
Research Article
Fault Attack on the Authenticated Cipher ACORN v2

Xiaojuan Zhang,1,2 Xiutao Feng,1,3 and Dongdai Lin1

1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Mathematics Mechanization, Academy of Mathematics and System Science, Chinese Academy of Sciences,
Beijing, China

Correspondence should be addressed to Xiaojuan Zhang; zhangxiaojuan@iie.ac.cn

Received 9 May 2017; Revised 24 July 2017; Accepted 23 August 2017; Published 2 October 2017

Academic Editor: Angelos Antonopoulos

Copyright © 2017 Xiaojuan Zhang et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fault attack is an efficient cryptanalysis method against cipher implementations and has attracted a lot of attention in recent public
cryptographic literatures. In this work we introduce a fault attack on the CAESAR candidate ACORN v2. Our attack is done under
the assumption of random fault injection into an initial state of ACORN v2 and contains twomain steps: fault locating and equation
solving. At the first step, we first present a fundamental fault locating method, which uses 99-bit output keystream to determine
the fault injected location with probability 97.08%. And then several improvements are provided, which can further increase the
probability of fault locating to almost 1. As for the system of equations retrieved at the first step, we give two solving methods at the
second step, that is, linearization and guess-and-determine. The time complexity of our attack is not larger than 𝑐 ⋅ 2179.19−1.76𝑁 at
worst, where 𝑁 is the number of fault injections such that 31 ≤ 𝑁 ≤ 88 and 𝑐 is the time complexity of solving linear equations.
Our attack provides some insights into the diffusion ability of such compact stream ciphers.

1. Introduction

CAESAR [1] is a new competition calling for authenticated
encryption schemes. Its purpose is to find authenticated
ciphers that offer advantages over AES-GCM and are suitable
for widespread adoption. In total, 57 candidates were submit-
ted to the CAESAR competition, and after the challenge of
two rounds, 15 submissions have been selected for the third
round.As one of them,ACORN is a lightweight stream cipher
based authenticated encryption cipher submitted byHongjun
[2–4]. The cipher consists of a simple binary feedback shift
register (FSR, for short) of length 293 and aims to protect
up to 264 bits of associated data (AD) and up to 264 bits of
plaintext and to generate up to a 128-bit authentication tag by
using a 128-bit secret key and a 128-bit initial value (IV).

There are some attacks against ACORN. Meicheng et
al. showed the slid properties of ACORN v1 and used it to
recover the internal state of ACORN v1 by means of guess-
and-determine and differential-algebraic technique [5]. But
the attack was worse than a brute force attack. Chaigneau et
al. described an attack that allowed an instant key recovery
when the nonce was reused to encrypt a small amount of

chosen plaintexts [6]. Johymalyo and Sarkar kept the key and
IV unchanged, then modified the associated data, and then
found that the associated data did not affect any keystream
bits if they had a small size [7]. Salam et al. investigated cube
attacks against bothACORNv1 and v2 up to 477 initialization
rounds which was far from threatening the real-life usage
of the cipher [8]. Salam et al. developed an attack to find
a collision of internal states when the key was known [9].
Frédéric et al. claimed that they developed practical attacks
to recover the internal state and secret key, which were much
more expensive than the brute force attack [10]. Dibyendu
and Mukhopadhyay gave some results on ACORN [11]; one
of them was that they found a probabilistic linear relation
between plaintext bits and ciphertext bits, which held with
probability 1/2 + 1/2350. The bias was too small to be tested.
The other result was that they could recover the initial state
of the cipher with complexity approximately equalling 240,
which was done under an impractical assumption. The
designer gave the comments on the analysis of ACORN in
(https://groups.google.com/forum/#!topic/crypto-competi-
tions/dzzNcybqFP4), which show that some of the attacks
are not really attacks. Since fault differential attack is one of

Hindawi
Security and Communication Networks
Volume 2017, Article ID 3834685, 16 pages
https://doi.org/10.1155/2017/3834685

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/193481905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://groups.google.com/forum/#!topic/crypto-competitions/dzzNcybqFP4
https://groups.google.com/forum/#!topic/crypto-competitions/dzzNcybqFP4
https://doi.org/10.1155/2017/3834685

2 Security and Communication Networks

side channel attacks working on physical implementations,
it is interesting to apply side channel cryptanalysis to a
cryptographic algorithm that is being used or will be used
in reality. In [12], the authors shows that with 9 faults
experiments, they can recover the initial state. However, the
length of keystream bits they use is 1200, which mean that
the optimizing SAT solver they used can solve the equations
with very high degrees, as the equations they used are output
functions and the feedback functions. So far, there are not
any results of fault differential attacks on ACORN. In this
paper we introduce a fault attack on ACORN v2.

Fault attack is one of the most powerful tools to retrieve
the secret key of many cryptographic primitives due to the
work of [13]. In [14], Hoch and Shamir first introduced the
fault attack on stream ciphers. They showed that a typical
fault attack allows an attacker to inject faults bymeans of laser
shots/clock glitches [15, 16] into a device initialized by a secret
key and change one or more bits of its internal state. Then he
or she could deduce some information about the internal state
or secret key by analyzing the difference between the faulty
device and the right device. A number of recent works have
shown that stream ciphers are vulnerable against fault attacks.
In 2008, Michal and Bohuslav showed a differential fault
attack on Trivium in [17]. In 2011, Mohamed et al. improved
Michal and Bohuslav’s attack by a SAT solver in [18]. In 2009,
Castagnos et al. gave a fault analysis of Grain-128 by targeting
the LFSR in [19]. Karmakar and Chowdhury also showed an
attack of Grain-128 but by targeting the NFSR in [20]. Later
on, Banik et al. presented a differential fault attack on the
Grain family [21, 22]. In 2013, Banik andMaitra evaluated the
security of MICKEY 2.0 against fault attacks in [23], and in
2015, Banik et al. gave its improvement in [24].

In this work we present a differential fault attack on
ACORN v2. As there are not any practical attacks against
the security of the second version of ACORN so far, the
attack present in our paper is still of interest. Our basic
idea is coming from the signature based model proposed in
[19]. The main difference is that we use a new method to
compute the signature vectors which are differential strings
in our paper. Omitting the 0 components, we represent the
differential string only as the sequence of positions where
their corresponding components are either 1 or nonconstant
functions on the initial state.We have added these statements
in our paper. Our attack is based on a general fault model
where a fault is injected into the initial state of ACORN v2
randomly, and our main idea is based on the observation that
the first 99-bit keystream of ACORN v2 can be expressed
as linear or quadratic functions of the initial state, which
helps us retrieve enough linear equations to recover the
initial state. Our attack consists of two main steps: fault
locating and equation solving. At the first step, after a fault
is injected into the initial state randomly, we can locate it
with probability 97.08%by a 99-bit differential string between
the error and correct keystream bits. If the string cannot
determine the fault location uniquely, then it can determine
at most 20 optional fault locations. Subsequently, some
improvements are provided to increase the probability of fault
locating and reduce the number of optional fault locations,
including keystream extension, high probability priority, and

making-the-most-use-of-things. At the second step, we give
two methods of solving the equation system retrieved at the
first step: linearization and guess-and-determine. The time
complexity of our attack is not larger than 𝑐 ⋅ 2179.19−1.76𝑁 at
worst, where 𝑁 is the number of fault injections such that31 ≤ 𝑁 ≤ 88 and 𝑐 is the time complexity of solving linear
equations.

The rest of this paper is organized as follows. In Section 2
a brief description of ACORN v2 is provided. In Section 3 we
present a fault attack onACORNv2 and further give a forgery
attack on it. Finally, Section 4 concludes the paper.

2. Description of ACORN v2

We will recall ACORN v2 briefly in this section; for more
details one can refer to [3]. Since our attack does not
involve the procedures of the initialization, the process of
associated data, and the finalization, here we do not intend
to introduce them and just restate the encryption procedure
briefly.

Denote by 𝑠 = (𝑠0, 𝑠1, . . . , 𝑠292) the initial state of ACORN
v2, that is, the state of the FSR after initialization and
immediately before the keystream bits are outputted, and 𝑝
the plaintext.There are three functions used in the encryption
procedure of ACORN v2: the feedback function 𝑓(𝑠, 𝑝), the
state update function 𝐹(𝑠, 𝑝), and the filter function 𝑔(𝑠).
As is implied by its name, the feedback function 𝑓(𝑠, 𝑝)
mainly involves in the feedback computation of the FSR and
is defined as

𝑓 (𝑠, 𝑝) = 1 ⊕ 𝑠0 ⊕ 𝑠61 ⊕ 𝑠107 ⊕ 𝑠196 ⊕ 𝑠23𝑠160 ⊕ 𝑠23𝑠244
⊕ 𝑠160𝑠244 ⊕ 𝑠66 (𝑠230 ⊕ 𝑠193 ⊕ 𝑠196)
⊕ 𝑠111 (𝑠230 ⊕ 𝑠193 ⊕ 𝑠196) ⊕ 𝑝.

(1)

Introduce intermediate variables 𝑦𝑖 (1 ≤ 𝑖 ≤ 293):
𝑦293 = 𝑓 (𝑠, 𝑝) ,
𝑦289 = 𝑠289 ⊕ 𝑠235 ⊕ 𝑠230,
𝑦230 = 𝑠230 ⊕ 𝑠196 ⊕ 𝑠193,
𝑦193 = 𝑠193 ⊕ 𝑠160 ⊕ 𝑠154,
𝑦154 = 𝑠154 ⊕ 𝑠111 ⊕ 𝑠107,
𝑦107 = 𝑠107 ⊕ 𝑠66 ⊕ 𝑠61,
𝑦61 = 𝑠61 ⊕ 𝑠23 ⊕ 𝑠0,
𝑦𝑖 = 𝑠𝑖

for 1 ≤ 𝑖 ≤ 292, 𝑖 ∉ {61, 107, 154, 193, 230, 289} .

(2)

Then the state update function 𝐹(𝑠, 𝑝) can be described as

𝑠𝑖 = 𝑦𝑖+1 for 0 ≤ 𝑖 ≤ 292. (3)

Security and Communication Networks 3

It is easy to check that𝐹(𝑠, 𝑝) is invertible on 𝑠when𝑝 is fixed.
The filter function 𝑔(𝑠) is used to derive a keystream 𝑧 and
defined as

𝑔 (𝑠) = 𝑠12 ⊕ 𝑠154 ⊕ 𝑠111 ⊕ 𝑠107
⊕ (𝑠61 ⊕ 𝑠23 ⊕ 𝑠0) (𝑠193 ⊕ 𝑠160 ⊕ 𝑠154)
⊕ (𝑠61 ⊕ 𝑠23 ⊕ 𝑠0) 𝑠235
⊕ (𝑠193 ⊕ 𝑠160 ⊕ 𝑠154) 𝑠235.

(4)

At each step of the encryption procedure, one plaintext bit𝑝 is injected into the state of the FSR, and the ciphertext 𝑐 is
got by𝑝XOR 𝑧.The pseudocode of the encryption procedure
is given as follows:

𝑙 ← the bit length of the plaintext;
for 𝑖 from 0 to 𝑙 − 1 do

𝑧𝑖 = 𝑔 (𝑠) ;
𝑐𝑖 = 𝑧𝑖 ⊕ 𝑝𝑖;
𝑠 = 𝐹 (𝑠, 𝑝𝑖) ;

(5)

end for

3. Fault Attack on ACORN v2

Before introducing our fault attack on ACORN v2, we first
give an outline of the fault attack model described in [19].

We assume that an attacker can access the physical device
of a stream cipher and knows the IV and the keystream 𝑧.The
goal of the attacker is to recover the key or forge a valid tag
for plaintext. In our fault attack, the following privileges are
required.

(1) The attacker has the ability to reset the physical device
with the original Key-IV and restart cipher operations
multiple times with the same plaintext.

(2) The attacker can inject a fault into the initial state
randomly before the encryption procedure but not
choose the location of fault injection.

Our attack contains two main steps: fault locating and
equation solving. At the first step, we will demonstrate how
to determine the fault location and retrieve a system of
equations on the initial state, and at the second step, we
will exploit how to recover the initial state from this system
of equations. Once the initial state is recovered, the forgery
attack can be executed easily.

3.1. Fault Locating. In this section we will discuss how to
locate a fault after it is injected into the initial state of the FSR.
We first introduce a fundamental fault locating method and
then provide several improvements.

3.1.1. Fundamental Fault Locating Method. Let 𝑠 = (𝑠0, 𝑠1, . . . ,𝑠292) be the initial state of the FSR and 𝑝 = (𝑝0, 𝑝1, . . . , 𝑝98)

the plaintext. Denote by [𝑎, 𝑏] the closed integer interval
from 𝑎 to 𝑏 for two integers 𝑎 and 𝑏, where 𝑎 ≤ 𝑏. Let𝑧 = (𝑧0, 𝑧1, . . . , 𝑧98) and 𝑧𝑖 = (𝑧𝑖0, 𝑧𝑖1, . . . , 𝑧𝑖98) be the correct
keystream and the error keystream generated by a faulty
initial state at location 𝑖, respectively, where 𝑖 ∈ [0, 292].
We define a 99-bit differential string Δ𝑧𝑖 whose 𝑗th element
satisfiesΔ𝑧𝑖𝑗 = 𝑧𝑗⊕𝑧𝑖𝑗, where 𝑗 ∈ [0, 98]. Here we just consider
99-bit differential keystream since they all can be represented
as linear or quadratic functions of 𝑠. When 𝑡 = 99, the
first feedback bit of degree 2 will come to 193rd position;
the degree of 𝑧𝑡 will be 4 and the degree of the differential
keystream bit may be 3. So when 0 ≤ 𝑡 < 99, the degrees of
the differential keystream bits will not be larger than 2.There
are three steps to determine the fault location.

Firstly, we get all possible Δ𝑧𝑖 for 𝑖 ∈ [0, 292]. Let
𝐴
= {0, 12, 23, 61, 66, 107, 111, 154, 160, 193, 196, 230, 235, 244} , (6)

which is the set of all locations that can be involved in 𝑓(𝑠, 𝑝)
or 𝑔(𝑠) directly. For any 𝑖 ∈ 𝐴, we can get Δ𝑧𝑖 by changing
one bit 𝑠𝑖, whose component Δ𝑧𝑖𝑗 is 0, 1, or a function on 𝑠,𝑗 ∈ [0, 292]. When 𝑖 ∈ [0, 292] and 𝑖 ∉ 𝐴, the new differences
that are not the differences caused by shifting are introduced
when Δ𝑠𝑖 shifts to the locations in 𝐴. So for any 𝑖 ∉ 𝐴, Δ𝑧𝑖
can be got directly from some Δ𝑧𝑖󸀠 by shifting or performing
a linear transformation on Δ𝑧𝑖󸀠 , where 𝑖󸀠 ∈ 𝐴. Omitting
the 0 components, we represent Δ𝑧𝑖 only as the sequence of
positions where their corresponding components are either
1 or nonconstant functions on 𝑠. To better understand the
method, an example is given.

Example 1. When 𝑠0 is changed, we can get

Δ𝑧0 = (Δ𝑧00 , 037, Δ𝑧038, 010, 1, 08, Δ𝑧058, 02, Δ𝑧061, 014, Δ𝑧076,
010, 1, 08, Δ𝑧096, 02) , (7)

where 0𝑘 means 𝑘 consecutive 0s, and

Δ𝑧00 = 𝑠154 ⊕ 𝑠160 ⊕ 𝑠193 ⊕ 𝑠235,
Δ𝑧038 = 𝑠159 ⊕ 𝑠165 ⊕ 𝑠192 ⊕ 𝑠194 ⊕ 𝑠197 ⊕ 𝑠198 ⊕ 𝑠231

⊕ 𝑠273,
Δ𝑧058 = 𝑠119 ⊕ 𝑠173 ⊕ 𝑠185 ⊕ 𝑠20 ⊕ 𝑠212 ⊕ 𝑠214 ⊕ 𝑠217 ⊕ 𝑠218

⊕ 𝑠251 ⊕ 𝑠43 ⊕ 𝑠58 ⊕ 𝑠73 ⊕ 𝑠78 ⊕ 𝑠81,
Δ𝑧061 = 1 ⊕ 𝑝3 ⊕ 𝑠110 ⊕ 𝑠176 ⊕ 𝑠188 ⊕ 𝑠199 ⊕ 𝑠215 ⊕ 𝑠217

⊕ 𝑠220 ⊕ 𝑠221 ⊕ 𝑠114𝑠233 ⊕ 𝑠114𝑠199 ⊕ 𝑠114𝑠196 ⊕ 𝑠196𝑠69
⊕ 𝑠199𝑠69 ⊕ 𝑠237 ⊕ 𝑠242 ⊕ 𝑠163𝑠247 ⊕ 𝑠254 ⊕ 𝑠163𝑠26
⊕ 𝑠247𝑠26 ⊕ 𝑠3 ⊕ 𝑠64 ⊕ 𝑠233𝑠69,

4 Security and Communication Networks

Require: fault location 𝑖 ∈ [𝑎, 𝑏], where 𝑎 − 1, 𝑏 + 1 ∈ 𝐴 and there is not any 𝑐 ∈ 𝐴 satisfying 𝑎 < 𝑐 < 𝑏;
the components of Δ𝑧𝑎−1

Ensure: Δ𝑧𝑖
(1) for each component Δ𝑧𝑎−1𝑗 ̸= 0, where 𝑗 ∈ [0, 98] do
(2) Δ𝑧𝑖𝑗+𝑎−1−𝑖 ← Δ𝑧𝑎−1𝑗
(3) if Δ𝑧𝑎−1𝑗 ̸= 1 then
(4) for each variable 𝑠𝑘 in Δ𝑧𝑖𝑗+𝑎−1−𝑖, where 𝑘 ∈ [0, 292] do
(5) 𝑠𝑘 ← 𝑠𝑎−1−𝑖𝑘
(6) 𝑠0𝑘+𝑎−1−𝑖 ← 𝐿−1(𝐿−1(⋅ ⋅ ⋅ (𝐿−1(𝐿−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎−1−𝑖

(𝑠𝑎−1−𝑖𝑘))) ⋅ ⋅ ⋅)
(7) 𝑠𝑎−1−𝑖𝑘 ← 𝑠0𝑘+𝑎−1−𝑖
(8) end for
(9) end if
(10) end for
(11) return Δ𝑧𝑖 is Δ𝑧𝑖𝑗+𝑎−1−𝑖

Algorithm 1: Obtain Δ𝑧𝑖, 𝑖 ∈ [0, 292] and 𝑖 ∉ 𝐴.

Δ𝑧076 = 1 ⊕ 𝑝18 ⊕ 𝑠125 ⊕ 𝑠164 ⊕ 𝑠170 ⊕ 𝑠18 ⊕ 𝑠191 ⊕ 𝑠193
⊕ 𝑠195 ⊕ 𝑠196 ⊕ 𝑠199 ⊕ 𝑠201 ⊕ 𝑠202 ⊕ 𝑠203 ⊕ 𝑠214 ⊕ 𝑠230
⊕ 𝑠232 ⊕ 𝑠235 ⊕ 𝑠236 ⊕ 𝑠129𝑠248 ⊕ 𝑠252 ⊕ 𝑠257 ⊕ 𝑠178𝑠262
⊕ 𝑠269 ⊕ 𝑠178𝑠41 ⊕ 𝑠262𝑠41 ⊕ 𝑠248𝑠84 ⊕ 𝑠129𝑠211
⊕ 𝑠129𝑠214 ⊕ 𝑠211𝑠84 ⊕ 𝑠214𝑠84 ⊕ 𝑠79,

Δ𝑧096 = (𝑠159 ⊕ 𝑠165 ⊕ 𝑠198 ⊕ 𝑠282) (𝑠110 ⊕ 𝑠111 ⊕ 𝑠114
⊕ 𝑠116 ⊕ 𝑠119 ⊕ 𝑠157 ⊕ 𝑠172 ⊕ 𝑠178 ⊕ 𝑠184 ⊕ 𝑠190 ⊕ 𝑠20
⊕ 𝑠211 ⊕ 𝑠213 ⊕ 𝑠215 ⊕ 𝑠216 ⊕ 𝑠219 ⊕ 𝑠221 ⊕ 𝑠222 ⊕ 𝑠223
⊕ 𝑠230 ⊕ 𝑠235 ⊕ 𝑠250 ⊕ 𝑠252 ⊕ 𝑠255 ⊕ 𝑠256 ⊕ 𝑠289 ⊕ 𝑠35
⊕ 𝑠43 ⊕ 𝑠65 ⊕ 𝑠73 ⊕ 𝑠75 ⊕ 𝑠78 ⊕ 𝑠81 ⊕ 𝑠96) .

(8)

Then omitting the 0 components, we rewrite Δ𝑧0 as
Δ𝑧0 = (0, 38, 49, 58, 61, 76, 87, 96) , (9)

where 𝑖 (𝑖 = 49, 87) means that the 𝑖th position is always 1.

For any 𝑖 ∈ [1, 11], it is easy to obtain Δ𝑧𝑖 by shifting Δ𝑧0.
For example,

Δ𝑧1 = (1, 39, 50, 59, 62, 77, 88, 97)
Δ𝑧1 = (1, 39, 50, 59, 62, 77, 88, 97) ,
Δ𝑧11 = 𝑠155 ⊕ 𝑠161 ⊕ 𝑠194 ⊕ 𝑠236,
Δ𝑧139 = 𝑠160 ⊕ 𝑠166 ⊕ (𝑠193 ⊕ 𝑠160 ⊕ 𝑠154) ⊕ 𝑠195 ⊕ 𝑠198

⊕ 𝑠199 ⊕ 𝑠232 ⊕ 𝑠274 = 𝑠154 ⊕ 𝑠166 ⊕ 𝑠193 ⊕ 𝑠195 ⊕ 𝑠198
⊕ 𝑠199 ⊕ 𝑠232 ⊕ 𝑠274,

⋅ ⋅ ⋅ .

(10)

Repeating the above process (see Algorithm 1),we can obtain
all Δ𝑧𝑖 (𝑖 ∈ [0, 292]), which are listed in Table 1.

Secondly, we divide Δ𝑧𝑖 (𝑖 ∈ [0, 292]) into 99 categories
denoted by 𝐵𝑡 (𝑡 ∈ [0, 98]) according to the subscript 𝑡
satisfying Δ𝑧𝑖𝑡 = 1 (𝑡 ∈ [0, 98]) and Δ𝑧𝑖𝑗 = 0 (0 ≤ 𝑗 < 𝑡).
For example, 𝐵0 contains Δ𝑧𝑖 whose first component Δ𝑧𝑖0 is
1. It is noticed that, for Δ𝑧0 = (0, 38, 49, 58, 61, 76, 87, 96), it
may occur in 𝐵0, 𝐵38, and 𝐵49 since its first 1 may occur at
position 0, 38, and 49 (Δ𝑧149 = 1 always holds).

Finally, for a given Δ𝑧, we first determine which category
it belongs to according to the position of its first 1. Then
by comparing other locations of 1 appearing in Δ𝑧, we can
determine all possible locations of a fault. In a very small
number of cases, a single differential string can correspond
to more than one fault location. Because of this, we cannot
always determine the fault location uniquely.

Running through all possible Δ𝑧, we find that the pro-
portion of strings that cannot determine the fault location
uniquely is about 2.92%, and for each nonzero string, the
number of optional fault locations is atmost 20. So for a given
string Δ𝑧, on average, we can determine the fault location
uniquely with probability 97.08% (Table 2).

3.1.2. Several Improvement Strategies. In order to decrease the
proportion of strings that cannot determine the fault location
uniquely and reduce the number of optional fault locations,
here we provide several improvement strategies.

(i) Keystream Extension Strategy. Extending keystream is a
very valid method of increasing the proportion of strings
determining the fault location uniquely. The longer the
keystream available to us, the higher the probability of
determining the unique fault location. We want to guarantee
that the number of fault location candidates is less than or
equal to 3. Running through the lengths of the keystream
from 99 bits to 167 bits, the result shows that it is enough
to choose 163 bits. We find that the proportion of strings

Security and Communication Networks 5

Table 1: Δ𝑧𝑖, 𝑖 ∈ [0, 121].
𝑖 Δ𝑧𝑖
0 0 38 49 58 61 76 87 96
1 1 39 50 59 62 77 88 97
2 2 40 51 60 63 78 89 98
3 3 41 52 61 64 79 90
4 4 42 53 62 65 80 91
5 5 43 54 63 66 81 92
6 6 44 55 64 67 82 93
7 7 45 56 65 68 83 94
8 8 46 57 66 69 84 95
9 9 47 58 67 70 85 96
10 10 48 59 68 71 86 97
11 11 49 60 69 72 87 98
12 0 12 50 61 70 73 88
13 1 13 51 62 71 74 89
14 2 14 52 63 72 75 90
15 3 15 53 64 73 76 91
16 4 16 54 65 74 77 92
17 5 17 55 66 75 78 93
18 6 18 56 67 76 79 94
19 7 19 57 68 77 80 95
20 8 20 58 69 78 81 96
21 9 21 59 70 79 82 97
22 10 22 60 71 80 83 98
23 0 11 23 38 49 58 72 76 81 84 87 96
24 1 12 24 39 50 59 73 77 82 85 88 97
25 2 13 25 40 51 60 74 78 83 86 89 98
26 3 14 26 41 52 61 75 79 84 87 90
27 4 15 27 42 53 62 76 80 85 88 91
28 5 16 28 43 54 63 77 81 86 89 92
29 6 17 29 44 55 64 78 82 87 90 93
30 7 18 30 45 56 65 79 83 88 91 94
31 8 19 31 46 57 66 80 84 89 92 95
32 9 20 32 47 58 67 81 85 90 93 96
33 10 21 33 48 59 68 82 86 91 94 97
34 11 22 34 49 60 69 83 87 92 95 98
35 12 23 35 50 61 70 84 88 93 96
36 13 24 36 51 62 71 85 89 94 97
37 14 25 37 52 63 72 86 90 95 98
38 15 26 38 53 64 73 87 91 96
39 16 27 39 54 65 74 88 92 97
40 17 28 40 55 66 75 89 93 98
41 18 29 41 56 67 76 90 94
42 19 30 42 57 68 77 91 95
43 20 31 43 58 69 78 92 96
44 21 32 44 59 70 79 93 97
45 22 33 45 60 71 80 94 98
46 23 34 46 61 72 81 95
47 24 35 47 62 73 82 96
48 25 36 48 63 74 83 97
49 26 37 49 64 75 84 98
50 27 38 50 65 76 85

6 Security and Communication Networks

Table 1: Continued.

𝑖 Δ𝑧𝑖
51 28 39 51 66 77 86
52 29 40 52 67 78 87
53 30 41 53 68 79 88
54 31 42 54 69 80 89
55 32 43 55 70 81 90
56 33 44 56 71 82 91
57 34 45 57 72 83 92
58 35 46 58 73 84 93
59 36 47 59 74 85 94
60 37 48 60 75 86 95
61 0 38 46 49 58 61 76 84 87 92 95 96
62 1 39 47 50 59 62 77 85 88 93 96 97
63 2 40 48 51 60 63 78 86 89 94 97 98
64 3 41 49 52 61 64 79 87 90 95 98
65 4 42 50 53 62 65 80 88 91 96
66 5 43 46 51 54 58 63 66 81 84 87 89 92 95 97
67 6 44 47 52 55 59 64 67 82 85 88 90 93 96 98
68 7 45 48 53 56 60 65 68 83 86 89 91 94 97
69 8 46 49 54 57 61 66 69 84 87 90 92 95 98
70 9 47 50 55 58 62 67 70 85 88 91 93 96
71 10 48 51 56 59 63 68 71 86 89 92 94 97
72 11 49 52 57 60 64 69 72 87 90 93 95 98
73 12 50 53 58 61 65 70 73 88 91 94 96
74 13 51 54 59 62 66 71 74 89 92 95 97
75 14 52 55 60 63 67 72 75 90 93 96 98
76 15 53 56 61 64 68 73 76 91 94 97
77 16 54 57 62 65 69 74 77 92 95 98
78 17 55 58 63 66 70 75 78 93 96
79 18 56 59 64 67 71 76 79 94 97
80 19 57 60 65 68 72 77 80 95 98
81 20 58 61 66 69 73 78 81 96
82 21 59 62 67 70 74 79 82 97
83 22 60 63 68 71 75 80 83 98
84 23 61 64 69 72 76 81 84
85 24 62 65 70 73 77 82 85
86 25 63 66 71 74 78 83 86
87 26 64 67 72 75 79 84 87
88 27 65 68 73 76 80 85 88
89 28 66 69 74 77 81 86 89
90 29 67 70 75 78 82 87 90
91 30 68 71 76 79 83 88 91
92 31 69 72 77 80 84 89 92
93 32 70 73 78 81 85 90 93
94 33 71 74 79 82 86 91 94
95 34 72 75 80 83 87 92 95
96 35 73 76 81 84 88 93 96
97 36 74 77 82 85 89 94 97
98 37 75 78 83 86 90 95 98
99 38 76 79 84 87 91 96
100 39 77 80 85 88 92 97
101 40 78 81 86 89 93 98
102 41 79 82 87 90 94

Security and Communication Networks 7

Table 1: Continued.

𝑖 Δ𝑧𝑖
103 42 80 83 88 91 95
104 43 81 84 89 92 96
105 44 82 85 90 93 97
106 45 83 86 91 94 98
107 0 43 46 47 58 84 86 87 92 93 94 95
108 1 44 47 48 59 85 87 88 93 94 95 96
109 2 45 48 49 60 86 88 89 94 95 96 97
110 3 46 49 50 61 87 89 90 95 96 97 98
111 0 4 43 50 51 58 62 86 88 90 91 93 94 96 97 98
112 1 5 44 51 52 59 63 87 89 91 92 94 95 97 98
113 2 6 45 52 53 60 64 88 90 92 93 95 96 98
114 3 7 46 53 54 61 65 89 91 93 94 96 97
115 4 8 47 54 55 62 49 90 92 94 95 97 98
116 5 9 48 55 56 63 67 91 93 95 96 98
117 6 10 49 56 57 64 68 92 94 96 97
118 7 11 50 57 58 65 69 93 95 97 98
119 8 12 51 58 59 66 70 94 96 98
120 9 13 52 59 60 67 71 95 97
121 10 14 53 60 61 68 72 96 98
122 11 15 54 61 62 69 73 97
123 12 16 55 62 63 70 74 98
124 13 17 56 63 64 71 75
125 14 18 57 64 65 72 76
126 15 19 58 65 66 73 77
127 16 20 59 66 67 74 78
128 17 21 60 67 68 75 79
129 18 22 61 68 69 76 80
130 19 23 62 69 70 77 81
131 20 24 63 70 71 78 82
132 21 25 64 71 72 79 83
133 22 26 65 72 73 80 84
134 23 27 66 73 74 81 85
135 24 28 67 74 75 82 86
136 25 29 68 75 76 83 87
137 26 30 69 76 77 84 88
138 27 31 70 77 78 85 89
139 28 32 71 78 79 86 90
140 29 33 72 79 80 87 91
141 30 34 73 80 81 88 92
142 31 35 74 81 82 89 93
143 32 36 75 82 83 90 94
144 33 37 76 83 84 91 95
145 34 38 77 84 85 92 96
146 35 39 78 85 86 93 97
147 36 40 79 86 87 94 98
148 37 41 80 87 88 95
149 38 42 81 88 89 96
150 39 43 82 89 90 97
151 40 44 83 90 91 98
152 41 45 84 91 92
153 42 46 85 92 93
154 0 33 39 43 47 66 72 78 82 91 93 94

8 Security and Communication Networks

Table 1: Continued.

𝑖 Δ𝑧𝑖
155 1 34 40 44 48 67 73 79 83 92 94 95
156 2 35 41 45 49 68 74 80 84 93 95 96
157 3 36 42 46 50 69 75 81 85 94 96 97
158 4 37 43 47 51 70 76 82 86 95 97 98
159 5 38 44 48 52 71 77 83 87 96 98
160 0 6 33 39 45 49 53 58 66 72 78 82 84 86 88 91 97
161 1 7 34 40 46 50 54 59 67 73 79 83 85 87 89 92 98
162 2 8 35 41 47 51 55 60 68 74 80 84 86 88 90 93
163 3 9 36 42 48 52 56 61 69 75 81 85 87 89 91 94
164 4 10 37 43 49 53 57 62 70 76 82 86 88 90 92 95
165 5 11 38 44 50 54 58 63 71 77 83 87 89 91 93 96
166 6 12 39 45 51 55 59 64 72 78 84 88 90 92 94 97
167 7 13 40 46 52 56 60 65 73 79 85 89 91 93 95 98
168 8 14 41 47 53 57 61 66 74 80 86 90 92 94 96
169 9 15 42 48 54 58 62 67 75 81 87 91 93 95 97
170 10 16 43 49 55 59 63 68 76 82 88 92 94 96 98
171 11 17 44 50 56 60 64 69 77 83 89 93 95 97
172 12 18 45 51 57 61 65 70 78 84 90 94 96 98
173 13 19 46 52 58 62 66 71 79 85 91 95 97
174 14 20 47 53 59 63 67 72 80 86 92 96 98
175 15 21 48 54 60 64 68 73 81 87 93 97
176 16 22 49 55 61 65 69 74 82 88 94 98
177 17 23 50 56 62 66 70 75 83 89 95
178 18 24 51 57 63 67 71 76 84 90 96
179 19 25 52 58 64 68 72 77 85 91 97
180 20 26 53 59 65 69 73 78 86 92 98
181 21 27 54 60 66 70 74 79 87 93
182 22 28 55 61 67 71 75 80 88 94
183 23 29 56 62 68 72 76 81 89 95
184 24 30 57 63 69 73 77 82 90 96
185 25 31 58 64 70 74 78 83 91 97
186 26 32 59 65 71 75 79 84 92 98
187 27 33 60 66 72 76 80 85 93
188 28 34 61 67 73 77 81 86 94
189 29 35 62 68 74 78 82 87 95
190 30 36 63 69 75 79 83 88 96
191 31 37 64 70 76 80 84 89 97
192 32 38 65 71 77 81 85 90 98
193 0 33 37 39 66 70 71 72 74 76 78 82 86 91 92 95
194 1 34 38 40 67 71 72 73 75 77 79 83 87 92 93 96
195 2 35 39 41 68 72 73 74 76 78 80 84 88 93 94 97
196 3 36 37 40 42 58 61 69 70 71 73 75 76 77 79 81 85 89 92 94 95 98
197 4 37 38 41 43 59 62 70 71 72 74 76 77 78 80 82 86 90 93 95 96
198 5 38 39 42 44 60 63 71 72 73 75 77 78 79 81 83 87 91 94 96 97
199 6 39 40 43 45 61 64 72 73 74 76 78 79 80 82 84 88 92 95 97 98
200 7 40 41 44 46 62 65 73 74 75 77 79 80 81 83 85 89 93 96 98
201 8 41 42 45 47 63 66 74 75 76 78 80 81 82 84 86 90 94 97
202 9 42 43 46 48 64 67 75 76 77 79 81 82 83 85 87 91 95 98
203 10 43 44 47 49 65 68 76 77 78 80 82 83 84 86 88 92 96
204 11 44 45 48 50 66 69 77 78 79 81 83 84 85 87 89 93 97
205 12 45 46 49 51 67 70 78 79 80 82 84 85 86 88 90 94 98
206 13 46 47 50 52 68 71 79 80 81 83 85 86 87 89 91 95

Security and Communication Networks 9

Table 1: Continued.

𝑖 Δ𝑧𝑖
207 14 47 48 51 53 69 72 80 81 82 84 86 87 88 90 92 96
208 15 48 49 52 54 70 73 81 82 83 85 87 88 89 91 93 97
207 16 49 50 53 55 71 74 82 83 84 86 88 89 90 92 94 98
210 17 50 51 54 56 72 75 83 84 85 87 89 90 91 93 95
211 18 51 52 55 57 73 76 84 85 86 88 90 91 92 94 96
212 19 52 53 56 58 74 77 85 86 87 89 91 92 93 95 97
213 20 53 54 57 59 75 78 86 87 88 90 92 93 94 96 98
214 21 54 55 58 60 76 79 87 88 89 91 93 94 95 97
215 22 55 56 59 61 77 80 88 89 90 92 94 95 96 98
216 23 56 57 60 62 78 81 89 90 91 93 95 96 97
217 24 57 58 61 63 79 82 90 91 92 94 96 97 98
218 25 58 59 62 64 80 83 91 92 93 95 97 98
219 26 59 60 63 65 81 84 92 93 94 96 98
220 27 60 61 64 66 82 85 93 94 95 97
221 28 61 62 65 67 83 86 94 95 96 98
222 29 62 63 66 68 84 87 95 96 97
223 30 63 64 67 69 85 88 96 97 98
224 31 64 65 68 70 86 89 97 98
225 32 65 66 69 71 87 90 98
226 33 66 67 70 72 88
227 34 67 68 71 73 89
228 35 68 69 72 74 90
229 36 69 70 73 75 91
230 37 54 58 70 71 74 76 92 95 96
231 38 55 59 71 72 75 77 93 96 97
232 39 56 60 72 73 76 78 94 97 98
233 40 57 61 73 74 77 79 95 98
234 41 58 62 74 75 78 80 96
235 0 42 54 59 63 75 76 79 81 96 97
236 1 43 55 60 64 76 77 80 82 97 98
237 2 44 56 61 65 77 78 81 83 98
238 3 45 57 62 66 78 79 82 84
239 4 46 58 63 67 79 80 83 85
240 5 47 59 64 68 80 81 84 86
241 6 48 60 65 69 81 82 85 87
242 7 49 61 66 70 82 83 86 88
243 8 50 62 67 71 83 84 87 89
244 9 51 58 63 68 72 84 85 88 90
245 10 52 59 64 69 73 85 86 89 91
246 11 53 60 65 70 74 86 87 90 92
247 12 54 61 66 71 75 87 88 91 93
248 13 55 62 67 72 76 88 89 92 94
249 14 56 63 68 73 77 89 90 93 95
250 15 57 64 69 74 78 90 91 94 96
251 16 58 65 70 75 79 91 92 95 97
252 17 59 66 71 76 80 92 93 96 98
253 18 60 67 72 77 81 93 94 97
254 19 61 68 73 78 82 94 95 98
255 20 62 69 74 79 83 95 96
256 21 63 70 75 80 84 96 97
257 22 64 71 76 81 85 97 98
258 23 65 72 77 82 86 98

10 Security and Communication Networks

Table 1: Continued.

𝑖 Δ𝑧𝑖
259 24 66 73 78 83 87
260 25 67 74 79 84 88
261 26 68 75 80 85 89
262 27 69 76 81 86 90
263 28 70 77 82 87 91
264 29 71 78 83 88 92
265 30 72 79 84 89 93
266 31 73 80 85 90 94
267 32 74 81 86 91 95
268 33 75 82 87 92 96
269 34 76 83 88 93 97
270 35 77 84 89 94 98
271 36 78 85 90 95
272 37 79 86 91 96
273 38 80 87 92 97
274 39 81 88 93 98
275 40 82 89 94
276 41 83 90 95
277 42 84 91 96
278 43 85 92 97
279 44 86 93 98
280 45 87 94
281 46 88 95
282 47 89 96
283 48 90 97
284 49 91 98
285 50 92
286 51 93
287 52 94
288 53 95
289 54 96
290 55 97
291 56 98
292 57

Table 2: Δ𝑧𝑖 in 𝐵0.
Fault location 𝑖 Δ𝑧𝑖
0 0 38 49 58 61 76 87 96
12 0 12 50 61 70 73 88
23 0 11 23 38 49 58 72 76 81 84 87 96
61 0 38 46 49 58 61 76 84 87 92 95 96
107 0 43 46 47 58 84 86 87 92 93 94 95
111 0 4 43 50 51 58 62 86 88 90 91 93 94 96 97 98
154 0 33 39 43 47 66 72 78 82 91 93 94
160 0 6 33 39 45 49 53 58 66 72 78 82 84 86 88 91 97
193 0 33 37 39 66 70 71 72 74 76 78 82 86 91 92 95
235 0 42 54 59 63 75 76 79 81 96 97

that cannot determine the fault location uniquely depends
mostly on the fault locations in [230, 292]. One of the main

reasons is that there is not any components of the differential
strings that can always be 1 when the fault locations belong
to [230, 292]. This is because the diffusion ability of the last
63 register bits is stronger than that of the first 230 register
bits.

Here we extend the keystream to at most 167 bits and
divide all possible fault positions into two parts: [0, 229] and[230, 292]. When a fault is injected in 𝑠𝑖, where 𝑖 ∈ [0, 229],
we can get an approximate distribution of differential strings
on the numbers of optional fault locations by Algorithm 2,
seen in Table 3. It is found that when the length of keystream
is extended to 163 bits, the proportion of strings not locating a
fault is decreased to 0.0650%and the number of optional fault
locations is reduced to at most 3. We make a similar process
for a fault location in [230, 292], seen in Table 4. It is seen that
when the keystream length reaches 163 bits, the proportion
of all zero strings can almost reduce to 0, but the proportion

Security and Communication Networks 11

Table 3: The distribution of the strings (fault injected in 𝑠𝑖, 𝑖 ∈ [0, 229]).
ksl nup (%) 2nup (%) 3nup (%) 4nup (%) 5nup (%) 6nup (%) 7nup (%) Others (%)
99 4.1213 69.88 13.52 2.24 1.96 0.38 0.61 11.2
103 1.7420 53.91 20.29 7.93 2.40 1.30 1.93 12.24
107 1.2722 58.60 18.70 6.60 2.59 2.72 1.93 8.87
111 1.0206 61.06 20.36 2.95 3.33 3.48 1.33 7.49
115 0.8569 61.57 21.40 2.59 2.13 4.54 1.65 6.12
119 0.6744 67.69 18.33 2.59 1.74 4.02 1.36 4.28
123 0.4512 73.92 14.58 2.92 1.42 3.55 0.76 2.85
127 0.2991 74.33 16.55 2.33 1.75 2.26 0.70 2.07
131 0.2225 85.77 9.26 2.44 0.43 1.11 0.56 0.43
135 0.1582 90.48 6.69 1.81 0.48 0.54 0 0
139 0.1518 89.38 8.42 1.32 0.75 0 0.13 0
143 0.1320 91.98 6.72 1.08 0.07 0 0.14 0
145 0.1275 89.60 9.27 0.60 0.15 0.07 0.30 0
147 0.1174 89.93 7.80 1.79 0.08 0.16 0.24 0
151 0.0770 90.83 8.80 0.37 0 0 0 0
155 0.0773 92.73 6.04 0.86 0.25 0 0.12 0
159 0.0649 94.71 4.55 0.73 0 0 0 0
163 0.0650 94.43 5.57 0 0 0 0 0
167 0.0548 94.43 5.57 0 0 0 0 0
ksl: the length of keystream; nup: the proportion of the strings not locating a fault; 𝑖nup (𝑖 = 2, . . . , 7): the proportion of the strings that can determine 𝑖 optional
fault locations among all strings not locating a fault; others: the proportion of the strings that can determine more than 7 optional fault locations among all
strings not locating a fault.

(1) Choose 215 initial states randomly
(2) for each initial state do
(3) proceed the encryption phase of ACORN v2 to get a 180-bit keystream 𝑧
(4) Choose 32 fault locations 𝑖 randomly, where 𝑖 ∈ [0, 229]
(5) for each fault locations 𝑖 do
(6) 𝑠𝑖 ← 𝑠𝑖 ⊕ 1
(7) proceed the encryption phase of ACORN v2 to get a 180-bit keystream 𝑧𝑖
(8) for different length of keystream from 99 to 180 do
(9) determine the fault location 𝑖 with Δ𝑧𝑖
(10) calculate the number of optional fault locations
(11) end for
(12) end for
(13) end for
(14) return the numbers of optional fault locations

Algorithm 2

of the strings not locating a fault only decreases to 14.45%.
How to use the strategy in our fault locating method will be
described in the improved fault locating method.

(ii) High Probability Priority Strategy. Here we assume that
the initial state of the FSR is random and uniformly dis-
tributed. For a given string Δ𝑧, we find that different fault
location candidates appear with different probabilities. For
example, when we get

Δ𝑧 = (85⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0, 1, 13⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0) = (85) , (11)

since each candidate 𝑖 in 𝐵85 needs to satisfy Δ𝑧𝑖𝑗 = 0, where
𝑗 ∈ [0, 98] and 𝑗 ̸= 85, by the expression of Δ𝑧𝑖, it is
known that 𝑖 takes 278 with probability 2−3, but 239 with
probability 2−8 (the probabilities of all candidates 𝑖 in 𝐵85 are
listed in Table 5). For each candidate 𝑖, we prefer to choose𝑖 with higher probability and call it high probability priority
strategy.

(iii) Cross-Referencing Strategy. Cross-referencing is a com-
mon maximized way. Here we adopt it to decrease the
proportion of strings not locating a fault. Indeed, there are
some inherent relations among the strings got from faults
at distinct locations. For a new string Δ𝑧, it is helpful to

12 Security and Communication Networks

Table 4: The distribution of the strings (fault injected in 𝑠𝑖, 𝑖 ∈ [230, 292]).
ksl nup n0s 2nup 3nup 4nup 5nup 6nup 7nup 8nup 9nup 10nup Others
99 37.15 18.93 25.72 14.42 8.86 0.90 1.69 0.54 0.99 0.62 8.72 18.60
103 33.82 14.37 29.09 14.29 9.80 1.61 1.84 0.30 0.69 0.41 11.23 16.39
107 31.65 10.98 29.88 15.63 10.64 3.35 1.75 0.56 1.44 0.69 8.74 16.33
111 29.11 7.90 31.26 17.01 9.77 4.41 2.94 1.33 1.40 0.80 7.18 16.00
115 27.62 5.31 33.38 17.93 8.71 6.50 2.25 3.02 1.29 0.72 5.32 15.57
119 26.71 4.02 38.44 15.61 8.23 6.74 3.04 3.71 1.06 0.95 3.73 14.47
123 24.88 2.76 37.87 15.75 10.30 6.82 3.09 3.79 2.27 1.63 3.13 12.59
127 22.49 1.74 36.96 17.01 10.12 7.33 3.99 3.84 1.78 1.37 2.29 13.57
131 19.94 1.38 37.27 19.45 10.84 6.86 3.63 4.55 1.93 1.32 2.17 10.62
135 18.18 0.60 37.18 20.66 12.49 7.32 5.02 3.04 1.96 2.33 1.43 7.96
139 17.60 0.29 39.59 21.04 11.19 7.04 4.60 3.36 2.72 1.77 1.53 6.87
143 17.06 0.14 37.66 21.83 11.15 7.55 4.80 3.76 2.06 1.81 1.77 7.48
145 17.13 0.23 39.48 21.47 11.22 6.68 4.51 3.19 2.28 2.21 1.64 7.09
147 16.67 0.24 39.84 22.62 11.99 6.33 4.48 2.71 2.12 1.83 1.72 6.11
151 15.85 0.04 42.32 21.74 11.78 6.37 4.16 3.54 1.89 1.58 1.04 5.54
155 15.24 0.02 41.93 22.51 10.63 6.59 3.64 3.60 2.06 1.64 1.58 5.79
159 15.27 0.12 43.73 23.18 10.25 7.27 3.68 2.54 2.28 1.38 0.86 4.72
163 14.45 0 45.24 24.01 9.57 5.72 4.56 2.37 2.13 1.54 1.27 3.59
167 14.20 0 45.14 24.16 10.43 6.19 3.74 2.71 1.83 1.42 1.10 3.29
In order to shorten the table, we omit the (%) in each column. The symbols are the same as in Table 3, except n0s: the proportion of the zero string among all
strings not locating a fault; others: the proportion of the strings that can determine more than 10 optional fault locations among all strings not locating a fault.

Table 5: Optional fault locations of Δ𝑧𝑖 = (85).
Fault location Δ𝑧𝑖 Probability
278 43 85 92 97 2−3
271 36 78 85 90 95 2−4
266 31 73 80 85 90 94 2−5
261 26 68 75 80 85 89 2−5
257 22 64 71 76 81 85 97 98 2−7
245 10 52 59 64 69 73 85 86 89 91 2−9
241 6 48 60 65 69 81 82 85 87 2−8
244 9 51 58 63 68 72 84 85 88 90 2−9
239 4 46 58 63 67 79 80 83 85 2−8

make the most use of knowledge retrieved from old strings
to locate a new fault. The following three observations on
the filter function 𝑔(𝑠) will help us to execute the above
strategy.

Observation 1. For any 𝑗 ∈ [0, 57], by the first nonconstant
component of Δ𝑧235+𝑗, we have

Δ𝑧235+𝑗𝑗 = Δ𝑧61+𝑗𝑗 ⊕ Δ𝑧193+𝑗𝑗 = Δ𝑧61+𝑗𝑗 ⊕ Δ𝑧160+𝑗𝑗
= Δ𝑧61+𝑗𝑗 ⊕ Δ𝑧154+𝑗𝑗 = Δ𝑧23+𝑗𝑗 ⊕ Δ𝑧193+𝑗𝑗
= Δ𝑧23+𝑗𝑗 ⊕ Δ𝑧160+𝑗𝑗 = Δ𝑧23+𝑗𝑗 ⊕ Δ𝑧154+𝑗𝑗
= Δ𝑧𝑗𝑗 ⊕ Δ𝑧193+𝑗𝑗 = Δ𝑧𝑗𝑗 ⊕ Δ𝑧160+𝑗𝑗
= Δ𝑧𝑗𝑗 ⊕ Δ𝑧154+𝑗𝑗 .

(12)

Observation 2. For any 𝑗 ∈ [0, 19], by the secondnonconstant
component of Δ𝑧230+𝑗, we have Δ𝑧230+𝑗37+𝑗 = Δ𝑧160+37+𝑗37+𝑗 =
Δ𝑧154+37+𝑗37+𝑗 .

Observation 3. For any 𝑗 ∈ [0, 3], by the third nonconstant
component of Δ𝑧230+𝑗, we have Δ𝑧235+𝑗54+𝑗 = Δ𝑧289+𝑗54+𝑗 .

For example, when we get Δ𝑧 = (85), candidates 𝑖 are
listed in Table 5. If we have located the fault at 𝑠65 and 𝑠197
which satisfy Δ𝑧654 ⊕ Δ𝑧1974 = 1, we can exclude the candidate𝑖 = 239. Because if the candidate 𝑖 = 239 is the fault location,Δ𝑧2394 should be 1.

3.1.3. Improved Fault Locating Method. Here we present an
improvement of the fundamental fault locating method by
means of the above optimized strategies. For a given 99-bitΔ𝑧, we first determine which category it belongs to according
to the position of its first 1.Then by comparing other locations
of 1 appearing in Δ𝑧, on average, we can locate the fault with
probability 97.08%. If Δ𝑧 cannot locate the fault, we adopt
the keystream extension strategy and extend the keystream
to at most 163 bits. After this step, the fault has been located
with probability 99.95%. If Δ𝑧 cannot still locate the fault, we
will first use the making-the-most-use-of-things strategy to
exclude some candidates and then use the high probability
priority strategy to guess the right fault location. At last we
can locate the fault with probability almost 1. For more detail,
see Algorithm 3.

3.2. Recovering the Initial State. Once a fault is located, we
will retrieve some equations on the initial state 𝑠. When

Security and Communication Networks 13

Require: A 99-bit differential string Δ𝑧
Ensure: the fault locations
(1) Determine which category Δ𝑧 belongs to according to the position of its first 1
(2) Determine the candidates by comparing other locations of 1 appearing in Δ𝑧

and using the making-the-most-use-of-things strategy
(3) if the number of candidates is 1 then
(4) return the unique candidate
(5) else
(6) for the keystream length extended to 99 + 𝑖 bits, 𝑖 from 1 to 64 do
(7) use the making-the-most-use-of-things strategy
(8) compare the extra 𝑖 locations of 1 appearing in Δ𝑧
(9) if the number of candidates can be reduced to 1 then
(10) return the unique candidate
(11) end if
(12) end for
(13) if the number of candidates is still larger than 1 then
(14) use the high probability priority strategy to choose the location 𝑖󸀠 that the

string appears in the Δ𝑧𝑖󸀠 with the highest probability
(15) return the unique candidate 𝑖󸀠
(16) end if
(17) end if

Algorithm 3

the number of equations is enough, we can recover 𝑠 from
them. Below we show how to retrieve equations and provide
two equation solving methods: linearization and guess-and-
determine.

3.2.1. Equation Retrieving. As shown in fundamental
fault locating method, we just consider 99-bit differential
keystream since they all can be represented as linear or
quadratic functions of 𝑠. We first get differential equations
when fault is injected in 𝑠𝑖, where 𝑖 ∈ 𝐴,

𝐴
= {0, 12, 23, 61, 66, 107, 111, 154, 160, 193, 196, 230, 235, 244} . (13)

When 𝑖 ∈ [0, 292] and 𝑖 ∉ 𝐴, the main idea to retrieve
differential equations is to shift or perform the inversion of
the linear transformation on Δ𝑧𝑖󸀠 , where 𝑖󸀠 ∈ 𝐴. For more
detail, one can see Example 1. Note that the inversion of
the linear transformation will not lead to the transformation
of a linear function to a nonlinear function but increase
the number of terms in the function (ignoring possible
cancellations due to the exclusive OR operation).

For each fault location 𝑖, where 𝑖 ∈ [0, 292], we have
stored the corresponding equations containing both linear
and quadratic equations. When one fault experiment is
executed, we first judge the fault location and then find the
corresponding equations according to the differential string.
In order to recover the initial state, next, we will show two
methods to solve the equations.

3.2.2. Linearization Method. Our basic idea is to retrieve as
many linear equations as possible and then solve the system
of linear equations to get 𝑠. At first, one observation of the
functions used in ACORN v2 is given.

Observation 4. Let

𝑦 = 𝑥𝑖𝑥𝑗 ⊕ 𝑥𝑖𝑥𝑘 ⊕ 𝑥𝑗𝑥𝑘, (14)

where 𝑥𝑖, 𝑥𝑗, and 𝑥𝑘 are linear functions of the initial state.
Then we have

Pr [𝑦 = 𝑥𝑖] = 34 ,
Pr [𝑦 = 𝑥𝑗 = 𝑥𝑘 | 𝑦 ̸= 𝑥𝑖] = 1.

(15)

If we have 𝑛1 equations of the forms (14), we can get 𝑛1 linear
equations with probability (3/4)𝑛1 .

According to the expressions of Δ𝑧𝑖𝑗 and the functions
used in ACORN v2, where 𝑖 ∈ [0, 292] and 𝑗 ∈ [0, 98], we
get the following propositions:

(P1) The first 58-bit keystream without fault injection
are quadratic functions of the initial state and the
quadratic terms are of the forms (14). So we can get
58 linear equations with probability

(34)58 ≈ 2−24. (16)

(P2) Consider Δ𝑧𝑖𝑗 that can be expressed as quadratic
functions of 𝑠. There are two forms of quadratic
functions Δ𝑧𝑖𝑗 which are

𝑥𝑘1 ⊕ 𝑥𝑖1𝑥𝑗1 ⊕ 𝑥𝑖𝑥𝑗 ⊕ 𝑥𝑖𝑥𝑘 ⊕ 𝑥𝑗𝑥𝑘 (17)

and 𝑥𝑖𝑥𝑗, where 𝑥𝑖1 , 𝑥𝑗1 , 𝑥𝑘1 , 𝑥𝑗, 𝑥𝑗, and 𝑥𝑘 are linear
functions of 𝑠. According to Observation 4, the term

14 Security and Communication Networks

𝑥𝑖𝑥𝑗 ⊕ 𝑥𝑖𝑥𝑘 ⊕ 𝑥𝑗𝑥𝑘 can be linearized as 𝑥𝑖 with
probability 3/4 and 𝑥𝑖1𝑥𝑗1 can be linearized as 0 or 𝑥𝑗1
by guessing the value of 𝑥𝑖1 with probability 1/2. So
(17) can be linearized as 𝑥𝑘1 ⊕ 𝑥𝑖 or 𝑥𝑘1 ⊕ 𝑥𝑗1 ⊕ 𝑥𝑖 with
probability 3/4⋅1/2 and provide two linear equations.
For quadratic function of form 𝑥𝑖𝑥𝑗, if 𝑥𝑖𝑥𝑗 = 1, we
know that 𝑥𝑖 = 1 and 𝑥𝑗 = 1. If 𝑥𝑖𝑥𝑗 = 0, we guess
the values of 𝑥𝑖 and 𝑥𝑗 with probability 1/3. So by
guessing the value of 𝑥𝑖 and 𝑥𝑗, we can get 2 linear
equations with probability 1/2.

(P3) For all Δ𝑧𝑖 (𝑖 ∈ [0, 292]), we calculate the numbers
of the quadratic functions of form (17) and 𝑥𝑖𝑥𝑗. On
average, the numbers of linear equations, quadratic
equations of form (17), and quadratic equations of
form𝑥𝑖𝑥𝑗 are 2.7, 3.3, and 1.2 for eachΔ𝑧𝑖, respectively.
According to (P2), we can get 11.7 = 2.7+3.3×2+1.2×2 linear equations and 3.3 simple quadratic equations
with probability

(12)4.5 ⋅ (34)3.3 ≈ 2−5.87. (18)

Based on the above observations, we can retrieve enough
linear equations to recover 𝑠. By (P1), about 58 linear
equations can be retrieved with probability 2−24, and by (P3),
about 11.7 linear equations with probability 2−5.87 for each
fault. Let 𝑛 be the number of fault experiments. In order to
guarantee the probability of recovering 𝑠 is larger than 2−128,𝑛 should satisfy

2−5.87𝑛−24 > 2−128; (19)

that is, 𝑛 ≤ 17. The remaining 235 − 11.7𝑛 linear equations
will be given by ⌈(235 − 11.7𝑛)/2.7⌉ new fault experiments.
Thus the total number 𝑁 of fault experiments is

⌈235 − 11.7𝑛2.7 ⌉ + 𝑛 = ⌈87.04 − 3.33𝑛⌉ , 𝑛 ≤ 17. (20)

Replace 𝑛 by 𝑁 in 2−5.87𝑛−24; the probability of recovering 𝑠 is2−179.19+1.76𝑁. In particular, when 𝑛 = 0, 88 fault experiments
are needed and the probability is 2−24. When 𝑛 = 17, 31
fault experiments are needed and the probability is 2−124.63. As
fault injection is hard work and each fault experiment would
damage the device, we hope the number of fault experiments
required should be as small as possible. 31 fault experiments
is the smallest number in our attack.

Below we roughly estimate the time complexity of recov-
ering 𝑠 with probability 1. When 𝑁 fault experiments are
carried out, denote by 𝑋 the random event of recovering𝑠. Then 𝑋 follows a binomial distribution with parameters𝑛󸀠 ∈ N (N is the set of natural numbers) and𝑝 = 2−179.19+1.76𝑁,
denoted by 𝑋 ∼ 𝐵(𝑛󸀠, 𝑝). If the expected value of 𝑋 is 1,
the expected value of 𝑛󸀠 is about 2179.19−1.76𝑁, where 31 ≤𝑁 ≤ 88. Actually, the value of 𝑛󸀠 is smaller than 2179.19−1.76𝑁.
As shown in Observation 4, if the first experiment is failed
with probability 1 − 𝑝, the success probability of the next
experiment becomes (4/3)𝑝. So, the time complexity of
recovering 𝑠 with probability 1 is smaller than 𝑐 ⋅ 2179.19−1.76𝑁,

where 𝑐 is the time complexity of solving linear equations
and 𝑁 is the number of fault experiments such that 31 ≤𝑁 ≤ 88. By the birthday paradox, there is a high chance
of randomly chosen locations being repeated by the time√293 ≈ 17 experiments are performed, so the number
of actual experiments required to obtain 𝑁 distinct fault
locations will be rather higher than 𝑁.

3.2.3. Guess-and-Determine Method. Here we discuss the
complexity of solving the above equation system by guess-
and-determinemethod. For one fault experiment, on average,
we can get 4.5 quadratic equations including 1.2 quadratic
equations of form 𝑥𝑖𝑥𝑗 and 2.7 linear equations as shown in
(P2). The quadratic function of form 𝑥𝑖𝑥𝑗 can be regarded as
one linear equation. For quadratic function of form 𝑥𝑖𝑥𝑗, it is
expected to obtain 1 linear equation. If 𝑥𝑖𝑥𝑗 = 1, we know that𝑥𝑖 = 1 and 𝑥𝑗 = 1. If 𝑥𝑖𝑥𝑗 = 0, we guess the values of 𝑥𝑖 and 𝑥𝑗
with probability 1/3. So by guessing the value of 𝑥𝑖 and 𝑥𝑗, we
can get 2 linear equationswith probability 1/2. So for one fault
experiment, on average, we can get 3.3 linear equations and
3.3 quadratic equations. So we can get 295 equations with 160
linear equations with 41 fault experiments. By guessing 67-bit
value, the initial state 𝑠 can be recovered.The time complexity
of recovering 𝑠 is 𝑐 ⋅ 267, where 𝑐 is the time complexity of
solving linear equations.

3.2.4. Implementation and Verification. To prove the validity
of our guess-and-determine method, we experimentally test
it on a shrunk cipher with similar structure and properties.
More specifically, we built a small stream cipher according
to the design principles used for ACORN but with a small
state of 31 bits. We then implemented our attack to recover
the initial state.

Denote by 𝑠 = (𝑠0, 𝑠1, . . . , 𝑠30) the initial state of the toy
cipher and 𝑝 the plaintext. The feedback function 𝑓(𝑠, 𝑝) is
defined as

𝑓 (𝑠, 𝑝) = 1 ⊕ 𝑠0 ⊕ 𝑠8 ⊕ 𝑠12 ⊕ 𝑠21 ⊕ 𝑠3𝑠18 ⊕ 𝑠3𝑠27
⊕ 𝑠18𝑠27 ⊕ 𝑠14 (𝑠23 ⊕ 𝑠21 ⊕ 𝑠20)
⊕ 𝑠9 (𝑠23 ⊕ 𝑠21 ⊕ 𝑠20) ⊕ 𝑝.

(21)

Introduce intermediate variables 𝑦𝑖 (1 ≤ 𝑖 ≤ 31):
𝑦31 = 𝑓 (𝑠, 𝑝) ,
𝑦29 = 𝑠29 ⊕ 𝑠26 ⊕ 𝑠23,
𝑦23 = 𝑠23 ⊕ 𝑠21 ⊕ 𝑠20,
𝑦20 = 𝑠20 ⊕ 𝑠18 ⊕ 𝑠17,
𝑦17 = 𝑠17 ⊕ 𝑠14 ⊕ 𝑠12,
𝑦12 = 𝑠12 ⊕ 𝑠9 ⊕ 𝑠8,
𝑦8 = 𝑠8 ⊕ 𝑠3 ⊕ 𝑠0,
𝑦𝑖 = 𝑠𝑖 for 1 ≤ 𝑖 ≤ 30, 𝑖 ∉ {8, 12, 17, 20, 23, 29} .

(22)

Security and Communication Networks 15

Then the state update function 𝐹(𝑠, 𝑝) can be described as

𝑠𝑖 = 𝑦𝑖+1 for 0 ≤ 𝑖 ≤ 30. (23)

The filter function 𝑔(𝑠) is used to derive a keystream 𝑧 and
defined as

𝑔 (𝑠) = 𝑠1 ⊕ 𝑠17 ⊕ 𝑠14 ⊕ 𝑠12
⊕ (𝑠8 ⊕ 𝑠3 ⊕ 𝑠0) (𝑠20 ⊕ 𝑠18 ⊕ 𝑠17)
⊕ (𝑠8 ⊕ 𝑠3 ⊕ 𝑠0) 𝑠26 ⊕ (𝑠20 ⊕ 𝑠18 ⊕ 𝑠17) 𝑠26.

(24)

The encryption procedure of the toy cipher is the same as that
of ACORN v2.

Here we just consider the first 9-bit keystream, since the
first 9-bit differential keystream can be represented as linear
or quadratic functions of 𝑠. Statistic shows that for one fault
experiment, on average,we can get 2.3 linear equations and 1.5
quadratic equations. So with 9 fault experiments, we can get
34 equations where there are 21 linear equations. By guessing
5-bit value, the initial state 𝑠 can be recovered. Based on
heuristic, the time complexity of recovering 𝑠 is 𝑐 ⋅ 25, where𝑐 is the time complexity of solving linear equations. Next, we
will provide some experimental results.

Assume that the initial state is

𝑠 = (0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 0) (25)

and the 9 fault locations have been located which are

𝑠1, 𝑠7, 𝑠8, 𝑠12, 𝑠14, 𝑠17, 𝑠21, 𝑠25, 𝑠29. (26)

Totally, we can get 20 linearly independent linear equations
and 6 quadratic equations with respect to the initial state.
By guessing the values of 𝑠31, 𝑠32, 𝑠33, and 𝑠34, the 6 quadratic
equations can be simplified as linear equations and provide
4 new quadratic equations. Using Gaussian elimination
method and guessing one bit more, the 26 linear equations
and 4 quadratic equations can be solved easily. The time
complexity 𝑐 is the sum of the Gaussian elimination about
26 linear equations and solving the 4 quadratic equations
with 4 variables. There are some differences in the value of𝑐 comparing to our estimation. So the time complexity in the
realistic attack may be higher than that of our estimation.
We also try several other fault locations and the result shows
that if the linearly independent equations are enough, we
can always recover the initial state. Of course, if the linearly
independent equations are not enough, we need to carry out
more fault experiments.

3.3. Forgery Attack. Once the initial state of ACORN v2 is
recovered, we can encrypt any message to get the ciphertext
and generate a valid tag for it. In other words, we can forge
tags for any plaintext. It should be pointed out that our attack
is suitable to ACORN v1 as well. Due to the invertibility of the
initial process in ACORN v1, we can further recover its secret
key.

4. Conclusion

In this work we present a fault attack on ACORN v2 which is
one of the second round candidates of CAESAR. Our results
show thatwe can locate almost all faults and recover the initial
statewith at least 41 fault experiments, whose time complexity
is 𝑐 ⋅ 267, where 𝑐 is the time complexity of solving linear
equations.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (Grant no. 61379139 and Grant no. 61572491)
and the “Strategic Priority Research Program” of the Chinese
Academy of Sciences (Grant no. XDA06010701).

References

[1] CAESAR, “Cryptographic competitions,” http://competitions
.cr.yp.to/index.html.

[2] W. Hongjun, ACORN: A Lightweight Authenticated Cipher (v1),
CAESAR, 2014.

[3] W. Hongjun, ACORN: A Lightweight Authenticated Cipher (v2),
CAESAR, 2015.

[4] W. Hongjun, ACORN, A Lightweight Authenticated Cipher (v3),
CAESAR, 2016.

[5] L. Meicheng and L. Dongdai, “Cryptanalysis of Lightweight
Authenticated Cipher ACORN,” Posed on the crypto-
competition mailing list, 2014.

[6] C. Chaigneau, F. Thomas, and H. Gilbert, “Full Key-recovery
on ACORN in Nonce-reuse and Decryption-misuse settings,”
Posed on the crypto-competition mailing list, 2015.

[7] J. Johymalyo and S. Sarkar, “Some observations on ACORN v1
and Trivia-SC,” in Proceedings of the Lightweight Cryptography
Workshop 2015, National Institute of Standards and Technology,
Gaithersburg, Maryland, Md, USA, 2015.

[8] M. I. Salam,H. Bartlett, E. Dawson, J. Pieprzyk, L. Simpson, and
K. K.-H.Wong, “Investigating cube attacks on the authenticated
encryption stream cipher ACORN,” Communications in Com-
puter and Information Science, vol. 651, pp. 15–26, 2016.

[9] M. I. Salam, L. Simpson, K. K.-H.Wong, E. Dawson, H. Bartlett,
and J. Pieprzyk, “Finding state collisions in the authenticated
encryption stream cipher ACORN,” in Proceedings of the Aus-
tralasian Computer Science Week Multiconference, ACSW 2016,
aus, February 2016.

[10] L. Frédéric, L. Lerman, M. Olivier, and V. H. Dirk, SAT-based
cryptanalysis of ACORN, 2016.

[11] R. Dibyendu and S.Mukhopadhyay, “Some results onACORN,”
IACR Cryptology ePrint Archive, 1132, 2016.

[12] A. A. Siddhanti, S. Sarkar, S. Maitra, and A. Chattopadhyay,
“Differential Fault Attack on Grain v1, ACORN v3 and Lizard,”
Cryptology ePrint Archive: Report 2017/678, 2017.

[13] E. Biham andA. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology — CRYPTO ’97, vol.

http://competitions.cr.yp.to/index.html
http://competitions.cr.yp.to/index.html

16 Security and Communication Networks

1294 of Lecture Notes in Computer Science, pp. 513–525, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1997.

[14] J. J. Hoch and A. Shamir, “Fault analysis of stream ciphers,” in
Cryptographic Hardware and Embedded Systems—CHES 2004,
M. Joye and J.-J. Quisquater, Eds., vol. 3156 of Lecture Notes
in Computer Science, pp. 240–253, Springer, Berlin, Germany,
2004.

[15] S. Skorobogatov, “Optically Enhanced Position-Locked Power
Analysis,” in Cryptographic Hardware and Embedded Systems -
CHES 2006, vol. 4249 of Lecture Notes in Computer Science, pp.
61–75, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[16] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Cryptographic Hardware and Embedded Systems -
CHES 2002, vol. 2523 of Lecture Notes in Computer Science, pp.
2–12, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[17] H. Michal and R. Bohuslav, “Differential Fault Analysis of
Trivium,” in Proceedings of the Fast Software Encryption, 15th
International Workshop, FSE 2008, Lausanne, Switzerland,
February 2008.

[18] S. Mohamed, S. Bulygin, and J. A. Buchmann, “Using SAT
Solving to Improve Differential Fault Analysis of Trivium,” in
Proceedings of the Information Security and Assurance - Interna-
tional Conference, ISA 2011, Brno, Czech Republic, August 2011.

[19] G. Castagnos, B. Alexandre, C. Cécile et al., “Fault Analysis of
Grain-128,” in Proceedings of the IEEE International Workshop
on Hardware-Oriented Security and Trust, HOST 2009, San
Francisco, CA, USA, July 2009.

[20] S. Karmakar andD. R. Chowdhury, “Fault Analysis of Grain-128
by Targeting NFSR,” in Progress in Cryptology – AFRICACRYPT
2011, vol. 6737 of LectureNotes in Computer Science, pp. 298–315,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[21] S. Banik, S. Maitra, and S. Sarkar, “A differential fault attack on
the grain family of stream ciphers,” Lecture Notes in Computer
Science (including subseries LectureNotes inArtificial Intelligence
and LectureNotes in Bioinformatics), vol. 7428, pp. 122–139, 2012.

[22] S. Sarkar, S. Banik, and S. Maitra, “Differential fault attack
against Grain family with very few faults and minimal assump-
tions,” Institute of Electrical and Electronics Engineers. Transac-
tions on Computers, vol. 64, no. 6, pp. 1647–1657, 2015.

[23] S. Banik and S. Maitra, “A Differential Fault Attack onMICKEY
2.0,” in Cryptographic Hardware and Embedded Systems - CHES
2013, vol. 8086 of Lecture Notes in Computer Science, pp. 215–
232, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[24] S. Banik, S. Maitra, and S. Sarkar, “Improved differential fault
attack on MICKEY 2.0,” Journal of Cryptographic Engineering,
vol. 5, no. 1, pp. 13–29, 2015.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

