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We propose a more effective tracking algorithm which can work robustly in a complex scene such as illumination, appearance
change, and partial occlusion. The algorithm is based on an improved particle filter which used the efficient design of observation
model. Predefined convolutional filters are used to extract the high-order features. The global representation is generated by
combining local features without changing their structures and space arrangements. It not only increases the feature invariance,
but also maintains the specificity. The extracted feature from convolution network is introduced into particle filter algorithm. The
observation model is constructed by fusing the color feature of the target and a set of features from templates which are extracted
by convolutional networks without training in our paper. It is fused with the features extracted from convolutional network for
tracking. In the process of tracking, the template is updated in real time, and then the robustness of the algorithm is improved.
Experiments show that the algorithm can achieve an ideal tracking effect when the targets are in a complex environment.

1. Introduction

Object tracking has a wide application prospect in computer
vision. Recently, many researchers have carried out a lot of
research on it in the real world [1]. Detecting and tracking the
target is a very difficult task in practical application [2]. Many
factors can impact the performance of the tracking algorithm.
These issues are made up of attitude change, appearance vari-
ation owing to illumination changes, partial occlusion, and
background noise [3, 4]. To solve all these problems, we need
more efficientmachine learning [5] and feature extraction [6]
to describe the target.

At present, the tracking algorithms mainly include two
types: generative model and discriminative model [5]. Parti-
cle filter is one of the representatives of generative tracking
algorithm. Particle filters have been used widely in the track-
ing problem. Particle filter algorithm has the advantage of
simplicity and flexibility. And it is easy to handle non-Gaus-
sian andmultimodality systemmodel.There aremany related
literatures presented in [7–11].The information fromdifferent
measurement sources can be used in the framework of parti-
cle filter.This has greatly improved the tracking performance.
But in the actual process of tracking, there are still a lot of
ways to improve the effectiveness of the tracking algorithm.

In addition, the classical particle filter usually adopts the dy-
namic model with global information. Regardless of whether
the target is blocked or deformed, it treats the target as a
whole.This leads to the neglect of the local information of the
target.When the target is partially occluded and local appear-
ance of it changes, particle filter algorithm cannot accurately
track the target.

Discriminative methods are used to distinguish targets
and backgrounds by training classifiers. At present, most of
deep learning methods are also attributed to discriminative
frames in the target tracking. Deep learning has made out-
standing achievements in the field of image classification and
target detection. It has become one of themost powerful auto-
matic feature extraction methods. The deep network can get
high-level abstract features gradually from low-level features
through learning and mapping of multiple levels. These
abstract features have high dimension and strong distinction.
High accuracy of classification and regression tasks can be
achieved by using simple classifier. At present, some tracking
methods based on learning feature have been proposed,
using convolutional networks trained offline [12, 13]. In track-
ing, the target localization is achieved by intercepting the
characteristics of the target in different layers of the network.
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The key point in all of these methods is how to learn an
effective feature extraction offline with a great deal of aux-
iliary data, and it consumes a lot of time. The methods also
have given no consideration to the similar local structure and
inner geometry distribution information between the targets
over consequent frames, which is handy and effective in dis-
tinguishing the target from background for visual tracking.
In addition, the pure use of the deep learning method does
not solve the problem of tracking drift, and it needs to be
combined with other methods in order to better play the role
of the depth network [14, 15].

In summary, a target tracking algorithm combining par-
ticle filter and convolution network is proposed in the paper.
The extracted features from convolutional networks are
introduced into the particle filter framework.The target block
is represented by sparse representation.The local information
and spatial information of the target are fully exploited to
represent the state change of the object. According to the
target state, different information is dealt with. Because the
global pieces of information of particle filter are combined to
determine the position of the current target, the local appear-
ance change and partial occlusion problem of the target are
better solved. And in the tracking process, the template is
updated according to the tracking results, which improves
the robustness of the algorithm to a certain extent. Experi-
ments show that when the target is in a complex environment,
the algorithm can achieve an ideal tracking effect.

2. Particle Filtering Tracking Formula

The tracking problem for particle filter is to estimate the pos-
terior probability density at the 𝑡moment, which is obtained
by two steps [10].

Step 1 (prediction). First, suppose the initial value 𝑝(𝑠0) of
the probability density is known and the posterior probability
density function 𝑝(𝑠𝑡−1 | 𝑜1:𝑡−1) is also known at the 𝑡 − 1
moment. s𝑡 is described as a three-dimension vector; s𝑡 =[𝑠𝑥𝑡 , 𝑠𝑦𝑡 , 𝑠𝑠𝑡]𝑇. 𝑠𝑥𝑡 , 𝑠𝑦𝑡 express the position of object. 𝑠𝑠𝑡 expresses
the size change of the object.Then the prior probability 𝑝(𝑠𝑡 |𝑜1:𝑡−1) is

𝑝 (𝑠𝑡 | 𝑜1:𝑡−1) = ∫𝑝 (𝑠𝑡 | 𝑠𝑡−1) 𝑝 (𝑠𝑡−1 | 𝑜1:𝑡−1) 𝑑𝑠𝑡−1, (1)

where𝑝(𝑠𝑡 | 𝑠𝑡−1) is defined by the state equation of the target.
Step 2 (updating). Finally, 𝑝(𝑠𝑡 | 𝑜1:𝑡) is obtained from the
observation model of the system.

𝑝 (𝑠𝑡 | 𝑜1:𝑡) = 𝑝 (𝑠𝑡 | 𝑜𝑡, 𝑜1:𝑡−1)
= 𝑝 (𝑜𝑡 | 𝑠𝑡, 𝑜1:𝑡−1) 𝑝 (𝑠𝑡 | 𝑜1:𝑡−1)𝑝 (𝑜𝑡 | 𝑜1:𝑡−1)
= 𝑝 (𝑜𝑡 | 𝑠𝑡) 𝑝 (𝑠𝑡 | 𝑜1:𝑡−1)𝑝 (𝑜𝑡 | 𝑠1:𝑡−1) .

(2)

The observation likelihood function 𝑝(𝑜𝑡 | 𝑠𝑡) is deter-
mined by the observation of the target. 𝑝(𝑜𝑡 | 𝑜1:𝑡−1) is a
normalization constant.

In fact, since the integral of formula (1) is difficult to
realize, the recursive Bayesian filtering (i.e., particle filter) is
simulated by the nonparametric Monte Carlo method. The
basic formula is

𝑝 (𝑠𝑡 | 𝑜1:𝑡) ≈ 𝑁∑
𝑖=1

𝑤𝑖𝑡𝛿 (𝑠𝑡 − 𝑠𝑖𝑡) , (3)

where 𝑤𝑖𝑡 is the weight of the corresponding particle. The
weight of the particle is updated according to the observation
value. That is,

𝑤𝑖𝑡 = 𝑤𝑖𝑡−1𝑝 (𝑜𝑡 | 𝑠
𝑖
𝑡) 𝑝 (𝑠𝑖𝑡 | 𝑠𝑖𝑡−1)𝑞 (𝑠𝑖𝑡 | 𝑠𝑖𝑡−1, 𝑜𝑡) , 𝑁∑

𝑖=1

𝑤𝑖𝑡 = 1, (4)

where 𝑞(𝑠𝑖𝑡 | 𝑠𝑖𝑡−1, 𝑜𝑡) is the proposed distribution (importance
density) function in Bayesian importance sampling. The
optimal choice is to select the proposed distribution as a
priori density. That is, 𝑞(𝑠𝑖𝑡 | 𝑠𝑖𝑡−1, 𝑜𝑡) = 𝑝(𝑠𝑖𝑡 | 𝑠𝑖𝑡−1). Then
the weight is

𝑤𝑖𝑡 = 𝑤𝑖𝑡−1𝑝 (𝑜𝑡 | 𝑠𝑖𝑡) ,
𝑁∑
𝑖=1

𝑤𝑖𝑡 = 1. (5)

Finally, the real state estimate of the target is obtained;
that is,

𝑠𝑡 = 𝑁∑
𝑖=1

𝑠𝑖𝑡𝑤𝑖𝑡. (6)

3. Model Construction and Implementation

3.1. Target Motion Model. For images in a new frame, each
particle carries out state transition according to the following
motion model:

𝑋𝑡 = 𝑋𝑡−1 + 𝜇𝑡𝜁𝑡, (7)

where 𝜁𝑡 is the Gauss white noise and 𝜇𝑡 is the propagation
radius the particle, which is proportional to the average
state change of the target at the previous moment, 𝜇𝑡 =(1/𝑘)∑𝑡𝑛=𝑡−𝑘 |𝑋𝑛 − 𝑋𝑛−1|.
3.2. Target Observation Model. Each input image is divided
into a fixed size of 𝑛 × 𝑛 pixels, denoted as 𝐼 ∈ R𝑛×𝑛. A set
of local image blocks 𝑦 ∈ {𝑌1, . . . , 𝑌𝑙} is obtained by densely
sampling through sliding a window of size 𝑘 × 𝑘 (𝑘 is called
the receptive field size). 𝑌𝑖 ∈ R𝑘×𝑘 is the 𝑖th image block and𝑙 = (𝑛−𝑘+1)×(𝑛−𝑘+1). Each block𝑌𝑖 is preprocessed through
subtracting the mean and ℓ2 normalization, respectively [11].

3.2.1. Color Model

(1) Target Model. 𝑠𝑖, 𝑖 = 1 : 𝑛 is vectorized image patches, with
zero as the center. The number of Eigen values’ bin is 𝑚. The
probability of the Eigen value of the target model is [16]

𝑄 = {𝑄𝑎}𝑎=1,...,𝑚 ,
𝑄𝑎 = 𝐶1 𝑛∑

𝑖=1

𝑘 (󵄩󵄩󵄩󵄩𝑠∗𝑖 󵄩󵄩󵄩󵄩2) 𝛿 [𝐵 (𝑠∗𝑖 ) − 𝑎] ,
(8)
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where 𝑘(𝑠𝑖) is kernel function used to adjust the size of the
weights, 𝛿 is delta function, 𝐵(𝑠∗𝑖 ) represents the color value
of pixels at 𝑠∗𝑖 , 𝑎 is the color index of the histogram, and 𝐶1 =1/∑𝑛𝑖=1 𝑘(‖𝑥∗𝑖 ‖2) is normalized constant coefficient.

(2) Target Candidate Model. For empathy, taking 𝑦 as the
center, the probability of the target candidate model is

𝑃̂ (𝑦) = {𝑃̂𝑎 (𝑦)}𝑎=1⋅⋅⋅𝑚 ,
𝑃̂𝑎 (𝑦) = 𝐶ℎ

𝑛ℎ∑
𝑖=1

𝑘(󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑠∗𝑖ℎ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)𝛿 [𝐵 (𝑠∗𝑖 ) − 𝑎] ,

(9)

where window radius is ℎ and 𝐶ℎ = 1/∑𝑛ℎ𝑖=1 𝑘(‖(𝑦 − 𝑠𝑖)/ℎ‖2)
is normalized constant coefficient.

(3) Similarity Function. In the paper, Bhattacharyya coeffi-
cients are used to calculate the similarity functions of two
models [17]:

𝜌 (𝑦) = 𝜌 [𝑃̂ (𝑦) , 𝑄] = 𝑚∑
𝑎=1

√𝑃̂𝑎 (𝑦)𝑄𝑎. (10)

It has a value of 0∼1. Then we suppose the distance
between the two target templates as

𝐷(𝑦) = √1 − 𝜌 [𝑃̂ (𝑦) , 𝑄]. (11)

The corresponding color observation probability of the
particle is obtained:

𝑝1 (o𝑡 | s𝑖𝑡) = 1√2𝜋𝜎2 exp(−
𝐷2 [𝑃̂ (𝑦) , 𝑄]

2𝜎2 ) , (12)

where mean square deviation is 𝜎 = 0.2.
3.2.2. Convolutional Networks Model. In order to describe
the target better, we applied convolutional networks to learn
robust representations for visual tracking without offline
training using a large amount of auxiliary data, which is
inspired by recent studies [11, 18]. First, we use predefined
convolutional filters to extract the high-order features. Sec-
ond, we generate a global representation by combining local
features which their structures and space arrangements need
not be changed. So it increases feature invariance while
maintaining specificity.

Step 1 (target layer). The 𝑘-means clustering method is used
to cluster out 𝑑 filters as a convolution kernel from 𝑙 = (𝑛 −𝑘 + 1) × (𝑛 − 𝑘 + 1) patch. The patch is F𝑜 = {𝐹𝑜1 , . . . , 𝐹𝑜𝑑} ⊂ 𝑦.
Given the 𝑖th filter F𝑜𝑖 ∈ R𝑘×𝑘, its response on the input image𝐼 is denoted with a feature map 𝑈𝑜𝑖 ∈ R(𝑛−𝑘+1)×(𝑛−𝑘+1), where𝑈𝑜𝑖 ∈ 𝐹𝑜𝑖 ⊗ 𝐼 and ⊗ is the convolution operator.

Step 2 (background layer). At the same time, the useful
background information around the target is used to dis-
tinguish the target from the background. 𝑀 samples are
selected around the background target, and 𝑘-means is used

to select a bank of filters F𝑏𝑖 = {𝐹𝑏𝑖,1, . . . , 𝐹𝑏𝑖,𝑑} ⊂ 𝑦. We use
the average pooling method to summarize each filter in F𝑏𝑖 ,
and generate the background context filter set F𝑏 = {𝐹𝑏1 =(1/𝑚)∑𝑚𝑖=1 𝐹𝑏𝑖,1, . . . , 𝐹𝑏𝑖,𝑑 = (1/𝑚)∑𝑚𝑖=1 𝐹𝑏𝑖,𝑑}. Then it does the
convolution with the input image 𝑈𝑏𝑖 ∈ 𝐹𝑏𝑖 ⊗ 𝐼. Finally, the
simple cell feature maps are defined as

𝑈𝑖 = 𝑈𝑜𝑖 − 𝑈𝑏𝑖 = (𝐹𝑜𝑖 − 𝐹𝑏𝑖 ) ⊗ 𝐼, 𝑖 = 1, . . . , 𝑑. (13)

Step 3 (convolution layer). At first, simple cell feature map
consists of the filter set 𝐹 = 𝐹𝑜 ∪ 𝐹𝑏. Then 𝑑 different feature
maps are stacked to construct a three-dimensional tensor
V ∈ R(𝑛−𝑘+1)×(𝑛−𝑘+1)×𝑑, that is, the combination of the charac-
teristic graphs. This kind of specificity has the characteristic
of shift and sensitivity. In addition, the warp region is 𝑛 × 𝑛,
which makes the characteristic of the target scale robust.

To increase the robustness of appearance change, we
represent the feature V by using the sparse representation.

k̂ = argmin
k
‖k − vec (V)‖22 + 𝜆1 ‖k‖1 + 𝜆2 ‖k‖22 . (14)

Then the solution of the model can be solved by using the
method of soft shrinkage [19]:

k̂ = soft (vec (V) , 𝜆𝑐𝑖)
= sign (vec (V))max (0, |vec (V)| − 𝜆𝑐𝑖) , (15)

where sign(⋅) is a sign function and 𝜆 is set to median value
of it and C = [𝑐1, 𝑐2, . . . , 𝑐𝑖, . . .], with 𝑐𝑖 ≥ 0.
Step 4 (model update). The update strategy is as follows. It is
a low pass filtering form, in which k𝑡 is the target template at
frame 𝑡, k𝑡−1 is the characteristic of the upper frame, and k̂𝑡−1
is the sparse expression of k𝑡−1.

k𝑡 = (1 − 𝜌) k𝑡−1 + 𝜌k̂𝑡−1, (16)

where 𝜌 is a learning parameter.
Observation model is defined by (17) in convolution

model.

𝑝2 (o𝑡 | s𝑖𝑡) ∝ exp−‖k𝑡−V
𝑖

𝑡
‖1
2 , 𝑖 = 1, . . . , 𝑟, (17)

where k𝑖𝑡 = vec(k𝑖𝑡) ⊙W.
k𝑖𝑡 is the 𝑖th candidate sample representation at 𝑡 frame

based on the complex cell features, where ⊙ expresses the
product of elements and W is an indicator function whose
element is defined as

𝑊𝑖 = {{{
1, if v𝑡 (𝑖) ̸= 0
0, otherwise. (18)

3.2.3. System Observation Model. The system observation
probability density function of each particle is

𝑝 (o𝑡 | s𝑖𝑡) = 𝑟 ⋅ 𝑝1 (o𝑡 | s𝑖𝑡) + (1 − 𝑟) 𝑝2 (o𝑡 | s𝑖𝑡)
0 ≤ 𝑟 ≤ 1. (19)
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Figure 1: Flow chart of the algorithm.

The parameter 𝑟 is used to regulate the proportion of
the observed probability of each feature in the total observed
probability. When the background is complex and the target
is partially occluded, the global positioning advantage of
color distribution should be fully exploited, and the 𝑟 value
should be increased at this time. When the color of the target
is different from the background color, the 𝑟 value should be
reduced, and the localization advantage of the convolution
feature can be fully exploited. Under normal circumstances,
we take 𝑟 < 0.5.

The flow chart of particle filter algorithm based on feature
fusion is displayed in Figure 1.

4. Experimental Results

4.1. Implementation Parameters Setup. We utilized the two-
layer convolutional network as a feature extractor in the
experiment. We made 𝑙 = (36 − 6 + 1) ∗ (36 − 6 + 1) warped
image patches obtained at the initial frame. The size of the
warped image is set to 32 × 32 (𝑛 = 32). We set the receptive
field size as 6 × 6 (𝑘 = 6) and set the number of filters as𝑑 = 100. The learning parameter 𝜌 in (16) is set to 0.95 and
the template is updated every frame.The standard deviations
of the target state of the particle filter are set as follows:𝜎𝑥 = 4,𝜎𝑦 = 4, 𝑟 = 0.4, and𝑁 = 600 particles are used.We compared
the improved algorithm with five other tracking algorithms
(CNT [11],MS [16],MTT [20], VTS [21], andCPF [22]).These
five algorithms all use the particle filter as the search mecha-
nism, and MTT, CNT, and VTS are sparse representation.

4.2. EvaluationMetrics. The tracking benchmark dataset [23]
is used for the experimental validation. To better analyze the
performance of the algorithm, we employ the videos with 11
attributes from complex scene [11].

In order to quantitatively evaluate the system, we use two
graphs including the success plot and the precision plot. The

success plot is calculated by the overlap rate: 𝑆 = Area(BT ∩
BG)/Area(BT∪BG). BT denotes the tracked boundary frame
and BG denotes the ground truth. The percentage of frames
with 𝑆 > 𝑡0 throughout all threshold 𝑡0 ∈ [0, 1] is used to
express success rates. At the same time, the precision plot
shows the percentage of frames between the given threshold
distance and the ground truth over the tracked positions. In
order to rank the trackers, we set the threshold to 20 pixels in
the precision mark represented. One-pass evaluation (OPE)
is used to express the average success and precision ratio of
target state in the ground truth [23].

4.3. Quantitative Analysis

(1) Whole Performance. We give the performance of the top
6 implemented tracking algorithms in Figure 2 according to
success and precision plots. It must be pointed out that all the
graphics are produced applying the benchmark evaluation
[23]; our proposed algorithm ranks firstly based on the
success rate while it ranks secondly based on the precision
rate. Note that the proposed algorithm exploits only simple
sparse image representation that encodes local structural
and geometric layout information of the target, and achieves
competitive performance compared to other methods. Fur-
thermore, even using only specific target information from
the first frame without learning with auxiliary training data,
our method performs well in contrast to the other methods.
This is mainly because the generic features learned offline
from numerous auxiliary data may not adapt well to object
appearance variations in target tracking.

(2) Performance of Basic Attribute. To analyze the perfor-
mance of the improved method, we need to use different
attributes to estimate the tracker for videos. In this paper, 11
attributes are selected. Figures 3 and 4 are, respectively, the
success plots and the correspondent precision plots [24]. We
note that our improved algorithm ranks within top 1 on 3 out
of multiple attributes in success plots. And the precision plots
rank within top 1 on 3.

Our method also ranks first for the video sequences with
the low resolution in all estimated trackers. It is difficult to
extract useful characters of the targets when the resolution of
the videos is low. In contrast, our algorithm extracts dense
information across the entire target region by convolution
operators to divide the target from the complex scene.

Our method ranks second which follows the CNT
methods on the video sequences with background clutter
attributes. The proposed algorithm uses background context
information that is updated online and pooled in every frame
and hence provides effective features to precisely locate ob-
jects from the clutters.

4.4. Qualitative Analysis

(1) The Variation of the Illumination and Posture. Figure 5
shows the successful tracking results on shaking and skating 1
seq.When great changes have taken place in the stage lighting
conditions, the posture of the target is drastically changed
owing to dancing or head shaking. Our algorithm effectively
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Figure 2: OPE of the success plots and precision plots in the top 6 trackers.

Success plots of OPE, out-of-plane rotation (39) 
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Success plots of OPE, occlusion (29) 
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Success plots of OPE, deformation (19) 
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Success plots of OPE, motion blur (12) 
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Success plots of OPE, fast motion (17) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s r

at
e

0.2 0.4 0.6 0.8 10
Overlap threshold

Success plots of OPE, in-plane rotation (31) 
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Figure 3: The success plots of videos with different attributes.
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Figure 4: The precision plots of videos with multiple attributes.
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Figure 5: Qualitative evaluation of the tracker on sequences shaking 1 and skating 1.

solved the posture changes because the observation model
is developed through online updating. In addition, the pro-
posed algorithm is robust with regard to illumination changes
because the observation model uses a hybrid template. But
other algorithms fail to track the targetwhile the light changes
exist simultaneously.

(2) Occlusion. Figure 6 gives the successful tracking results of
the improved algorithmwhile the object is occluded seriously
by other objects. Our method and CNT can track robustly
woman and jogging-1 seq. And the positioning of ourmethod

is more accurate.The twomethods are robust in the presence
of occlusion because of the efficient observation models. The
model used local features and recorded the appearance of the
target over time including the occlusion, appearance change,
and the mixing of the two. Furthermore, it is responsible for
various occlusions. But other algorithms fail to accurately
track the targets.

(3) Background Clutters. carDark is tested in Figure 7. Back-
ground clutter is drastic, and its appearance is similar to
the target itself. Under these circumstances, other tracking
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Figure 9: Qualitative evaluation about the tracker over sequences freeman3 and singer1 seq.

methods fail because of the interference of similar targets
around the car. But our algorithm succeeds in tracking.

(4) Deformation. Some successful tracking results of Singer2
seq are shown in Figure 8.There are illumination changes and

deformation in sequences. Only ourmethod performs well in
all of the sequences.

(5) Scale Changes. The tracking results of freeman3 and
singer1 seq are shown in Figure 9. In sequences, tracked
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targets have serious scale changes.For the freeman3 sequence,
a person moves towards the camera with a large scale varia-
tion in his face appearance. Furthermore, the appearance also
varies as the posture changes. The MTT, CPF, MS, and VTS
algorithms deviate from tracked targets from #330, whereas
the proposed and CNT algorithms succeed in tracking.
The MTT, CPF, MS, and VTS algorithms do not efficiently
complete tracking when the target has a large scale change in
the singer1 sequence. But our proposed method and CNT
achieve better performance. The proposed algorithm effec-
tively solves scale variation because the representation of
model is built on scale-invariant complex cell features.

5. Conclusion

Weput forward an effective trackingmethod by using particle
filter and convolutional network. Deep learning method is
used to extract effective features for robust tracking. The
algorithm efficiently solves the problems for appearance
changing and occlusion severely. The experimental results
showed that the improved method is better than traditional
tracking methods in drastic tracking surroundings. Since the
algorithm is extended easily by adding some more effective
feature information, the tracking results could be enhanced
further.
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