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Abstract
Background & Aims: The high expression levels of interferon-γ (IFN-γ)-inducible genes 
correlate positively with liver diseases. The present study aimed to explore the effect of 
isoliquiritigenin (ISL) on the expression of genes induced by IFN-γ in vitro, and to elucidate 
the underlying molecular mechanisms. Methods: HepG2 and L02 cells were divided into 
control, ISL, IFN-γ, and IFN-γ plus ISL groups. The cytotoxicity of compounds to cells was 
evaluated by Cell Counting Kit 8 (CCK8) assay; the expression levels of chemokine (C-X-C 
motif) ligand 9 (CXCL9), CXCL10, CXCL11, and interleukin-6 (IL-6) in cells and supernatant 
were measured by quantitative real time polymerase chain reaction (qRT-PCR) and ELISA, 
respectively. Moreover, western blot was used to examine the phosphorylated levels of janus 
kinase (JAK)/signal transducer and activator of transcription 1 (STAT1), nuclear factor (NF)-
κB, interferon regulatory factor 3 (IRF3)/myeloid differentiation factor 88 (MyD88), mitogen-
activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B (Akt) 
in HepG2 and L02 cells exposed to ISL, IFN-γ and IFN-γ plus ISL. Results: The results showed 
that IFN-γ treatment induced the expression of CXCL9, CXCL10, CXCL11, and IL-6 in HepG2 
and LO2 cells, which could be significantly and dose-dependently inhibited by ISL treatment 
(P < 0.05 or P < 0.01), but the inhibitory effect of ISL on IL-6 expression was not so good as 
on CXCL9, CXCL10, and CXCL11 expression. Furthermore, ISL treatment dose-dependently 
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inhibited the activation of JAK1/STAT1, IRF3/MyD88, extracellular signal-regulated kinase 
(ERK)/MAPK, c-Jun N-terminal kinase (JNK)/MAPK, and PI3K/Akt signaling pathways (P < 0.05), 
but had no effect on the activation of JAK2/STAT1, NF-κB and p38/MAPK signaling pathways. 
Conclusion: We demonstrate that ISL inhibits IFN-γ-induced inflammation in hepatocytes via 
influencing the activation of JAK1/STAT1, IRF3/MyD88, ERK/MAPK, JNK/MAPK, and PI3K/Akt 
signaling pathways.

Introduction

Viral hepatitis is a major type of chronic liver disease and one of the major diseases that 
threaten human health in China. Millions of people die from viral hepatitis-related cirrhosis, 
liver failure and hepatocellular carcinoma (HCC) [1, 2]. The progression of chronic liver 
diseases is resulted from the persistent hepatic inflammation and the secretion of cytokines, 
and chemokines released by liver cells and induced by cytokines are also important 
determinants [2]. Interferon gamma (IFN-γ) is a T-helper 1(Th1) proinflammatory cytokine 
that plays a critical role in defencing against viral infection, Th1 lymphocytes recruited to the 
liver during inflammation may be responsible for the enhanced IFN-γ and tumor necrosis 
factor (TNF)-α production, which in turn stimulates chemokines secretion from a variety of 
cells, therefore creating an amplification feedback loop [3].

The expression of chemokines during inflammation is regulated by both type I and 
type II IFNs [4]. Chemokine (C-X-C motif) receptor 3 (CXCR3) ligands have been extensively 
investigated in humans with liver disease [1, 5-7]. CXCL9, CXCL10 and CXCL11 can together 
be referred to as the CXCR3 ligands, They are also named monokine induced by IFN-γ(Mig), 
interferon (IFN)-γ-induced protein 10 (IP-10) and IFN-inducible T-cell α chemoattractant 
(I-TAC),respectively. And CXCL10 is the most thoroughly investigated CXCR3 ligand. Three 
chemokines sharing similar structure can be induced by IFN-γ [8] and are considered 
appropriately as a distinct subfamily. They are indeed differentially expressed by various 
cells and exert their effects through binding their corresponding receptor CXCR3 or its splice 
variant [9]. These receptors are found expressed at high levels on infiltrating lymphocytes 
in liver diseases [10]. CXCR3 and its ligands are undoubtedly an inflammatory chemokine 
system resulting in the establishment of chronic low-grade inflammation and an impaired 
viral clearance in liver diseases.

IFN-γ inducible chemokines have an established link with viral hepatitis and are mostly 
associated with advanced inflammation [1, 7, 11]. They are placed at the front line of the host 
defense against different infectious diseases, including liver diseases. Clinical studies have 
been showed that the levels of the IFN-γ inducible chemokines CXCL9-11 are significantly 
up-regulated in the serum and livers of patients with various liver disease [1, 12-14]. The 
high levels of CXCL9-11 have been found to be independently related to the development of 
clinically hepatic disease [15, 16]. According to some studies, elevated serum and intrahepatic 
CXCL9 and CXCL10 expression levels have been reported as important prognostic and 
predictive biomarkers of progressive liver injury [17-20], CXCL11, which is also expressed 
by hepatocytes, involves in pro-inflammatory T cells recruitment and differentiation [7]. 
Therefore, IFN-γ inducible chemokines have been reported as targets in anti-inflammatory 
therapy [21]. As well as demonstrated in various animal studies, inhibition of these 
chemokines reduces the inflammation [22], ameliorates experimentally-induced liver 
injury [23, 24], accelerates liver regeneration [24], and improves the outcome [25]. These 
observations suggest that CXCL9-11 help coordinate the persistent hepatic inflammatory 
response in various liver diseases and CXCR3 and its ligands lead to the development of new 
therapeutic strategies for persistent hepatic infection.

Isoliquiritigenin (4,2’,4’-trihydroxychalcone, ISL, Fig.1) is an isoflavone compound. It’s 
one of the active ingredient of anti-inflammatory activity of licorice. Studies have shown that 
it has extensive pharmacological activity, such as antioxidant [26], anti-inflammation [27], 

 Copyright © 2015 S. Karger AG, Basel
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anti-platelet aggregation [28], and cancer-preventing properties [29]. However, the effects 
of ISL on the IFN-γ induced expression of CXCL9-11 are not fully characterized especially 
about its molecular mechanism. The present study proposes a possibility of the therapeutic 
application and an intracellular anti-inflammatory mechanism of ISL in the treatment of liver 
diseases. The results show that ISL significantly attenuates the expression of IFN-γ-inducible 
genes in hepatocytes, which might be, at least in part, via inhibiting IFN-γ-induced activation 
of JAK1/STAT1, IRF3/MyD88, ERK/MAPK, JNK/MAPK, and PI3K/Akt signaling pathways. 

Material and Methods

Cell culture and treatment
The human hepatoma cell line HepG2 and hepatic L02 cells were obtained from the American Type 

Culture Collection (ATCC, Rockville, MD). They were cultured in DMEM (Gibco BRI, Grand Island, NY) 
supplemented with 10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin and 
maintained in a humidified atmosphere with 5% CO2 at 37℃. ISL (catalog no. Y-008-1111002, Chengdu 
Herbpurify CO, LTD) was prepared in DMSO at 10 mg/ml stock solutions. IFN-γ (catalog no. 300-02; 
PEPROTECH) was prepared according to the manufacturer’s instruction. HepG2 and L02 cells were divided 
into control, ISL (5 μg/ml), IFN-γ (10 ng/ml), and IFN-γ (10 ng/ml) plus ISL (0, 1.25, 2.5, 5 μg/ml) groups. 
Cells were pretreated with various concentrations of ISL for 1 h and then stimulated with 10 ng/ml of IFN-γ 
for an extra 48 h. 

Cell viability assayment
The cytotoxicity of IFN-γ or ISL to cells was assessed by the Cell Counting Kit 8 (CCK-8) (catalog no. 

WBCK04-500T; Dojindo Molecular Technology Inc., Kumamoto, Japan) according to the manufacturer’s 
instructions. HepG2 and L02 cells (1 x 104) were seeded into 96-well culture plates and treated with 
various concentrations of IFN-γ (0, 2.5, 5, 10, 20, 40ng/ml) or exposed to IFN-γ (10 ng/ml) plus various 
concentrations of ISL (1.25, 2.5, 5 μg/ml) for 48 h. Then, the treated cells were incubated with CCK-8 
solution (1/10 vol/vol in serum-free media) for another 3 h at 37 ℃. The absorbance was determined at 
450nm using a microtiterplate reader (BioRad, Hercules). 

CXCL9, CXCL10, and CXCL11 mRNA quantification 
Total RNA was extracted from cells using TRIZOL reagent (Invitrogen Corp., Carlsbad, CA) following 

the manufacturer’s instructions. For the analysis, the total RNA (1 μg) was reverse-transcribed using the 
PrimeScriptTM RT Reagent Kit with the gDNA Eraser (Code no. RR047A, Takara). The gene expression 
analysis was performed by qRT-PCR with SYBR Premix EX TaqTM II (Code no. RR820A, Takara) using the ABI 
PRISM 7900 sequence detector (Applied Biosystems, Foster City, CA, USA). The total amplification reaction 
volume of 20 µL contained 2× SYBR® Premix Ex TaqTMⅡ, 0.8 μmol/L primers, and 1 μL of template cDNA. 
Thermal cycling was carried out for 30 s at 95 °C, followed by 40 cycles of 5 s at 95 °C, and 30 s at 60 °C. Each 
PCR assay was performed in triplicate, and the changes in mRNA levels were normalized by the levels of the 
control gene mRNA (β-actin). The primers purchased from Sangon Biotech (Shanghai) are listed in Table1.

Table 1. Primers used for real-time quantitative PCR

Fig. 1. The chemical structure of 
ISL.
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Detecting CXCL9, CXCL10, CXCL11, and IL-6 levels in culture supernatant 
The expression of CXCL9 (catalog no. ELH-MIG, RayBio, USA), CXCL10 (catalog no. ELH-IP10, RayBio, 

USA), CXCL11 (catalog no. ELH-1TAC, RayBio, USA), and IL-6 (catalog no. 317297, R&D System, Minneapolis, 
MN) in supernatant were analyzed using ELISA kits according to the manufacturer’s recommendations. 
The absorbance was read at 450 nm using a microtiterplate reader (BioRad, Hercules, CA). Assays were 
performed in duplicate. Background activity in the negative control wells was subtracted from the 
experimental wells.

Western blot assay
The cells were lysed in RIPA lysis buffer (catalog no. C1053, Applygen Technologies Inc.) with protease 

and phosphatase inhibitor cocktail (catalog no.78440, Pierce, USA) for 10 min on ice. Lysates were cleared 
by centrifugation at 12,000 g for 10 min at 4 °C. BCA Protein Quantification Kit (Product No. 23225, Thermo 
Scientific, Rockford, USA) was used to quantify the protein concentrations. Western blot analysis was 
performed as previously described [30]. Equivalent protein amounts (40 µg) were loaded onto 10 % or 
12 % SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA), 
which were subsequently blocked in TBST containing 1% BSA and target proteins were detected with the 
following primary antibodies: p-JAK1 (#3331), JAK1 (#3332), p-JAK2 (#3776s), JAK2 (#3230s), p-STAT1 
(#8826), STAT1 (#9172), p-JNK (#4668p), JNK (#9258p), p-ERK 1/2 (#4370p), ERK 1/2 (#4695p), p-p38 
MAPK (#4511), p38 MAPK (#9212p), p-PI3K (#4228s), PI3K (#4257), p-Akt (#4060), Akt (#9272); 
IRF3 (#4302s), MyD88 (#4283s), GAPDH (#5174), p-NF-κB p65 (#3036), NF-κB p65 (#ab7970); p-IκBα 
(#2859S) and IκBα (#4812). NF-κB p65 were obtained from Abcam, and the remaining antibodies were 
purchased from Cell Signaling Technology. After incubating at 4°C overnight, the membranes were incubated 
with HRP-conjugated anti-mouse or anti-rabbit immunoglobulin G (Southern Biotechnology Associates, 
Inc., Birmingham, AL, USA) diluted in TBST with 5 % non-fat milk for 1 h at room temperature. Then the 
blots were visualized and detected with enhanced chemiluminescence (Thermo Fisher Scientific Inc., 
Rockford) following exposure to X-ray films. The protein levels were normalized by the GAPDH proteins. 
The densitometric analysis was performed using Quantity One v4.62 (Bio-Rad, Inc., Berkeley, CA, USA).

Statistical analysis
Statistical analyses were performed using SPSS 17.0 for Windows (SPSS Inc, Chicago, IL, USA) or 

GraphPad Prism 5.0 software (GraphPad Software Inc,USA). Analysis of variance (ANOVA) and LSD tests 
were used for comparisons among the groups and between the paired data, respectively. When the data 
were not normally distributed, the Mann-Whitney U test and the one-way non-parametric ANOVA (Kruskal-
Wallis test) were used to compare quantitative variables between two groups and among more than two 
groups, respectively. Data were expressed as the mean ± SD and P value < 0.05 was considered to reveal a 
significant difference.

Results

Maximal chemokines induction in IFN-γ-stimulated HepG2 and L02 cells without an 
influence on the viability of hepatocytes
Fig. 2A showed that IFN-γ at 20 ng/ml or 40 ng/ml inhibited the growth and viability 

of HepG2 cells significantly (P < 0.05), whereas all concentrations of IFN-γ did not affect the 
viability of L02 cells (Fig. 2B). As shown in Fig. 3, the levels of IFN-γ inducible chemokines 
CXCL9, CXCL10, CXCL11 and inflammatory cytokine IL-6 (data not shown) were very low 
in unstimulated cells, but they were up-regulated in a dose- and time-dependent fashion 
in cells exposed to IFN-γ (P < 0.05 or P < 0.01). However, the induction effect of IFN-γ on 
CXCL11 was not so obvious in HepG2 cells. The levels of all these chemokines reached the 
peak when exposed to IFN-γ at 10 ng/ml for 48 h. Therefore, the stimulating cells with IFN-γ 
at 10 ng/ml for 48 h would be used in our next experiments.

ISL attenuates chemokines transcription in IFN-γ-stimulated HepG2 and L02 cells
The mRNA levels of CXCL9, CXCL10, and CXCL11 were analysed using qRT-PCR to 

examine the effect of ISL on the production of these chemokines. Fig. 4 showed that the 
mRNA expression levels of CXCL9, CXCL10, and CXCL11 in the IFN-γ-induced cells were 
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Fig. 2. The effects of IFN-γ and ISL on cells viability. (A-B) HepG2 and L02 cells were seeded in 96-well 
plates in triplicate. After 16 h, cells were treated with various doses of IFN-γ for 48 h, cell viability was de-
termined by CCK8 assay. (C-D) HepG2 and L02 cells were treated with IFN-γ (10 ng/ml) in the presence and 
absence of ISL (1.25, 2.5, 5 μg/ml) for 48 h, and control group was treated with 0.2 % DMSO. After treatment, 
cell viability was evaluated as described in the materials and methods. Each bar represented mean ± SD 
from 3 independent experiments. *P < 0.05, IFN-γ (20 ng/ml) group vs. IFN-γ (10 ng/ml) group. 

significantly higher than those in control group (P < 0.05 or P < 0.01). However, ISL 
pretreatment drastically restored CXCL9, CXCL10 or CXCL11 mRNA expression levels in 
response to IFN-γ in a dose-dependent manner (P < 0.05 or P < 0.01). Treatment of ISL at 
5 μg/ml alone did not affect the basal level of CXCL9, CXCL10, and CXCL11 production. And 
as shown in Fig. 2C and Fig. 2D, ISL at a concentration of up to 5 μg/ml did not affect the 
viability of two cell lines.

Effects of ISL on IFN-γ-inducible genes and IL-6 protein levels in IFN-γ-stimulated HepG2 
and L02 cells
To investigate IFN-γ-dependent inflammatory responses, the CXCL9, CXCL10, CXCL11, 

and IL-6 levels in the supernatant were measured by ELISA. As shown in Fig. 5, the 
significant increased CXCL9, CXCL10, CXCL11, and IL-6 levels were observed at 48 h after 
IFN-γ administration (P < 0.05 or P < 0.01), which could be reversed by ISL treatment (P 
< 0.05 or P < 0.01). However, upon exposure to IFN-γ, the level of CXCL11 was increased 
least among these chemokines. Moreover, compared with the IFN-γ induced cells, less than 
50 % reduction in IL-6 level was shown when ISL was given at a dose of 5 μg/ml in the 
two cells (Fig.5D). These results indicate that ISL could exhibit stronger inhibitory effects 
on the expression of IFN-γ inducible chemokines than those of cytokines in IFN-γ-induced 
hepatocytes.

Effects of ISL on the activation of IFN-γ/JAKs/STAT1 and NF-κB signaling pathways in IFN-
γ-stimulated HepG2 and L02 cells
The activation of IFN-γ/JAKs/STAT1 and NF-κB signaling pathways are determined to 

explore the mechanisms underlying the suppression effect of ISL on IFN-γ-stimulated genes. 
Fig. 6 showed that although there were no significant differences in unphosphorylated 
JAKs/ STAT1 and NF-κB protein levels between control and IFN-γ-induced groups, the 
phosphorylated levels of JAKs/STAT1 and NF-κB were increased significantly in IFN-γ-
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induced cells (P < 0.01), as compared with control group. However, ISL pretreatment could 
not reverse the IFN-γ-induced increase in phosphorylated JAK2 and NF-κB but not JAK1/
STAT1 protein levels (P < 0.05). As shown in Fig. 6A, the phosphorylated levels of JAK1/STAT1 
increased markedly in response to IFN-γ, and pretreating with ISL at 1.25-5 μg/ml upon 
exposure to IFN-γ inhibited the phosphorylated levels of JAK1/STAT1 in a dose-dependent 
manner in both HepG2 and L02 cells (P < 0.05 or P < 0.01). Suggesting that ISL is effective for 
inhibiting JAK1/STAT1 signaling pathway to affect IFN-γ-inducible genes production.

Effects of ISL on the activation of IRF3/ MyD88, MAPKs, PI3K/Akt signaling pathways in 
IFN-γ-stimulated HepG2 and L02 cells
We next investigated the activation of IRF3/MyD88, MAPKs, and PI3K/Akt signaling 

pathways in cells. Fig. 7 showed that although there were no significant differences in 
basic IRF3/MyD88, ERK1/2, JNK and PI3K/Akt protein levels between the control and 

Fig. 3. IFN-γ stimulation induces the expression of IFN-γ- inducible genes in human hepatocytes. Cells were 
treated as illustrated in materials and methods, and the supernatant was harvested after incubation for 12, 
24, 48 h and subjected to the ELISA analysis to detect the levels of CXCL9, CXCL10, and CXCL11. The fold 
change expression of the indicated genes relative to their expression in unstimulated cultures is shown. 
Each bar represented mean ± SD from 3 independent experiments. (A-F) The levels of CXCL9, CXCL10, and 
CXCL11 in the supernatant of HepG2 and L02 cells, respectively. *P < 0.05 and **P < 0.01, IFN-γ (10 ng/ml) 
group vs. IFN-γ (5 ng/ml) group; BD, below detection limit.



Cell Physiol Biochem 2015;37:501-514
DOI: 10.1159/000430372
Published online: August 28, 2015

© 2015 S. Karger AG, Basel
www.karger.com/cpb 507

Wu et al.: Isoliquiritigenin Inhibits Interferon-γ-Inducible Genes Expression in 
Hepatocytes and its Mechanism

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

Fig. 4. ISL treatment suppress the 
mRNA levels of CXCL9, CXCL10, and 
CXCL11 in HepG2 and L02 cells. HepG2 
and L02 cells were incubated in the 
presence and absence of incremental 
doses of ISL (1.25, 2.5, 5 μg/ml) for 1 
h and subsequently stimulated with 
IFN-γ (10ng/ml) for 48 h. Cells were 
collected for RNA isolation, and then 
qRT-PCR analyses for mRNA levels of 
CXCL9, CXCL10, and CXCL11 were per-
formed as described in materials and 
methods. Similar results were obtained 
in 3 independent experiments. The ex-
pression levels of CXCL9, CXCL10, and 
CXCL11 in IFN-γ-treated group were 
arbitrarily assigned a value of 1, and 
the data are presented as percentage 
reductions. (A-C) Relative mRNA levels 
of CXCL9, CXCL10, and CXCL11 in the 
HepG2 and L02 cells, respectively. Data 
value are presented as mean ± SD from 
3 independent experiments. #P < 0.05 
and ##P < 0.01, compared with the un-
treated control group; *P < 0.05 and **P 
< 0.01, compared with the IFN-γ-tre-
ated group; BD, below detection limit.

Fig. 5. ISL attenuates the expression levels of IFN-γ-inducible genes and IL-6 in HepG2 and L02 cells. HepG2 
and L02 cells were cultured in 96-well plates and divided into control (0.2 % DMSO), ISL (5 μg/ml), IFN-γ 



Cell Physiol Biochem 2015;37:501-514
DOI: 10.1159/000430372
Published online: August 28, 2015

© 2015 S. Karger AG, Basel
www.karger.com/cpb 508

Wu et al.: Isoliquiritigenin Inhibits Interferon-γ-Inducible Genes Expression in 
Hepatocytes and its Mechanism

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

Fig. 6. ISL inhibits the activation of JAK/STAT and NF-κB signaling pathways. HepG2 and L02 cells cultured 
in 6-well plates were divided into groups as follows: control (0.2 % DMSO), ISL (5 μg/ml), IFN-γ (10 ng/ml), 
and IFN-γ plus ISL (10 ng/ml IFN-γ plus 1.25, 2.5, and 5 μg/ml ISL, respectively) groups. The phosphoryla-
tion of the JAK/STAT and NF-κB signaling pathways was analyzed by western blot analysis. (A) The phos-
phorylation and total JAKs/STAT1 levels in HepG2 and L02 cells. (B) The phosphorylation and total IκBα/
NF-κB levels in HepG2 and L02 cells. Data are representative of 3 independent experiments. *P < 0.05 and 
**P < 0.01, compared with IFN-γ treatment group; #P < 0.05 and ##P < 0.01, compared with control group.

(10 ng/ml), and IFN-γ plus ISL (10 ng/ml IFN-γ plus 1.25, 2.5, and 5 μg/ml ISL, respectively) groups. The 
concentrations of CXCL9, CXCL10, CXCL11, and IL-6 in the culture supernatant were determined by ELISA 
(n = 5). The expression levels of the indicated proteins in IFN-γ-treated group were arbitrarily assigned a 
value of 1, and the data are presented as percentage reductions. (A-D) The concentrations of CXCL9, CXCL10, 
CXCL11, and IL-6 in the culture supernatant of two hepatocytes. Results are presented as mean ± SD from 3 
independent experiments. #P < 0.05 and ##P < 0.01, compared with untreated control group; *P < 0.05 and 
**P < 0.01, compared with IFN-γ-treated group; BD, below detection limit.

IFN-γ-induced cells, the phosphorylated levels of all proteins except the P38/MAPK were 
increased dramatically in cells exposed to IFN-γ, as compared with control group (P <0.05 
or P <0.01). However, treatment of ISL at 1.25-5 μg/ml could decrease the phosphorylated 
IRF3/MyD88, ERK1/2 and JNK, and PI3K/ Akt levels in a dose-dependent manner (P < 0.05 
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or P < 0.01). These results clearly suggested that ISL suppressed IFN-γ inducible chemokines 
and cytokines expression, at least, in part through inhibting the actvation of IRF3/MyD88, 
ERK-MAPK, JNK-MAPK, and PI3K/Akt signaling pathways.

Fig. 7. ISL suppress the activation of IRF3/MYD88, MAPK and PI3K/Akt signaling pathways. HepG2 and 
L02 cells cultured in 6-well plates were divided into groups as follows: control (0.2 % DMSO), ISL (5 μg/ml), 
IFN-γ (10 ng/ml), and IFN-γ plus ISL (10 ng/ml IFN-γ plus 1.25, 2.5, and 5 μg/ml ISL, respectively) groups. 
The activation of the IRF3/MYD88, MAPK and PI3K/Akt signaling pathway was analyzed by western blot 
analysis. GAPDH was used as internal reference control. (A-C) The phosphorylation and total IRF3/MyD88, 
ERK, JNK, p38 and PI3K/Akt levels in the two kinds of cells. Data are representative of 3 independent expe-
riments. *P < 0.05 and **P < 0.01, compared with IFN-γ treatment group; #P < 0.05 and ##P < 0.01, compared 
with control group.



Cell Physiol Biochem 2015;37:501-514
DOI: 10.1159/000430372
Published online: August 28, 2015

© 2015 S. Karger AG, Basel
www.karger.com/cpb 510

Wu et al.: Isoliquiritigenin Inhibits Interferon-γ-Inducible Genes Expression in 
Hepatocytes and its Mechanism

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

Discussion

The present study aims to identify ISL as an anti-inflammatory candidate to be used 
in the treatment of liver diseases. Persistent hepatic inflammation is the main mechanism 
responsible for the progression of liver diseases. And the increased binding of the chemokine 
receptor CXCR3 to its ligands released from the cells especially parenchymal hepatic cells in 
patients with liver diseases may play an important role in perpetuating liver injury [7, 18]. 
CXCR3 and its ligands have a broad spectrum of biological activities, and they are strongly 
linked to Th1-type inflammation and the establishment of Th1 amplification loop mediated 
by IFN-γ in vitro and in vivo [3]. High levels of three chemokines (CXCL9-11) reflect an 
inflammatory syndrome and are associated with a worse prognosis in patients with liver 
diseases [16, 18]. CXCL9-11 were identified as IFN-γ inducible protein in many types of 
cells including hepatocyte [18, 31, 32]. IFN-γ-stimulated HepG2 and L02 cells, which are 
used as the experimental model of inflammation in the present study to study the anti-
inflammation effect of ISL. IFN-γ receptors or CXCR3 are well expressed at high levels in 
the two hepatocytes. However, the expression of IFN-γ-induced inflammatory genes in these 
cells is rarely well characterized. 

IFN-γ inducible chemokines have been extensively investigated and their relationship 
with liver diseases was also assessed. Up-regulation of these chemokines are known to 
predict a worse prognosis in patients with various chronic liver diseases [12-16], such as 
viral hepatitis[13, 18, 20, 31], alcoholic hepatitis or non-alcoholic steatohepatitis [19], liver 
transplantation [33], autoimmune hepatitis [34], liver cirrhosis [12, 17], and so on. These 
studies revealed that the serum and intrahepatic levels of these chemokines are increased 
during liver injury, and therefore contributing to the development of clinically hepatic 
disease [7, 12-20]. The experimental studies indicated that deficiency of CXCR3 or its 
ligands significantly impairs cell-mediated immunity in various disease models [14, 21, 23]. 
Therefore, CXCR3 activation may promote effective immune responses. Modulation of these 
chemokines on the basis of routine treatment might help to alleviate symptoms and improve 
the treatment efficiency [22-25]. Taken together, these findings indicate that the IFN-γ 
inducible chemokines system could be a candidate therapeutic target for the treatment of 
liver diseases that acts by attenuating active inflammation.

Results from our study showed that CXCL9-11 are undetectable in the supernatant of 
either cell cultured without IFN-γ or treated with ISL only. But the expression of CXCL9-
11 were increased significantly in IFN-γ-stimulated HepG2 and L02 cells. The expression 
of CXCL9-11 could be reduced dramatically by ISL treatment at both the mRNA and protein 
levels without affecting the viability of the cells. We have also explored the effect of ISL on 
IFN-γ-induced inflammation in murine macrophage-like RAW264.7 cells (RAW264.7 cells) 
and the results showed the same (data not shown). Subsequently, the molecular mechanisms 
by which ISL decreasing CXCL9-11 expression in hepatocytes were investigated. To our 
knowledge, our data for the first time demonstrate that ISL suppress the increased CXCL9-11 
expression in IFN-γ-induced HepG2 and L02 cells at least partly via inhibiting the activation 
of IFN-γ/JAK1/STAT1, IRF3/MyD88, ERK/MAPK, JNK/MAPK and P13K/Akt but not IFN-γ/
JAK2, NF-κB, and p38/MAPK signaling pathways.

Herbal remedies have long been used in the treatment of different diseases including 
viral infections and liver diseases. Their high chemical diversity, drug-likeliness properties, 
and capacity of being absorbed and metabolized by the body with little or no toxicity than 
synthetic ones make plant derived compounds unique. Isoliquiritigenin is a flavonoid 
components isolated from licorice with the simple chalcone structure as glycyrrhizin which 
is widely used in the treatment of many diseases such as liver diseases. Many previous 
studies have demonstrated its variety of biological functions, such as anti-inflammatory 
[27], anti-oxidative [26], chemopreventive activities [29], and anti-platelet aggregation 
properties [28], and so on. Also, ISL has been reported to suppress replication of HCV in a 
dose-dependent manner [35]. 
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IFN-γ/JAKs/ STAT1 pathway is the classical pathway to regulate IFN-inducible genes 
expression, and several studies showed that the expression of CXCL9-10 was induced via 
the activation of JAK1, JAK2/STAT1 [36]. Also, several other studies pointed out that the 
transcription activation of IFN-inducible genes (eg. CXCL10) is mediated by NF-κB signaling 
pathway [36-38]. Thus it seems that inhibition of CXCL9-11 expression in target cells by 
targeting the JAKs/STAT1 and NF-κB signaling pathways could exert anti-inflammatory 
effects. Therefore, the involvement of these signaling pathways in ISL-mediated suppression 
of IFN-γ-induced CXCL9-10 expression is determined in our study. The results show that ISL 
treatment inhibit IFN-γ-induced JAK1/STAT1but not JAK2 and NF-κB activation. Suggesting 
the existence of other mechanisms underlying ISL attenuating CXCL9-11 production in 
hepatocytes. 

We subsequently explore other potential mechanisms underlying the suppression of 
ISL on CXCL9-11 in hepatocytes. Besides JAKs/STAT1, MyD88 involves in IFN-γ-mediated 
signaling. IFN-γ can activate p38 in a MyD88-dependent way in macrophages for IFN-γ-
induced CXCL10 expression [39]. MyD88-independent signaling mediated by IRF3 is also 
crucial positive regulator of IFN-inducible genes express, such as CXCL10 [38]. Moreover, 
previous studies reported that the induction of IFN-inducible genes in human macrophages, 
Hela cells, cancer cells, microglia and epithelial in response to various stimuli was via ERK, 
JNK, p38, and PI3K/Akt signaling pathways [39-44]. Previous reports have also reported that 
ISL exerted a number of effects through down-regulation of MAPK or PI3K/Akt signaling 
pathways [45, 46]. Therefore, it will be interesting to examine the effect of ISL on these 
signaling pathways. And our results demonsrate that inhibition of CXCL9-11 by ISL may 
partly through down-regulating the IFN-γ-induced activation of IRF3/MyD88, ERK/MAPK, 
JNK/MAPK, and PI3K/Akt signaling pathways.

In conclusion, the study provides potential mechanisms underlying ISL regulating 
IFN-γ signaling and then controlling inflammation. Our study evaluate the possibility of the 
therapeutic application of ISL in the treatment of liver diseases. And our findings suggest a 
novel role of ISL in the suppression of the protein and mRNA levels of CXCL9-11 induced by 
IFN-γ. Which may partly through inhibiting the activation of JAK1/STAT1, IRF3/MyD88, ERK/
MAPK, JNK/MAPK and PI3K/Akt signaling pathways. The above results provide preliminary 
evidence that ISL can represent a new generation of anti-inflammatory strategies in liver 
diseases. However, when applied in clinical practice, results from in vitro studies should be 
interpreted with caution.

Abbreviation

Isoliquiritigenin (ISL); Interferon-γ (IFN-γ); Monokine induced by IFN-γ(Mig)/
Chemokine (C-X-C motif) ligand 9 (CXCL9); Interferon (IFN)-γ-induced protein 10 (IP-10)/
Chemokine (C-X-C motif) ligand 10 (CXCL10); IFN-inducible T-cellαchemoattractant (I-TAC)/
Chemokine (C-X-C motif) ligand 11 (CXCL11); Interleukin 6 (IL-6); Mitogen-activated protein 
kinase (MAPK); Janus kinase (JAK); Signal transducer and activator of transcription (STAT); 
Nuclear factor (NF)-κB; Interferon regulatory factor 3 (IRF3); Myeloid differentiation factor 
88 (MyD88); Mitogen-activated protein kinase (MAPK); Phosphatidylinositol 3-kinase 
(PI3K); Protein Kinase B (Akt); Extracellular signal-regulated kinase (ERK); C-Jun N-terminal 
kinase (JNK); Lipopolysaccharide (LPS); Double-stranded RNA (dsRNA)
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