
Saitou, K., Jakiela, M. J., “Subassembly Generation via Mechanical Conformational
Switches,” Artificial Life 2(4): 377–416, 1995.

Subassembly Generation via Mechanical

Conformational Switches

Kazuhiro Saitou∗ Mark J. Jakiela
Computer-Aided Design Laboratory

Massachusetts Institute of Technology

Abstract

A question is posed on how a particular subassembly sequence is generated in randomized assem-
bly. An extended design of mechanical conformational switches [16] is proposed, which can encode
several subassembly sequences. A particular subassembly sequence is generated due to conforma-
tional changes of parts during one-dimensional randomized assembly. The optimal subassembly
sequence that maximizes the yield of a desired assembly can be found via genetic search over a space
of parameterized conformational switch designs, rather than a space of subassembly sequences. The
resulting switch design encodes the optimal subassembly sequence so that the desired assemblies are
put together only in the optimal sequence. The results of genetic search and rate equation analyses
reveal that the optimal subassembly sequence depends on the initial concentration of parts and the
defect probabilities during randomized assembly. The results indicate that abundant parts and parts
with high defect probabilities should be assembled earlier rather than later.

Keywords: subassembly generation, mechanical conformational switches, randomized assembly,
genetic optimization.

1 Introduction

1.1 Conformational switching in bacteriophage assembly

Bacteriophages are a type of virus which infect bacterial cells. Upon infection, they take over a cell’s
replication mechanism to synthesize their component molecules such as nucleic acids and proteins. Spon-
taneous self-assembly of the component proteins then occurs which produces hundreds of new progeny
viruses in the host cell. New viruses are formed via assembly of randomly arranged and randomly mov-
ing component protein molecules. In the assembly process, however, the various component molecules
do not associate with one another at random. Instead, the assembly occurs in a definite sequence, or
in a fixed morphogenetic pattern. Biologists believe that conformational switches in protein molecules
facilitate this randomized assembly of bacteriophages. In a protein molecule with several bond sites, a
conformational switch causes the formation of a bond at one site to change the conformation of another
bond site. As a result, a conformational change which occurred at an assembly step provides the essential
substrate for assembly at the next step [19].

This process of randomized assembly may have practical applications in mechanical engineering, such
as part orientation for high-volume assembly, and assembly of micro electromechanical systems (MEMS).
As in the case of biological randomized assembly, conformational switches could also play an important
role in such randomized mechanical assembly. Our previous work on evolutionary design of mechanical
conformational switches [16] was our first attempt toward understanding randomized conformational
assembly of mechanical parts. In this paper, we will extend that work to describe subassembly generation
in randomized mechanical assembly.
∗Author to whom correspondence should be addressed: Massachusetts Institute of Technology, Department of Me-

chanical Engineering, 77 Massachusetts Avenue, Room 3-452, Cambridge, MA 02139; Phone: (617) 258-8186; email:
kazu@mit.edu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193481928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Artificial Life 2(4):377–416, 1995. 2

Tail

Head

Tail Fiber

Figure 1: the pathway of T4 bacteriophage assembly (simplified and rearranged from Figure 3 of [17])

1.2 Principle of subassembly

Assembly of many complex systems – either biological or mechanical – takes place in several stages.
At each assembly stage, subassemblies are made, which are then incorporated into subassemblies at the
next stage. For example, the beginning stage of an automobile assembly is the production of elementary
parts, such as wire, bolts, nuts, etc. These are put together into subassemblies such as generators,
dashboard instruments, etc., which are then used to build more complicated subassemblies such as
engines, bodies, etc. This process of subassembly has three significant advantages [7, 6]: reliability,
efficiency and variety. Subassembly processes are reliable, since elimination of defective subassemblies
can be done at each assembly stage. A defective subassembly produced at one stage will not be built
into an assembly at the next stage. Also, with regard to efficiency, subassemblies at a stage can be
carried out simultaneously. This greatly speeds up an entire assembly process, compared to sequential
step-by-step assembly processes where parts are put together only one at a time. Finally, a common
subassembly can be used in a variety of different assemblies, or can be used repeatedly in many places
in an assembly.

An example subassembly process in biological systems is found in the self-assembly of bacteriophages.
Figure 1 shows the simplified pathway for assembly of a type of bacteriophage, T4, which infects the
bacterium E.coli strain B [2, 5]. The morphogenetic pathway clearly shows formation of a subassembly;
a head and a tail form a head-tail subassembly, and this subassembly is then put together with tail fibers.
For simplicity, let us write the assembly tree in Figure 1 in a list representation (F (TH)), where F , T
and H represent tail fiber, tail and head, respectively. A question arises immediately: how did nature
find the fixed subassembly sequence (F (TH)) out of all possible subassembly sequences? In particular,
why not the other possible sequence, ((FT)H)?

As illustrated in the above example, our interest in this paper is to find out how a particular sub-
assembly sequence is generated in randomized assembly. We will approach the problem by extending

Artificial Life 2(4):377–416, 1995. 3

our work on evolutionary design of mechanical conformational switches [16]. An extended design of
mechanical conformational switches will be described which can encode several subassembly sequences.
The concept of defect will be introduced to randomized assembly of mechanical parts. A genetic algo-
rithm searches the space of parameterized switch designs in order to find the conformational switches
that maximize the assembly rate of a set of parts held together with the switches. Several examples are
presented and discussed where a particular subassembly sequence emerges via genetic search by simply
maximizing the yield of a desired assembly.

1.3 Previous work

1.3.1 Computational models of bacteriophage assembly

For decades, biologists have studied the mechanism of bacteriophage assembly [2, 5], and developed
several computational models. Thompson and Goel [17, 18, 7] developed a computer model that simulates
the assembly and operation of bacteriophage T4. A simplified model of a virus is constructed from
building blocks which are abstractions of the protein molecules. These building blocks are augmented
finite automata that can move randomly in their environment and bond to the other blocks. State
transition rules of a block specify how bonds can form and how conformational changes propagate
within the block. The same approach has been used to model protein biosynthesis [8, 7].

Berger et al. [1] developed a local rule theory for self-assembly of icosahedral virus shells. They
assume that identical protein subunits take on a small number of distinct conformations. The local
rules then specify, for each conformation, which other conformations it can bind to and the approximate
interaction angles, interaction length, and torsional angles that can occur between them. By following
this local information, the subunits form a closed icosahedral shell with the desired symmetry.

1.3.2 Mechanical model of conformational switches

In the above work, conformational switches are simply predetermined numerical relationships. In con-
trast, Penrose [14], suggested several designs of mechanical conformational switches that are used in
devices that “self-reproduce”. These conformational switches cause a bond at one location to break
a bond existing at another location or prevent a bond from occurring at another location. When the
correct number and arrangement of sub-devices are linked, the conformational switches cause the entire
chain to cleave into two copies of the original self-reproducing device in a process akin to cell division.

Another example is found in Hosokawa et al. [10]. They developed triangular parts employing switches
realized with movable magnets that allow parts to bond together to form hexagons. The switches allow
a part to be either in an active or inactive state. An activated part can bond to an inactivated part,
turning the part to an activated state. These parts are assembled in a rotating box randomizer. The
amounts of each intermediate subassembly achieved agreed reasonably well with the predicted values
obtained by techniques analogous to chemical kinetics.

1.3.3 Randomized assembly of mechanical parts

Moncevicz et al. [11, 13, 12] developed a layered palletization technique, where parts are “palletized” by
using vibration to convey them over a plastic “pallet” into which are carved an array of relief shapes
that trap and orient the flowing parts. The first part is designed such that once a quantity is held in the
pallet, it becomes integral with the pallet for the purpose of palletizing a quantity of the second part.
Therefore, the second part palletization actually assembles the second part to the first part. Since many
part insertions occur simultaneously, a very high assembly rate can be achieved.

Yeh and Smith [20] used a (non-layered) palletization technique similar to [13, 12], to assemble mi-
crostructures. They fabricated trapezoidal galium arsenite (GaAs) blocks and a Si wafer with trapezoidal
holes. Assembly is then done by releasing the GaAs blocks in a carrier fluid (ethanol) and dispensing
the fluid over the Si wafer. Cohn et al. [3] experimented with the self-assembly of small hexagonal parts
(1 mm in diameter) by placing a quantity of them on a slightly concave diaphragm that was agitated
with a loudspeaker.

Artificial Life 2(4):377–416, 1995. 4

1.3.4 Models of subassembly processes in biological assembly

Here, we note two important investigations on subassembly processes in biological assembly. Due to the
relevance to our work, these are described in some detail.

Crane [4] has provided a lucid discussion of the advantages of subassembly processes in the construc-
tion of complicated structures from elementary subunits. One aspect of his discussion has to do with
scheduling the assembly process into a series of stages, or subassembly processes. In his presentation, we
start with 1,000,000 identical elementary units. Our objective is to build structures of 1,000 unit length
(deca-deca-decamers) using two different subassembly processes. The first subassembly process consists
of three stages:

1. Ten elementary units are put together to form 100,000 subassemblies of 10 unit length, or 100,000
decamers.

2. Ten of the decamers are put together to form 10,000 subassemblies of 100 unit length, or 10,000
deca-decamers.

3. Ten of the deca-decamers are put together to form 1,000 final assemblies of 1,000 units long, or
1,000 deca-deca-decamers.

The second subassembly process is to join one thousand elementary units together in a stage. He
assumed there was a defect probability that a unit was added wrongly causing the subassembly to
become defective. He further assumed the defective subassemblies could not be incorporated into a
subassembly at the next stage, and the elementary units in the defective subassemblies were completely
wasted. Assuming the same defect probability of 1% at each subassembly stage, the first three-stage
subassembly process gives 739 deca-deca-decamers1 out of a possible 1,000. On the other hand, the
second subassembly process with the same defect probability produces only 0.0432 deca-deca-decamer2.
It is clear that the first three-stage subassembly process is far more efficient than the second one-stage
subassembly process.

Following Crane’s work, Rosen [15] posed the following question: how can we choose the number of
subassembly stages, and the number of elementary units to be put together at each stage, in such a way
as to maximize the yield of the desired assembly at the last stage? By extending Crane’s subassembly
model, he showed the above problem could be formulated as an integer programming problem3:

maximize (1− q)r1+r2+...+rN

(
M

L

)
(1)

subject to L = r1 · r2 · . . . · rN
N ≥ 0; N ∈ Z (2)
ri ≥ 0; ri ∈ Z; i ∈ {1, 2, . . . , N}

where q, M and L are defect probability, the number of elementary units in the initial pool, and
the number of elementary units in a desired assembly, respectively. N is the number of subassembly
stages and ri is the number of subassemblies produced at the (i − 1)-th stage, which are incorporated
into a subassembly at the i-th stage4. Since q, M and L are positive constants, and (1 − q) ≤ 1, The
above problem is equivalent to minimizing the exponent r1 + r2 + . . .+ rN under the same constraints.
The Unique Factorization Theorem5 in elementary number theory shows that the factorization of L into
prime numbers has the property that sum of the factors is minimal. In the case of L = 1000, the prime
factor decomposition is:

L = 1000 = 2 · 2 · 2 · 5 · 5 · 5 (3)

1Obtained by (1− 0.01)10+10+10(1, 000, 000/1, 000) = 739; see Appendix A for more detail.
2Similarly, by (1− 0.01)1,000(1, 000, 000/1, 000) = 0.0432; see Appendix A for more detail.
3The derivation is found in Appendix A
4In the Crane’s first subassembly process, for example, q = 0.01, M = 1, 000, 000, L = 1, 000, N = 3, and r1 = r2 =

r3 = 10.
5The proof is found in Appendix B

Artificial Life 2(4):377–416, 1995. 5

which gives N = 6. The corresponding yield is:

(1− 0.01)2+2+2+5+5+5

(
1, 000, 000

1, 000

)
= 810 (4)

which is larger than 739, the yield by Crane’s first subassembly process. Note that the theorem says noth-
ing about the order of factorization; it makes no difference how we distribute the ri among the subassem-
bly stages. In this case, for example, (r1, r2, r3, r4, r5, r6) = (2, 2, 2, 5, 5, 5) and (r1, r2, r3, r4, r5, r6) =
(2, 5, 2, 5, 2, 5) are equivalent in terms of the yield of the final assemblies.

The importance of Rosen’s work lies in the fact that he formulated the problem of finding the best
subassembly schedule as an optimization problem, and provided a solution in closed form. There are,
however, several points to be generalized to make his model more realistic. First, the defect probability q
should not be the same for each subassembly stage. This generalization, however, yields another integer
programming problem, which in general cannot be solved in a closed form:

maximize (1− q1)r1(1− q2)r2 . . . (1− qN)rN
(
M

L

)
(5)

subject to L = r1 · r2 · . . . · rN
N ≥ 0; N ∈ Z (6)
ri ≥ 0; ri ∈ Z; i ∈ {1, 2, . . . , N}

The second point for generalization is that the model should allow subassembly processes which involve
subassemblies with non-equal numbers of subunits. For instance, it should be possible to consider the
subassembly process which produces a 1,000-mer out of five 100-mers and four 125-mers at the final
stage. Finally, the model should be extended such that it can express the simultaneous construction of
subassemblies. It should, for example, be possible to form a 100-mer out of ten 10-mers as soon as the
first ten 10-mers are produced, not after all the elementary units are assembled into 10-mers.

In the following sections, we will discuss our approach, genetic optimization of parameterized con-
formational switch designs, which incorporates the above generalizations and finds the conformational
switch design which encodes the best subassembly sequence in terms of the yield of the final assembly.

2 Conformational switch model for subassembly generation

2.1 One-dimensional conformational switch

We extend our previous design of a one-dimensional mechanical conformational switch (a simple sliding
bar mechanism) [16]. The extended design allows a part which cannot bind to another part before the
conformational change, to form a bond after the conformational change. In order to realize this function
in a mechanically realistic way, we introduce a new gadget called the minus device. Figure 2(a) shows
the operation of a minus device. It consists of two short sliding bars that constitute the shapes of two
bonding sites, and one inner sliding block that connects them. The left and right pictures in Figure 2(a)
show the minus device before and after conformational change, respectively. Before conformational
change, the right sliding bar cannot be pushed in due to the position of the inner sliding block. After
conformational change induced by pushing in the left sliding bar, the right sliding bar can be pushed
in since pushing in the left sliding bar causes the inner block to slide down, leaving space for the right
sliding bar to slide left. For simplicity, we will often use the abstracted representation of the device, a
minus sign with an arrow, shown in Figure 2(b). The direction of the arrow indicates that causality
of conformational change. A right-pointing arrow indicates the conformational change is induced by
pushing the left sliding bar and vice versa. Note that in the abstract representation, the right sliding
bar after conformational change is drawn as the “pushed-in” state, representing that the bar is “free”
to be pushed in.

Figure 2(c) shows how interaction with another part induces conformational change in a minus device.
Note that this is a conformational switch design for one-dimensional randomized assembly, where parts
can be assembled in only one direction, say horizontally. In Figure 2(c), therefore, one can place a part

Artificial Life 2(4):377–416, 1995. 6

(a)

(c)

inner block
left bar

conformational
change

bond site

right bar

(b)

Figure 2: one dimensional conformational switch with a minus device

on the left or the right of another part, but not on the top or bottom. However, the model could easily be
extended to the two-dimensional case. Note also that conformational change realized by a minus device
is unidirectional and irreversible. In the top picture of Figure 2(c), for instance, no conformational
change is induced if the hatched rectangular part is placed on the right of the part with the minus device
(unidirectionality). Also, since the minus device is not “spring-loaded”, it is impossible to reverse the
conformational change (irreversibility). This implies that once a part changes its conformation and a
bond is formed as a result, it will never be destroyed, i.e. no detaching is possible.

The actual conformational switch design we use for subassembly generation consists of a “two-digit”
bonding site as shown in Figure 3. The two-digit bonding site increases the number of possible shapes
it can take, which in turn increases the number of subassembly sequences it can encode6.

A bond configuration is a pair of integers (a1, a2), which describes the shape of a bonding site. Each
component of a bond configuration takes a positive value if the corresponding “digit” of the bonding site
has convex shape, a negative value if the the digit is concave, and zero if it is flat. Examples of bond
configurations and the corresponding shapes of bonding sites are shown in Figure 4.

When bonding sites of two parts meet, they form either 1) a stable bond, 2) an unstable bond, or 3)
no bond. The occurrences of these cases depend on the shape of the two bonding sites, or equivalently,

6To determine the number of “digits” necessary to encode a given assembly tree is an interesting coding problem and
will be discussed in Section 5.1.

Artificial Life 2(4):377–416, 1995. 7

1st digit
2nd digit

Figure 3: one dimensional conformational switch with “two-digit” bonding site

bond site

bond
configuration

1 1 1

(1, 0) (-1, 1) (0, 0)

1

(-1, -1)

Figure 4: examples of bond configurations and the corresponding bond shapes (of the left bond site)

Artificial Life 2(4):377–416, 1995. 8

the bond configurations of the sites. Let (a1, a2) and (b1, b2) be bond configurations of two bonding sites
contacting each other. These sites form a stable bond if they are complementary to each other:

a1 + b1 ≤ 0 and a2 + b2 ≤ 0 (7)

and form an unstable bond if they are fairly complementary:

(a1 + b1 = 1 and a2 + b2 ≤ 0) or (a1 + b1 ≤ 0 and a2 + b2 = 1) (8)

If none of the above apply, the two bonding sites are not complementary and therefore no bond is formed.
Figure 5 shows some examples of each of the three cases. An unstable bond induces conformational
change of the involved bonding sites. After the conformational changes, a stable bond is formed if the
condition (7) is satisfied. Otherwise, no bond is formed.

Ambiguous situations may arise when conformational change can propagate in both directions such
as the case shown in Figure 6(a). In such cases, we assume propagation goes upstream as defined in
Figure 6(b) (priority to upstream propagation).

2.2 One-dimensional randomized assembly with defect

As in our previous work [16] we will simulate the following robot bin-picking metaphor in our simulation
of one-dimensional randomized assembly:
Assume a random assortment of parts in a (one-dimensional) bin (Figure 7(a)).

Step 1: The robot arm #1 randomly picks up a part from the bin. Then, robot arm #2 randomly
picks up another part from the bin (Figure 7(b)).

Step 2: The two parts are pushed against each other, possibly causing formation of a bond (Fig-
ure 7(c)).

Step 3: The parts are randomly returned to the bin (Figure 7(d)), possibly as an assembly.

The steps 1-3 are repeated until pre-specified conditions are satisfied (e.g. repeat for a specified number
of iterations, repeat until the number of parts decreases below a limit, etc.). It is assumed that the parts
do not change their orientations, so in general, AB and BA are two distinct assemblies.

We follow Crane’s assumption of defects [4] during the above randomized assembly process. Namely,
we assume 1) with a certain probability two subassemblies (or two parts) are put together incorrectly,
causing the resulting subassembly to be defective, and 2) the defective subassemblies cannot be incor-
porated into the subsequent subassemblies, so the parts in the defective subassemblies are completely
wasted. In the scenario above, a defect could occur at step 2 with a certain probability if two parts
picked can form a bond7, with the defective subassembly being returned to the bin. If the defective
subassembly is chosen at step 1 in subsequent iterations, no bond is formed at the step 2, regardless
of the bond configurations of the two mating sites. In this manner defective subassemblies “waste” an
iteration of the robot bin-picking.

Note that the above robot bin-picking metaphor realizes the three generalizations to Rosen’s sub-
assembly model described in Section 1.3.4. It is possible to specify different defect probabilities for
different combinations of parts or bond configurations. Also, since the scenario does not formulate
subassembly sequences explicitly, rather they are assumed to emerge by searching the space of possible
conformational switch designs, any subassembly sequence can be realized if it can be encoded by the con-
formational switch model8, including the ones which involve subassemblies with non-identical numbers
of parts. Finally, even though there are only two robot arms (as opposed to many robot arms for parallel
assembly), the scenario can simulate the simultaneous construction of several subassemblies since it is
globally synchronized based on mating of two subassemblies, rather than completion of a subassembly
stage.

7If they cannot form a bond, no defect occurs and they are simply returned to the bin.
8Again, this raises the question of which subassembly sequences can be encoded by a particular conformational switch

model. Some discussion on this issue is found in Sections 4.4 and 5.1.

Artificial Life 2(4):377–416, 1995. 9

(b) unstable bond ==> conformational change

(a) stable bond

(c) no bond

Figure 5: examples of three types of bonding

Artificial Life 2(4):377–416, 1995. 10

?
(a) ambiguous situation

(b) results by upstream propagation

upstream

Figure 6: priority to upstream propagation

3 Genetic algorithm optimization

3.1 Genetic algorithms

Genetic algorithms (GAs) are a search technique in which points in the design space are analogous to
organisms subject to a process of natural selection, or “survival of the fittest” [9]. GAs model repro-
duction in populations of an encoded representation of points in design space – genetic “chromosomes”
– over generations. In a given generation, the quality of a chromosome (or a point in design space) is
measured based on a fitness function, and highly-fit chromosomes have higher chances to be selected for
reproduction. Two “parent” chromosomes selected for reproduction are mated through genetic crossover,
resulting in two offspring chromosomes which are likely to inherit good “genes” from their parents. Many
generations of such selection and mating will produce a highly-fit population of chromosomes, i.e. better
designs.

3.2 Formulation of GA search

We are interested in designing conformational switches that, when randomly assembled, maximize the
yield of a desired assembly. More precisely, the problem is stated as follows:

Given: the total number of parts, and the number of each kind of part in the bin (in other words, the
initial state of the bin), and defect probabilities.

Find: the optimal design of conformational switches that maximizes the yield of a desired set of parts
in the process of randomized assembly.

We are designing not only the bar mechanisms, but also the initial bond configurations. The above
problem is formulated as search by parameterizing the design of the conformational switches. A genetic
algorithm is used to search the parameter space of possible switch designs. Note that we are searching
the space of possible conformational switch designs, not the space of subassembly sequences. There is no
explicit formulation of subassembly sequences in the above problem. Rather, an optimal subassembly

Artificial Life 2(4):377–416, 1995. 11

(a)

(c)

(d)

(b)

arm #1 arm #2

Figure 7: robot bin-picking metaphor

Artificial Life 2(4):377–416, 1995. 12

right_configleft_config

upper_link lower_link

Figure 8: bit assignment of a chromosome

sequence emerges due to a particular design of conformational switches that maximizes the yield of the
desired assembly.

The one-dimensional conformational switch of a part is uniquely specified in terms of four parame-
ters: left config, right config, upper link and lower link. Left config and right config are the initial bond
configurations of the left bond site and the right bond site, respectively. Upper link and lower link are
variables that specify the existence of conformational links (minus devices) in a part, each of which
takes one of the values LEFT, RIGHT or NONE. If upper link is LEFT, there is a conformational link
between the “first digits” of the bond sites, with the direction pointing to the left bond site. If upper link
is RIGHT, there is a conformational link between the first digits of the bond sites pointing to the right
bond site. If upper link is NONE, there is no conformational link that connects the first digits of the
bond sites, so the first digits cannot undergo any conformational change. Similarly, lower link specifies
the existence of the conformational link between the second digits of the bond sites. Note that the
conformational links are independent of each other, so the second digits can change their conformation,
for instance, even though the first digits cannot.

A chromosome used in genetic search is a binary string that encodes the above design parameters for
all kinds of parts in the bin. For the examples in the next section, two bits are assigned to each component
of bond configuration9, therefore each of left config and right config occupies four bits. In addition, two
bits are used for each of upper link and lower link. The location of these bits on a chromosome is shown
in Figure 8.

For each component of left config and right config, the first bit corresponds to sign, with plus being
0 and minus being 1, and the second bit corresponds to the absolute value10. If left config = (1, 0),
for example, the corresponding four bits are 0100 or 0110. The first bit for upper link and lower link
represents the direction of the conformational link, with right (→) being 0 and left (←) being 1. The
second bit represents the existence of the link. The bit is 1 if the link exists, and 0 if there is no link. The
first bit is ignored if the second bit is 0. For instance, the corresponding two bits for lower link = NONE
is either 10 or 00. Figure 9 shows an example of a parameter encoding of a part. Since twelve bits are
necessary for one part, a chromosome that encodes n kinds of parts has length 12n.

9Recall a bond configuration is a pair of integer (a1, a2).
10This implies that each component of left config and right config can only take values {−1, 0, 1}.

Artificial Life 2(4):377–416, 1995. 13

right_configleft_config upper_link lower_link

(1, 0) RIGHT NONE (-1, 1)

0 1 0 0 0 1 0 0 1 1 0 1

Figure 9: an example of parameter encoding of a part

3.3 Reinforcement evaluation

A chromosome is evaluated by decoding the bit string representation (genotype) to a part design (phe-
notyope), and by running the robot bin-picking simulation with the decoded part design. The fitness
of a chromosome (i.e. the suitability of conformational switch designs and their initial configurations)
is simply the number of desired assemblies produced after some number of iterations of the robot bin-
picking simulation. In order to reduce stochastic error due to random picking during the simulation, the
actual fitness is measured as an average of a pre-specified number of such bin-picking runs.

For further reduction of stochastic error involved in the fitness evaluation, we introduce a new scheme
called reinforcement evaluation. In this scheme, the best chromosome in the population is evaluated again
at the end of each generation. The fitness of the best chromosome is then re-calculated to “reinforce”
the evaluation:

f̄new =
n · f̄old + f

n+ 1
(9)

where f̄old and f̄new are the fitness values before and after reinforcement, f is the fitness value obtained
by the additional evaluation, and n is the number of times the chromosome has been evaluated. This
ensures that only good chromosomes that are carried over generations have more chances to be evaluated
many times, reducing stochastic error of their fitness values.

4 Examples

This section describes two examples of genetic optimization of one-dimensional conformational switches.
The GA in the following examples uses a crowding population [9] with 10% replacement per generation,
based on hamming distance between chromosomes, fitness proportionate (roulette wheel) selection [9],
linear fitness scaling [9] with scaling coefficient = 2.0, and unless otherwise specified, crossover probability
= 0.9 and mutation probability = 0.03. Also, reinforcement evaluation is performed as described in the
previous section.

Artificial Life 2(4):377–416, 1995. 14

x y z x y z
(a)

(b) ((x y) z) (x (y z))
Figure 10: representations of subassembly sequences: (a) binary tree representation, and (b) list repre-
sentation. x, y and z are subassemblies.

Before proceeding to the results, let us define our notion of subassembly sequences in one-dimensional
assembly. We define a subassembly to be a set of one or more parts connected together. In particular, a
part is a subassembly. A subassembly sequence is a sequence in which two subassemblies are put together
to produce a final assembly. According to the above definition, any fixed (non-ambiguous) subassembly
sequence of a one-dimensional assembly can be represented uniquely by a binary tree (Figure 10(a))
or by a list representation (Figure 10(b))11 It is, however, often the case that the assembly sequence
encoded by a conformational switch design is ambiguous, or under-specified. We use the notation {u}
if (and only if) the subassembly sequence to build a subassembly u is not specified. In the case where
u = xyz, for instance, {xyz} indicates that the three subassemblies x, y and z can be put together in
any order, ı.e. either ((xy)z) or (x(yz)).

4.1 Three part randomized assembly

The first example is a three part randomized assembly as described in Section 2.2. The initial bin
contains a random mixture of three types of parts, part A, part B and part C, and the design objective
is to maximize the yield of the assembly ABC. The number of ABC’s in the bin is counted after 700
iterations of Steps 1-3 in Section 2.2. At each evaluation of a chromosome, an average is taken for the
count of ABC’s over 50 such runs. The GA runs described in this section have population size of 300 and
the number of generations is 200. In the following results, n0 = (nA(0), nB(0), nC(0)) is the vector of the
initial numbers of parts A, B and C in the bin, and q = (qAB , qBC) is the vector of defect probabilities
of the bonds between AB and BC, respectively12. Note that there are only two possible subassembly
sequences in this example: ((AB)C) and (A(BC)).

Figure 11 shows the best designs of conformational switches obtained from GA runs with n0 =
(10, 10, 10), and with (a) q = (0.0, 0.0), (b) q = (0.2, 0.0) and (c) q = (0.0, 0.2). In all three cases, the
parts are designed such that only ABC can form through random mating (e.g. CAB is not possible).
During assembly of ABC, however, no conformational links are actually used, i.e. no parts undergo con-
formational changes. This implies that none of the three designs specifies a fixed subassembly sequence:
an ABC can assemble in any of the two possible sequences, ((AB)C) or (A(BC)). In other words, these

11Since we are dealing with one-dimensional assembly, the above binary tree representation can specify both a final
assembly and the order of assembly, whereas in mechanical assembly an assembly tree usually specifies only the order of
assembly.

12We assume defect probability of a bond depends only on the parts associated to the bond. In particular, we assume
qAB = qA(BC) and qBC = q(AB)C .

Artificial Life 2(4):377–416, 1995. 15

A B C { ABC }

(a) q = (0.0, 0.0); fitness = 9.99; n = 1

(b) q = (0.2, 0.0); fitness = 8.09; n = 1

(c) q = (0.0, 0.2); fitness = 8.01; n = 1

A B C { ABC }

A B C { ABC }

Figure 11: best designs with n0 = (10, 10, 10)

conformational switch designs encode {ABC}.
On the other hand, A non-ambiguous subassembly sequence emerges in the case where there are

more part B’s than part A’s and part C’s. Figure 12 shows the resulting switch designs in the case
n0 = (10, 20, 10). For q = (0.0, 0.0) and q=(0.0, 0.2), a part A can bind to a part B only after part B
changes its conformation, which is triggered by the binding of part C (see Figures 12(a) and 12(c)). The
formation of an assembly ABC, therefore, takes place through the following two-step “reactions”:

B + C → B′C (10)
A+B′C → AB′C (11)

where B′ represents a part B after conformational change. Since no other reactions are possible, an ABC
assembles only in the fixed subassembly sequence (A(BC)). On the other hand, ((AB)C) is encoded in
the best design with q = (0.2, 0.0) as shown in Figure 12(b). In this case, a part C can bind to a part
B only after the part B changes its conformation, which is triggered by binding of a part A:

A+B → AB′ (12)
AB′ + C → AB′C (13)

Note that only one conformational link is actually used during the assembly of ABC in both cases. The

Artificial Life 2(4):377–416, 1995. 16

(a) q = (0.0, 0.0); fitness = 9.52; n = 1

(b) q = (0.2, 0.0); fitness = 7.84; n = 9

(c) q = (0.0, 0.2); fitness = 8.07; n = 2

(A (BC))A B C

((AB) C)A B C

(A (BC))A B C

Figure 12: best designs with n0 = (10, 20, 10)

Artificial Life 2(4):377–416, 1995. 17

(a) q = (0.0, 0.0); fitness = 10.00; n = 11

(b) q = (0.2, 0.0); fitness = 9.98; n = 2

(c) q = (0.0, 0.2); fitness = 8.21; n = 1

((AB) C)A B C

((AB) C)A B C

(A (BC))A B C

Figure 13: best designs with n0 = (20, 20, 10)

results of GA runs with n0 = (20, 20, 10) are shown in Figure 13. The best designs encode ((AB)C) for
q = (0.0, 0.0) and q = (0.2, 0.0), and (A(BC)) for q = (0.0, 0.2).

4.2 Rate equation analyses of three part randomized assembly

Discrete-time rate equation analyses are done in order to understand the emergence of a particular
subassembly sequence in the above example. We generalize the rate equation formulation for defect-free
randomized assembly [16] to incorporate the effect of defects in assembly. Given the part designs, their
possible “reactions” and defect probabilities, the following recurrence relation describes the randomized
assembly process described in Section 2.2:

n(t+ 1) = n(t) + Ap(t) (14)

where n(t) is a vector of the numbers of each possible subassembly (including the defective ones) at
iteration t, p(t) is a vector of probabilities for each possible reaction at iteration t, and A is a matrix of
stoichiometric coefficients.

The following two reactions among parts A, B and C are necessary and sufficient to produces an

Artificial Life 2(4):377–416, 1995. 18

assembly ABC in the subassembly sequence ((AB)C))13:

A+B → AB (15)
AB + C → ABC (16)

The above reactions can be interpreted as “an A and a B yield an AB with probability 1, and an AB and
a C yield anABC with probability 1.” Assuming the defective subassemblies cannot be incorporated into
the subsequent subassemblies, the reactions (15), (16) can be generalized to non-zero defect probabilities
as follows:

A+B → (1− qAB)AB + qABABd (17)
AB + C → (1− qBC)ABC + qBCABCd (18)

where ABd and ABCd denote a defective AB and a defective ABC; and qAB and qBC are defect
probabilities of bonding between A and B, and between B and C, respectively. The corresponding n(t),
A and p(t) are, therefore, defined as follows:

n(t) =

nA(t)
nB(t)
nC(t)
nAB(t)
nABd(t)
nABC(t)
nABCd(t)

,A =

−1 0
−1 0
0 −1

1− qAB −1
qAB 0

0 1− qBC
0 qBC

,p(t) =

nA(t) · nB(t)
s(t) · {s(t)− 1}

nAB(t) · nC(t)
s(t) · {s(t)− 1}

 (19)

where nA(t), nB(t), nC(t), nAB(t), nABd(t), nABC(t) and nABCd(t) are the numbers of A, B, C, AB,
ABd, ABC and ABCd at iteration t, respectively, and s(t) is the sum of all the components of n(t).

Similarly, in the case of (A(BC)), the possible generalized reactions are:

B + C → (1− qCB)BC + qBCBCd (20)
A+BC → (1− qAB)ABC + qABABCd (21)

and the corresponding n(t), A and p(t) are:

n(t) =

nA(t)
nB(t)
nC(t)
nBC(t)
nBCd(t)
nABC(t)
nABCd(t)

,A =

0 −1
−1 0
−1 0

1− qBC −1
qBC 0

0 1− qAB
0 qAB

,p(t) =

nB(t) · nC(t)
s(t) · {s(t)− 1}

nA(t) · nBC(t)
s(t) · {s(t)− 1}

 (22)

Since both ((AB)C) and (A(BC)) are possible in the case of {ABC}, the rate equations for {ABC}
are constructed by simply merging (19) and (22) together:

n(t) =

nA(t)
nB(t)
nC(t)
nAB(t)
nABd(t)
nBC(t)
nBCd(t)
nABC(t)
nABCd(t)

,A =

−1 0 −1 0
−1 −1 0 0
0 −1 0 −1

1− qAB 0 0 −1
qAB 0 0 0

0 1− qBC −1 0
0 qBC 0 0
0 0 1− qAB 1− qBC
0 0 qAB qBC

(23)

13Conformational change is ignored in the notation here.

Artificial Life 2(4):377–416, 1995. 19

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

((AB)C) and (A(BC))

{ABC}

Figure 14: solution with n0 = (10, 10, 10) and q = (0.0, 0.0)

p(t) =

nA(t) · nB(t)
s(t) · {s(t)− 1}

nB(t) · nC(t)
s(t) · {s(t)− 1}

nA(t) · nBC(t)
s(t) · {s(t)− 1}

nAB(t) · nC(t)
s(t) · {s(t)− 1}

(24)

The equation (14) is numerically solved for different initial conditions and defect probabilities, in
order to compare the dynamic behavior of parts (and defective parts) in ((AB)C), (A(BC)) and {ABC}.
Figures 14, 15 and 16, show the solution with the initial condition n0 = (10, 10, 10) and q = (0.0, 0.0),
q = (0.2, 0.0) and q = (0.0, 0.2), respectively. The yield of {ABC} is slightly better than ((AB)C) and
(A(BC)) in all of the three cases, which matches the results obtained by the GA search14 shown in
Figure 11. For q = (0.0, 0.0), there is no difference between the solution of ((AB)C) and (A(BC)). It
is observed, however, that the higher defect probability between AB (q = (0.2, 0.0)) slightly favors the
subassembly sequence ((AB)C) (Figure 15), while q = (0.0, 0.2) slightly favors (A(BC)) (Figure 16).

These trends become more prominent with n0 = (10, 20, 10), as shown in Figures 17, 18 and 19.
The result of ((AB)C) and (A(BC)) are identical for q = (0.0, 0.0), which are better than the yield of
{ABC}. For q = (0.2, 0.0), the yield of ((AB)C) is approximately 5% better than the yield of (A(BC)),
whereas for q = (0.0, 0.2), the yield of (A(BC)) is approximately 5% better than the yield of ((AB)C).
The above results support the results by GA runs shown in Figure 12. It should be noted that in the
case of n0 = (10, 20, 10), the yield of {ABC} goes down to about 50% of the maximum possible yield.
This rather counter-intuitive drop of the yield is due to the large number of the middle part B, which

14Recall the robot bin-picking simulation used in the GA search terminates at 700 iterations.

Artificial Life 2(4):377–416, 1995. 20

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

((AB)C)

(A(BC))

{ABC}

Figure 15: solution with n0 = (10, 10, 10) and q = (0.2, 0.0)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{ABC}

(A(BC))

((AB)C)

Figure 16: solution with n0 = (10, 10, 10) and q = (0.0, 0.2)

Artificial Life 2(4):377–416, 1995. 21

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

((AB)C) and (A(BC))

{ABC}

Figure 17: solution with n0 = (10, 20, 10) and q = (0.0, 0.0)

produces a large number of AB’s and BC’s in the early stage of iterations. The excess production of
AB’s and BC’s then causes the shortage of individual C’s and A’s later on, which are necessary to
complete the final assembly ABC from the subassemblies AB and BC. By enforcing the subassembly
sequence ((AB)C) or (A(BC)), this excess production of AB and BC can be avoided. Figures 20, 21
and 22 show the solution of equation (14) with n0 = (20, 20, 10) and q = (0.0, 0.0), q = (0.2, 0.0) and
q = (0.0, 0.2), respectively. In all cases, {ABC} has the highest rate of the desired assembly during the
early iterations. However, ((AB)C) becomes better approximately after the 250-th iteration and scores
the best overall yield. Differences in the final yield between ((AB)C) and {ABC} are the largest for
q = (0.2, 0.0) and the smallest for q = (0.0, 0.2). In particular, in the case of q = (0.0, 0.2), the overall
yield is almost identical for ((AB)C), (A(BC)) and {ABC}. The GA search in Figure 13 found the
optimal solutions (i.e. conformational switch designs that encode the optimal subassembly sequence)
for q = (0.0, 0.0) and q = (0.2, 0.0), and found a suboptimal solution within 1% of the optimal solution
for q = (0.0, 0.2).

4.3 Four part randomized assembly

The second example is a four part randomized assembly. The initial bin contains a random mixture
of four types of parts, part A, part B, part C and part D, and the design objective is to maximize
the yield of the assembly ABCD. The number of ABCD’s in the bin is counted after 1400 iterations
of Steps 1-3 in Section 2.2. At each evaluation of a chromosome, an average is taken for the count of
ABCD’s over 50 such runs. The GA runs described in this section have population size of 600 and
the number of generations is 900. In the following results, n0 = (nA(0), nB(0), nC(0), nD(0)) is the
vector of the initial numbers of parts A, B, C and D in the bin, and q = (qAB, qBC , qCD) is the vector
of defect probabilities of the bonds between AB, BC and CD, respectively. Figure 23 shows the five
non-ambiguous subassembly sequences possible for the four part assembly.

The best designs found by the GA are shown in Figure 24 with n0 = (10, 10, 10, 10) and four
different defect probabilities: (a) q = (0.0, 0.0, 0.0), (b) q = (0.2, 0.0, 0.0), (c) q = (0.0, 0.2, 0.0) and (d)
q = (0.2, 0.0, 0.2). As in the case of the three part assembly, the parts are evolved such that only ABCD

Artificial Life 2(4):377–416, 1995. 22

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(A(BC))

((AB)C)

{ABC}

Figure 18: solution with n0 = (10, 20, 10) and q = (0.2, 0.0)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

((AB)C)

(A(BC))

{ABC}

Figure 19: solution with n0 = (10, 20, 10) and q = (0.0, 0.2)

Artificial Life 2(4):377–416, 1995. 23

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

(A(BC))

((AB)C)

{ABC}

Figure 20: solution with n0 = (20, 20, 10) and q = (0.0, 0.0)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

(A(BC))

((AB)C) {ABC}

Figure 21: solution with n0 = (20, 20, 10) and q = (0.2, 0.0)

Artificial Life 2(4):377–416, 1995. 24

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(A(BC))

{ABC}

((AB)C)

Figure 22: solution with n0 = (20, 20, 10) and q = (0.0, 0.2)

A B C D

(((AB)C)D)

A B C D

((AB)(CD))

A B C D

((A(BC))D)

A B C D

(A((BC)D)) (A(B(CD)))

A B C D

Figure 23: five non-ambiguous subassembly sequences of a four part assembly

Artificial Life 2(4):377–416, 1995. 25

can form through random mating. The first three results (a), (b) and (c) specify no fixed subassembly
sequences. In other words, the parts can be assembled in any of the five subassembly sequences shown
in Figure 23, i.e. the design encodes {ABCD}. A fixed subassembly sequence ((AB)(CD)) emerged for
(d) q = (0.2, 0.0, 0.2), which is realized by conformational changes of part B and part C after forming
subassemblies AB and CD:

A+B → AB′ (25)
C +D→ C′D (26)
AB′ + CD′ → AB′C′D (27)

Figure 25 shows the results with n0 = (10, 20, 10, 10). For (a) q = (0.0, 0.0, 0.0) and (b) q =
(0.2, 0.0, 0.0), a conformational link in part B causes a B–C bond to be made only after an A–B bond
forms. The final assembly ABCD, therefore, is built in the order either (((AB)C)D) or ((AB)(CD)),
hence the design encodes the subassembly sequence {(AB)CD}. In the case of (c) q = (0.0, 0.2, 0.0),
on the other hand, a conformational link in part B causes a B–C bond to be made before an A–B
bond forms. Therefore, the design encodes the subassembly sequences ((A(BC))D), (A((BC)D)) or
(A(B(CD))). We refer to the set of these three subassembly sequences as {(AB)CD}, since they are the
subassembly sequences that are not represented by {(AB)CD} among the five possible non-ambiguous
subassembly sequences in Figure 23. As in the case of n0 = (10, 10, 10, 10), the resulting design specifies
a fixed subassembly sequence ((AB)(CD)) for (d) q = (0.2, 0.0, 0.2).

The sequence ((AB)(CD)) also emerged for n0 = (10, 20, 20, 10), with (a) q = (0.0, 0.0, 0.0), (b)
q = (0.2, 0.0, 0.0) and (d) q = (0.2, 0.0, 0.2), as shown in Figure 26. The design with (c) q = (0.0, 0.2, 0.0)
encodes the subassembly sequence (A(B(CD))), which takes the following three-step reactions:

C +D→ C′D (28)
B + C′D→ B′C′D (29)
A+B′C′D→ AB′C′D (30)

Note in the above results (of Figures 24(d), 25(d), 26(a), (b), (c) and (d)), that exactly two confor-
mational links, one in part B and one in part C, are actually used to encode the two non-ambiguous
subassembly sequences ((AB)(CD)) and (A(B(CD))). Other links are non-functional (do not cause
conformational changes of a part) or redundant (cause conformational changes that do not affect assem-
bly sequences). Similarly, as shown in Figures 25(a), (b) and (c), only one conformational link in part
B is required to encode {(AB)CD} and {(AB)CD}, and no conformational link is required to encode
{ABCD} (see Figures 24(a), (b) and (c))15.

4.4 Rate equation analyses of four part randomized assembly

Rate equations (14) of four-part randomized assembly are formulated in a similar way to the three-part
case in Section 4.2. The yield of the final assembly ABCD is then compared for all the subassembly
sequences which can be encoded by our conformational switch model described in Section 2.1. Such
subassembly sequences can be enumerated by listing combinations of functional and non-redundant con-
formational links in the parts, i.e. by listing all combinations of conformational links which are necessary
and sufficient to encode a set of non-ambiguous subassembly sequences. Since our desired assembly is
ABCD, any conformational links in part A and part D are non-functional/redundant. Also, one of any
two conformational links in a part pointing the same direction is non-functional/redundant since it is
not possible to induce conformational changes via two such conformational links (see Section 2.1). Even
when two conformational links in a part are pointing in the opposite directions, one of them is still
non-functional/redundant since a bond cannot be destroyed once it is formed.

The above discussion leaves us only eight non-redundant combinations of conformational links, which
encode five ambiguous subassembly sequences {ABCD}, {(AB)CD}, {(AB)CD}, {AB(CD)} and

15Conformational changes of partD in Figures 24(a) and (c) do not affect assembly sequences, therefore the corresponding
links are redundant.

Artificial Life 2(4):377–416, 1995. 26

(a) q = (0.0, 0.0, 0.0); fitness = 10.00; n = 32

{ A B C D }

A B

A B C D

(b) q = (0.2, 0.0, 0.0); fitness = 8.34; n = 2

(c) q = (0.0, 0.2, 0.0); fitness = 8.42; n = 2

(d) q = (0.2, 0.0, 0.2); fitness = 7.63; n = 3

{ A B C D }A B C D

{ A B C D }A B C D

((A B) (C D))A B C D

Figure 24: best designs with n0 = (10, 10, 10, 10)

Artificial Life 2(4):377–416, 1995. 27

(a) q = (0.0, 0.0, 0.0); fitness = 9.84; n = 2

(b) q = (0.2, 0.0, 0.0); fitness = 8.16; n = 1

(c) q = (0.0, 0.2, 0.0); fitness = 8.28; n = 2

(d) q = (0.2, 0.0, 0.2); fitness = 8.32; n = 1

{ (A B) C D }A B C D

A B C D { (A B) C D }

A B C D ((A B) (C D))

{ (A B) C D }A B C D

Figure 25: best designs with n0 = (10, 20, 10, 10)

Artificial Life 2(4):377–416, 1995. 28

(a) q = (0.0, 0.0, 0.0); fitness = 9.48; n = 1

(b) q = (0.2, 0.0, 0.0); fitness = 8.08; n = 2

(c) q = (0.0, 0.2, 0.0); fitness = 7.98; n = 1

(d) q = (0.2, 0.0, 0.2); fitness = 7.24; n = 1

((A B) (C D))A B C D

A B C D (A (B (C D)))

A B C D ((A B) (C D))

A B C D ((A B) (C D))

Figure 26: best designs with n0 = (10, 20, 20, 10)

Artificial Life 2(4):377–416, 1995. 29

A B C D

{ A B C D }:

{ (A B) C D }:

{ (A B) C D }:

{ A B (C D) }:

{ A B (C D) }:

(((A B) C) D) :

((A B) (C D)) :

(A (B (C D))):

A B C D

Figure 27: eight possible subassembly sequences

{AB(CD)}, and three non-ambiguous subassembly sequences (((AB)C)D), ((AB)(CD)) and (A(B(CD))),
as illustrated in Figure 2716. It is shown, therefore, that our conformational switch model cannot encode
two of the non-ambiguous subassembly sequences ((A(BC))D) and (A((BC)D)) in Figure 23. This
is due to the fact that our conformational switch model does not allow propagation of conformational
change through parts17. The rate equations for each of the eight subassembly sequences in Figure 28
are formulated and solved numerically to compare the yield of the final assembly ABCD. The re-
sults are obtained with three different initial conditions: n0 = (10, 10, 10, 10), n0 = (10, 20, 10, 10) and
n0 = (10, 20, 20, 10). For each of the three initial conditions, four different defect probabilities are tried:
q = (0.0, 0.0, 0.0), q = (0.2, 0.0, 0.0), q = (0.0, 0.2, 0.0), q = (0.2, 0.0, 0.2). These 3 × 4 = 12 condi-
tions correspond to the conditions of GA runs shown in Figures 24, 25 and 26. Figures 28–31 show
the solution of the equation 14 with n0 = (10, 10, 10, 10) and with q = (0.0, 0.0, 0.0), q = (0.2, 0.0, 0.0),
q = (0.0, 0.2, 0.0), q = (0.2, 0.0, 0.2), respectively. For the first three cases, the sequence {ABCD} scores
the best at 1400 iterations, whereas it is outperformed by ((AB)(CD)) after approximately 500 iterations
for q = (0.2, 0.0, 0.2)18. In all cases, the results are consistent with the ones by GA shown in Figure 24.

The solutions with n0 = (10, 20, 10, 10) are shown in Figures 32–35. In this case, the yields of the
sequences {ABCD}, {AB(CD)} and {AB(CD)} drop to approximately 50% of the maximum possible
yield. This situation is similar to the case of the sequence {ABC} with n0 = (10, 20, 10) in the three
part assembly, where excess production of AB and BC at the early stage of iteration causes the shortage
of A’s and B’s later on. The sequences which do not specify the assembly order of A, B and C (or CD)
perform poorly due to excess production of intermediate subassemblies such as AB, BC or BCD. As
a consequence, the sequences {(AB)CD} and {(AB)CD} yield the best with q = (0.0, 0.0, 0.0) (Fig-
ure 32), the sequence ((AB)(CD)) is the best with q = (0.2, 0.0, 0.0) (Figure 33) and q = (0.2, 0.0, 0.2)
(Figure 35), and the sequence {(AB)CD} is the best with q = (0.0, 0.2, 0.0) (Figure 34). The GA found
a design that encodes the optimal subassembly sequence for all cases except q = (0.2, 0.0, 0.0), where
the design encodes the suboptimal sequence {(AB)CD} within 5% of the yield of the optimal sequence
(see Figure 25(b)). Similar drops of yield in some subassembly sequences are observed in the solutions
with n0 = (10, 20, 20, 10). As shown in Figures 36–39, however, the drop occurs to all of the ambiguous
subassembly sequences, {ABCD}, {(AB)CD}, {(AB)CD}, {AB(CD)} and {AB(CD)}. The sequence
((AB)(CD)) yields the best for q = (0.0, 0.0, 0.0), q = (0.2, 0.0, 0.0), and q = (0.2, 0.0, 0.2), and the se-

16Some extensions are necessary to our conformational switch model, in order to encode {A(BC)D}. This issue is
discussed in Section 5.1.

17An extension of the conformational switch model which can encode ((A(BC))D) and (A((BC)D)) is discussed in
Section 5.1.

18Recall the robot bin-picking simulation used in the GA search terminates at 1400 iterations.

Artificial Life 2(4):377–416, 1995. 30

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

and {AB(CD)}{(AB)CD}

{(AB)CD}, {AB(CD)},

((AB)(CD))

(((AB)C)D) and (A(B(CD)))
{ABCD}

Figure 28: solution with n0 = (10, 10, 10, 10) and q = (0.0, 0.0, 0.0)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(A(B(CD)))

(((AB)C)D)

{(AB)CD}

{(AB)CD}

{AB(CD)}((AB)(CD)) and

{AB(CD)}

{ABCD}

Figure 29: solution with n0 = (10, 10, 10, 10) and q = (0.2, 0.0, 0.0)

Artificial Life 2(4):377–416, 1995. 31

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(((AB)C)D) and (A(B(CD)))

((AB)(CD))

{(AB)CD} and {AB(CD)}

{AB(CD)}and{(AB)CD}

{ABCD}

Figure 30: solution with n0 = (10, 10, 10, 10) and q = (0.0, 0.2, 0.0)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(((AB)C)D) and (A(B(CD)))

{AB(CD)}and{(AB)CD}

{ABCD}

((AB)(CD))

{(AB)CD} and {AB(CD)}

Figure 31: solution with n0 = (10, 10, 10, 10) and q = (0.2, 0.0, 0.2)

Artificial Life 2(4):377–416, 1995. 32

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

{AB(CD)}

{AB(CD)}

{ABCD}

(A(B(CD)))

(((AB)C)D)

((AB)(CD))

{(AB)CD}{(AB)CD} and

Figure 32: solution with n0 = (10, 20, 10, 10) and q = (0.0, 0.0, 0.0)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{AB(CD)}

{AB(CD)}

{ABCD}

(A(B(CD)))

(((AB)C)D)

{(AB)CD}

((AB)(CD))

{(AB)CD}

Figure 33: solution with n0 = (10, 20, 10, 10) and q = (0.2, 0.0, 0.0)

Artificial Life 2(4):377–416, 1995. 33

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{AB(CD)}
{AB(CD)}

{ABCD}

(A(B(CD)))

(((AB)C)D)

((AB)(CD))

{(AB)CD}

{(AB)CD}

Figure 34: solution with n0 = (10, 20, 10, 10) and q = (0.0, 0.2, 0.0)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{AB(CD)}

{AB(CD)}

{ABCD}

(A(B(CD)))

(((AB)C)D)

{(AB)CD}

{(AB)CD}

((AB)(CD))

Figure 35: solution with n0 = (10, 20, 10, 10) and q = (0.2, 0.0, 0.2)

Artificial Life 2(4):377–416, 1995. 34

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

{(AB)CD} and {AB(CD)}

{ABCD}

and {AB(CD)}{(AB)CD}

((AB)(CD))

(((AB)C)D) and (A(B(CD)))

Figure 36: solution with n0 = (10, 20, 20, 10) and q = (0.0, 0.0, 0.0)

quences (((AB)C)D) and (A(B(CD))) yield the best for q = (0.0, 0.2, 0.0). These results are consistent
with the ones found by the GA shown in Figure 26.

5 Discussion

As indicated in our examples in the previous sections, a particular subassembly sequence is generated
due to conformational changes of parts during one-dimensional randomized assembly. An optimal sub-
assembly sequence that maximizes the yield of a desired assembly can be found via genetic search over
a space of parameterized conformational switch designs, rather than a space of subassembly sequences.
The resulting switch design encodes the optimal subassembly sequence so that the desired assemblies
are put together only in that sequence. The results of genetic search and rate equation analyses reveal
that the optimal subassembly sequence depends on the initial concentration of parts and the defect
probabilities during randomized assembly. More specifically, the results seem to indicate the following
“rules of thumb” to design conformational switches for the general n-part one-dimensional assembly:

• Abundant parts should be assembled earlier rather than later.

• Parts with high defect probability should be assembled earlier rather than later.

There are several issues to note when interpreting the above results: (1) encoding power of a conforma-
tional switch model, (2) switch design vs. sequence design, and (3) the sensitivity of yield to the initial
concentration of parts.

5.1 Encoding power of a conformational switch model

One must note the encoding power of a conformational switch model, in order to say that the switch
design obtained by a GA actually encodes the optimal subassembly sequence. There could be a sub-
assembly sequence that cannot be encoded by a conformational switch design, but that is better than

Artificial Life 2(4):377–416, 1995. 35

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{(AB)CD}

{AB(CD)}

{ABCD}

{(AB)CD}

{AB(CD)}

(A(B(CD)))

(((AB)C)D)

((AB)(CD))

Figure 37: solution with n0 = (10, 20, 20, 10) and q = (0.2, 0.0, 0.0)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

{(AB)CD} and {AB(CD)}

{ABCD}

{AB(CD)}{(AB)CD} and((AB)(CD))

(((AB)C)D) and (A(B(CD)))

Figure 38: solution with n0 = (10, 20, 20, 10) and q = (0.0, 0.2, 0.0)

Artificial Life 2(4):377–416, 1995. 36

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

Number of iterations

N
um

be
r

of
 p

ar
ts

(((AB)C)D) and (A(B(CD)))

((AB)(CD))

{AB(CD)}and{(AB)CD}

{(AB)CD} and {AB(CD)}

{ABCD}

Figure 39: solution with n0 = (10, 20, 20, 10) and q = (0.2, 0.0, 0.2)

any subassembly sequences encoded by the switch design. In fact, ((A(BC))D) and (A((BC)D)), the
subassembly sequences our conformational switch model cannot encode, yield better than (A(B(CD))),
the best sequence obtained by the GA in the four part randomized assembly with n0 = (10, 20, 20, 10)
and q = (0.0, 0.2, 0.0), as shown in Figure 40. It should be emphasized, however, that the sequence
found by the GA is the best among the sequences that can be encoded by our conformational switch
design.

For comparison, Figure 40 also shows the solution of rate equations for three other un-encodable sub-
assembly sequences, ({ABC}D), (A{BCD}) and {A(BC)D}. The sequences ({ABC}D) and (A{BCD})
actually outperform the best encodable sequences (((AB)C)D) and (A(B(CD))). The sequences ((A(BC))D)
and (A((BC)D)) also perform better than any encodable sequences in the cases with n0 = (10, 20, 20, 10)
and q = (0.0, 0.0, 0.0), and with n0 = (10, 20, 20, 10) and q = (0.2, 0.0, 0.0). The differences in yield,
however, are marginal.

Only a few modifications/extensions are necessary in the current conformational switch model to en-
code the five un-encodable subassembly sequences in Figure 40, {A(BC)D}, ((A(BC))D), (A((BC)D)),
({ABC}D) and (A{BCD}). In order to encode {A(BC)D}, we only need to modify priority to up-
stream propagation (Figure 6) such that conformational changes can propagate in both direction when it
is possible19. Figure 41 illustrates an example of a conformational switch design that encodes {A(BC)D}
with this modification.

The sequences ((A(BC))D), (A((BC)D)), ({ABC}D) and (A{BCD}) can be encoded by intro-
ducing the sliding bar mechanism described in [16], which allows propagation of conformational change
through multiple parts, and an additional “digit”20. The definition of three types of bonding can be
defined, for example, as analogous to the two-digit case. Namely, two bond sites form a stable bond
if ∀i ai + bi ≤ 0, unstable bond if ∃1j aj + bj = 1 and ∀i 6= j ai + bi ≤ 0, and no bond otherwise,
where i, j ∈ {1, 2, 3}. Figure 42 illustrates an example of a conformational switch design that encodes

19Appropriate changes in the definition of unstable bond are also required.
20It seems that there is no two-digit switch designs that encodes these four sequences. Proving/disproving this would

be a part of future work.

Artificial Life 2(4):377–416, 1995. 37

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

(((AB)C)D) and (A(B(CD)))

((A(BC))D) and (A((BC)D))

({ABC}D) and (A{BCD})

{A(BC)D}

Figure 40: solution with n0 = (10, 20, 20, 10) and q = (0.0, 0.2, 0.0): comparison with un-encodable
subassembly sequences

{ A (B C) D }A B C D

Figure 41: a conformational switch design that encodes {A(BC)D}

Artificial Life 2(4):377–416, 1995. 38

A B C D

B + C B'C

AB''C' + D AB''C'D

A + B'C AB''C'

Figure 42: a conformational switch design that encodes ((A(BC))D)

((A(BC))D) with this extension and its three-step reactions. Note that the minus link in part B allows
parts A and B to bond only after parts B and C bond. By removing the link, therefore, one can construct
a switch design that encodes ({ABC}D), as shown in Figure 43. Conformational switch designs that
encode (A((BC)D)) and (A{BCD}) can be obtained by horizontally flipping the designs in Figures 42
and 43, respectively.

5.2 Switch design vs. sequence design

In this paper, the space of parameterized conformational switch designs is searched to find the switch
designs that maximize the yield of a desired assembly during one-dimensional randomized assembly.
And then, the resulting designs are analyzed using the rate equation to confirm that the subassembly
sequence encoded by the switch designs is in fact the optimal. The size of the search space is 2mn where
m is the number of bits used to encode the parameters for a part design, and n is the number of parts
in the desired assembly. This grows exponentially as n increases. An alternative approach is to search
over the space of subassembly sequences to find the optimal sequence, and then find the conformational
switch designs that encode the subassembly sequence. In this case, the size of search space is Ω(2n),
where Ω denotes an asymptotic lower bound 21.

Even though the complexity of the problems are exponential in the both approaches, the first has
21The proof of this fact is found in Appendix C

Artificial Life 2(4):377–416, 1995. 39

A B C D ({ A B C } D)

Figure 43: a conformational switch design that encodes ({ABC}D)

several advantages over the second. First, by searching the space of parameterized switch designs directly,
we find only the subassembly sequences which can be encoded by the given conformational switch
model. Since some subassembly sequences cannot be realized by a conformational switch model, we
must add additional constraints when searching over the space of subassembly sequences. It is difficult in
general, however, to know exactly which subassembly sequences can be encoded by a given conformational
switch model. Also, in the second approach, optimal switch designs corresponding to the optimal
subassembly sequences must be generated, whereas in the first approach the optimal switch designs
are found directly as a result of the search. The first approach also seems to fit naturally within the
framework of genetic algorithms since there is a direct analogy between the short-order building blocks
in the binary representation and the complementary bonding sites in the geometric representation of the
conformational switches.

5.3 Sensitivity of yield to the initial concentration of parts

The optimal subassembly sequences encoded by conformational switch designs are {ABCD} for n0 =
(10, 10, 10, 10) with no defect, i.e. no order of assembly is specified as shown in Figure 28. On the other
hand, {ABCD} yields are very low with different initial concentration of parts as shown in Figures 32
and 36. This seems to be a general property of ambiguous subassembly sequences: their yield change
dramatically depending on the initial part concentration. In fact, the yield of ambiguous subassembly
sequences are quite sensitive to the change in the initial concentration of parts. Figure 44 shows the
solution of rate equations with n0 = (10, 11, 11, 10) and q = (0.0, 0.0, 0.0) (compare with Figure 28).
Even with the slightest change in n0, the yield of ambiguous subassembly sequences are approximately
10% lower than the ones of non-ambiguous subassembly sequences. On the other hand, the initial part
concentration has little effect on the yield of non-ambiguous subassembly sequences. This robustness
of non-ambiguous subassembly sequences against the initial part concentration is a great advantage in
real-world randomized assembly processes, e.g. biological self-assembly, where realizing a precise and
uniform concentration of parts is extremely difficult.

Acknowledgements

This work is supported by the National Science Foundation with a Presidential Young Investigator’s
grant (DDM-9058415). Matchable funds for this grant have been provided by Schlumberger Inc.. These
sources of support are gratefully acknowledged. Additionally, the work was carried out using the compu-
tational facilities of the Computer-Aided Design Laboratory at the Massachusetts Institute of Technology,
Department of Mechanical Engineering. This support is also gratefully acknowledged.

References

[1] B. Berger, P. W. Shor, L. Tucker-Kellog, and J. King. Local rule-based theory of virus shell assembly.
In Proceedings of the National Academy of Science, USA, pages 7732–7736, 1994. Vol. 91.

Artificial Life 2(4):377–416, 1995. 40

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

N
um

be
r

of
 p

ar
ts

((AB)(CD))

{ABCD}

{AB(CD)}and{(AB)CD}

{(AB)CD} and {AB(CD)}

(((AB)C)D) and (A(B(CD)))

Figure 44: solution with n0 = (10, 11, 11, 10) and q = (0.0, 0.0, 0.0)

[2] S. Casjens. and J. King. Virus assembly. Annual Review of Biochemistry, 44:555–604, 1975.

[3] M. B. Cohn, C.-J. Kim, and A. P. Pisano. Self-assembling electrical networks: an application of
micromachining technology. In Transducers ’91: 1991 Sixth International Conference on Solid-State
Sensors and Actuators, pages 490–493, New York, New York, 1991. IEEE.

[4] H. R. Crane. Principles and problems of biological growth. The Scientific Monthly, 70:376–389,
1950.

[5] R. A. Crowther, E. V. Lenk, Y. Kikuchi, and J. King. Molecular reorganization in the hexagon to
star transition of the baseplate of bacteriophage T4. Journal of Molecular Biology, 116:489–523,
1977.

[6] N. S. Goel and R. L. Thompson. Movable finite automata (MFA): A new tool for computer modeling
of living systems. In C. G. Langton, editor, Artificial Life: the Proceedings of an Interdisciplinary
Workshop on the Synthesis and Simulation of Living Systems, pages 317–340, Los Alamos, New
Mexico, September 1987. Addison Wesley.

[7] N. S. Goel and R. L. Thompson. Computer Simulations of Self-organization in Biological Systems.
Croom Helm, London, England, 1988.

[8] N. S. Goel and R. L. Thompson. Movable finite automata (MFA) models for biological systems II:
Protein biosynthesis. Journal of Theoretical Biolology, 134:9–49, 1988.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, 1989.

[10] K. Hosokawa, I. Shimoyama, and H. Miura. Dynamics of self-assembling systems: Analogy with
chemical kinetics. Artificial Life, 1(4):413–427, 1994.

Artificial Life 2(4):377–416, 1995. 41

[11] P. H. Moncevicz. Orientation and insertion of randomly presented parts using vibratory agitation.
Master’s thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology,
1991.

[12] P. H. Moncevicz and M. J. Jakiela. Method and appratus for automatic parts assembly. United
States Patent 5,155,895, October 20 1992.

[13] P. H. Moncevicz, M. J. Jakiela, and K. T. Ulrich. Orientation and insertion of randomly presented
parts using vibratory agitation. In A. H. Soni, editor, Proceedings of the ASME 3rd Conference on
Flexible Assembly Systems, pages 41–47, New York, NY, September 1991. The American Society of
Mechanical Engineers. DE-Vol. 33.

[14] L. S. Penrose. Self-reproducing machines. Scientific American, 200:105–114, June 1959.

[15] R. Rosen. Subunit and subassembly process. Journal of Molecular Biology, 28:415–422, 1970.

[16] K. Saitou and M. J. Jakiela. Automated optimal design of mechanical conformational switches.
Artificial Life, 2(2):129–156, 1995.

[17] R. L. Thompson and N. S. Goel. A simulation of T4 bacteriophage assembly and operation. BioSys-
tems, 18:23–45, 1985.

[18] R. L. Thompson and N. S. Goel. Movable finite automata (MFA) models for biological systems I:
Bacteriophage assembly and operation. Journal of Theoretical Biology, 131:351–385, 1988.

[19] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular Biology of
the Gene. Benjamin/Cummings, Menlo Park, California, 1987.

[20] H. J. Yeh and J. S. Smith. Fluidic self-assembly of GaAs microstructures on Si substrates. Sensors
and Materials, 6(6):319–332, 1994.

A Rosen’s subassembly model

This appendix outlines the derivation of Rosen’s subassembly model, equations (1) and (2), described
in Section 1.3.4.

Let N be the number of subassembly stages, and ri be the number of subassemblies22 produced at
the (i − 1)-th assembly stage, which are incorporated into a single subassembly produced at the i-th
assembly stage. Hence the number of elementary units in the final assembly L is:

L = r1 · r2 · . . . · rN (31)

We assume Crane’s assumptions hold: 1) with probability q two subassemblies are put together wrongly,
causing the resulting subassembly to be defective, and 2) the defective subassemblies cannot be incor-
porated into the subsequent subassemblies, so the elementary units in the defective subassemblies are
completely wasted. These assumptions give the following recurrent expression of νi, the number of
non-defective subassemblies produced at the i-th assembly stage: νi = (1− q)ri

(
νi−1

ri

)
; i ∈ {1, 2, . . . , N}

ν0 = M
(32)

where M is the number of elementary units in the initial pool. The above recurrence is easily solved
and yields νN , the number of non-defective final assembly:

νN = (1− q)r1+r2+...+rN

(
M

L

)
(33)

22Note that r1 is the number of elementary units put together at the first assembly stage.

Artificial Life 2(4):377–416, 1995. 42

Using the equation (33), we can calculate the yields of Crane’s two subassembly processes described in
Section 1.3.4. The yield of the first, three-stage subassembly process:

νN = (1− 0.01)10+10+10

(
1, 000, 000

1, 000

)
= 739 (34)

and for the second, one-stage subassembly process:

νN = (1− 0.01)1,000

(
1, 000, 000

1, 000

)
= 0.0432 (35)

Our objective is to choose the N + 1 non-negative integers, N, r1, r2, . . . , rN , such that the expres-
sion (33) is maximized, subject to the non-linear constraint (31). Equivalently in integer programming
formulation(equations (1) and (2) in Section 1.3.4):

maximize (1− q)r1+r2+...+rN

(
M

L

)
subject to L = r1 · r2 · . . . · rN

N ≥ 0; N ∈ Z

ri ≥ 0; ri ∈ Z; i ∈ {1, 2, . . . , N}

By assuming different q’s at each subassembly stage, q1, q2, . . . , qN , the solution of the recurrence (32)
becomes:

νN = (1− q1)r1(1− q2)r2 . . . (1− qN)rN
(
M

L

)
(36)

and the corresponding integer programming formulation (equations (5) and (6) in Section 1.3.4) becomes:

maximize (1− q1)r1(1− q2)r2 . . . (1− qN)rN
(
M

L

)
subject to L = r1 · r2 · . . . · rN

N ≥ 0; N ∈ Z
ri ≥ 0; ri ∈ Z; i ∈ {1, 2, . . . , N}

which in general cannot be solved in closed form.

B Proof of The Unique Factorization Theorem

Theorem 1 (Unique Factorization Theorem) Let L be an positive integer, and L = pα1
1 · pα2

2 ·
. . . · pαkk be the unique factorization of L by the prime factors p1, p2, . . . , pk. For any factorization of
L = r1 · r2 · . . . · rm, the following inequality holds:

α1p1 + α2p2 + . . .+ αkpk ≤ r1 + r2 + . . .+ rm

Proof: Let l be a integer such that 0 ≤ l ≤ k, and N = {1, 2, . . . , k}. Without loss of generality, an
arbitrary factorization of L can be written as

L = pα1−u1
1 · pα2−u2

2 · . . . · pαk−ukk · q1 · q2 · . . . · ql (37)

where for i ∈ N , 0 ≤ ui ≤ αi, and for j ∈ {1, 2, . . . , l},

qj =
∏
i∈Nj

puii (38)

and

N =
l⋃
i=1

Ni; Ni ∩Nj =
{
∅ if i 6= j
Ni if i = j

(39)

Artificial Life 2(4):377–416, 1995. 43

Let S be the sum of the factors of this factorization, and S0 be the sum of the factors of the unique
prime factorization. We wish to show that S0 ≤ S or equivalently S−S0 ≥ 0. Using the above notation,
S can be written as

S = (α1 − u1)p1 + (α2 − u2)p2 + . . .+ (αk − uk)pk + q1 + q2 + . . .+ ql

= (α1p1 + α2p2 + . . .+ αkpk)− (u1p1 + u2p2 + . . .+ ukpk) + q1 + q2 + . . .+ ql (40)

Since S0 = α1p1 + α2p2 + . . .+ αkpk,

S − S0 = q1 + q2 + . . .+ ql − (u1p1 + u2p2 + . . .+ ukpk)
= γ1 + γ2 + . . .+ γl (41)

where for j ∈ {1, 2, . . . , l}
γj = qj −

∑
i∈Nj

uipi (42)

By Equation 38,

γj = qj −
∑
i∈Nj

uipi

=
∏
i∈Nj

puii −
∑
i∈Nj

uipi

=

∏
i∈Nj

p
njui
i

 1
nj

−

∑
i∈Nj

njuipi

nj
(43)

where nj = |Nj |. We know for each j ∈ {1, 2, . . . , l}, γj ≥ 0 since (geometric mean)≥(arithmetic mean).
By Equation 41, therefore, S − S0 ≥ 0.

C The size of the space of subassembly sequences

Theorem 2 The number of non-ambiguous subassembly sequences Sn of an n-part one-dimensional
assembly is Sn = Ω(2n).

Proof: Let k and l be positive integers such that k+l = n. Let us assume assembling n parts by assembling
k parts and l parts separately, and then combining the k-part subassembly and l-part subassembly. In
this particular case, the total number of non-ambiguous subassembly sequences of an n-part assembly is
Sk · Sl. Since in the general case k and l can be any positive integer such that k + l = n, Sn is the sum
of all such cases:

Sn = S1 · Sn−1 + S2 · Sn−2 + . . .+ Sn−1 · S1

=
n−1∑
i=1

SiSn−i (44)

where S1 = 1. Let

Tn =
n−1∑
i=1

Ti (45)

and T1 = 1. Since ∀i ∈ {1, 2, . . . , n}, Si ≥ 1, for any positive integer n,

Sn ≥ Tn (46)

Artificial Life 2(4):377–416, 1995. 44

We know Tn = Θ(2n) since

Tn−1 + Tn−2 + . . .+ T1 = (Tn−2 + Tn−3 + . . .+ T1) + Tn−2 + . . .+ T1

= 2(Tn−2 + Tn−3 + . . .+ T1)
= 2 · 2(Tn−3 + . . .+ T1)

...
= 2n−2T1 = 2n−2

where Θ denotes an asymptotic tight bound. Equation (46) implies, therefore, Sn = Ω(2n).

