin{equation*}
S^{n} T-T=S^{n}\left(T-T_{0}\right)-\left(T-T_{0}\right)+S^{n} T_{0}-T_{0} \tag{2.8}
\end{equation*}
$$

for each $T_{0} \in \Delta(A, B)$. Hence we have

$$
\begin{equation*}
\left\|S^{n} T-T\right\| \leq\left\|S^{n}\right\|\left\|T-T_{0}\right\|+\left\|T-T_{0}\right\| \leq 2\left\|T-T_{0}\right\| . \tag{2.9}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
\frac{1}{2} \sup _{n}\left\|S^{n} T-T\right\| \leq \inf _{T_{0} \in \Delta(A, B)}\left\|T-T_{0}\right\| . \tag{2.10}
\end{equation*}
$$

The inequality (2.10) gives that

$$
\begin{equation*}
d(T, \Delta(A, B)) \geq \frac{1}{2} \sup _{n}\left\|S^{n} T-T\right\| . \tag{2.11}
\end{equation*}
$$

(ii) Let $K(T)$ be as Lemma 2.5. Then we can write

$$
\begin{equation*}
K(T)=\operatorname{co}\left\{S^{n} T: n=1,2, \ldots\right\} . \tag{2.12}
\end{equation*}
$$

Now take any element $U=\sum_{k=1}^{n} \lambda_{k} S^{k} T$ in the set $\operatorname{co}\left\{S^{n} T: n=1,2, \ldots\right\}$, where $\sum_{k=1}^{n} \lambda_{k}=1, \lambda_{k} \geq 0$. Then

$$
\begin{align*}
\|U-T\| & =\left\|\sum_{k=1}^{n} \lambda_{k} S^{k} T-T\right\| \leq\left\|\sum_{k=1}^{n} \lambda_{k} S^{k} T-\sum_{k=1}^{n} \lambda_{k} T\right\| \tag{2.13}\\
& \leq \sum_{k=1}^{n} \lambda_{k}\left\|S^{k} T-T\right\| \leq \sum_{k=1}^{n} \lambda_{k} \sigma(T)=\sigma(T),
\end{align*}
$$

where $\sigma(T)=\sup _{n}\left\|S^{n} T-T\right\|$. That is, for all $U \in \operatorname{co}\left\{S^{n} T: n=1,2, \ldots\right\}$ is

$$
\begin{equation*}
\|U-T\| \leq \sup _{n}\left\|S^{n} T-T\right\| . \tag{2.14}
\end{equation*}
$$

Since there is a sequence $\left(U_{n}\right)$ in $\operatorname{co}\left\{S^{n} T: n=1,2, \ldots\right\}$ such that $U_{n} \rightarrow V$ for all $V \in$ $K(T)$, then we write

$$
\begin{equation*}
\|V-T\| \leq\left\|V-T_{n}\right\|+\left\|T_{n}-T\right\| . \tag{2.15}
\end{equation*}
$$

If we use the inequalities (2.14) and (2.15), we easily see that

$$
\begin{equation*}
\|V-T\| \leq \sup _{n}\left\|S^{n} T-T\right\| . \tag{2.16}
\end{equation*}
$$

Also since $K(T) \cap \Delta(A, B) \neq 0$ by Lemma 2.5, then we obtain

$$
\begin{equation*}
\left\|T-T_{0}\right\| \leq \sup _{n}\left\|S^{n} T-T\right\| \tag{2.17}
\end{equation*}
$$

for a $T_{0} \in K(T) \cap \Delta(A, B)$. Hence we can write

$$
\begin{equation*}
d(T, \Delta(A, B))=\inf _{U \in \Delta(A, B)}\|T-U\| \leq\left\|T-T_{0}\right\| \leq \sup _{n}\left\|S^{n} T-T\right\| . \tag{2.18}
\end{equation*}
$$

This completes the proof.

References

[1] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen Wissenschaften, vol. 175, Springer-Verlag, New York, Heidelberg, 1971. MR 55\#8695. Zbl 213.13301.
[2]
___ , Functional Analysis: an Introduction, Pure and Applied Mathematics, vol. 15, Marcel Dekker, Inc., New York, 1973. MR 57\#1055. Zbl 261.46001.
[3] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York, London, 1972. MR 58\#12429a. Zbl 242.46001.
[4] W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, D sseldorf, Johannesburg, 1973. MR 51\#1315. Zbl 253.46001.
C. Duyar: University of Ondokuz Mayis, Faculty of Art and Sciences, Department of Mathematics, Samsun, Turkey.

E-mail address: bduyar@sams1in.omu.edu.tr
H. Seferoglu: 100. Yil University, Faculty of Education, Department of Mathematics, Van, Turkey

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

