
UNIFORM ASYMPTOTIC NORMAL STRUCTURE,

THE UNIFORM SEMI-OPIAL PROPERTY AND

FIXED POINTS OF ASYMPTOTICALLY REGULAR

UNIFORMLY LIPSCHITZIAN SEMIGROUPS. PART I

MONIKA BUDZYŃSKA, TADEUSZ KUCZUMOW AND SIMEON REICH

Abstract. In this paper we introduce the uniform asymptotic normal struc-
ture and the uniform semi-Opial properties of Banach spaces. This part
is devoted to a study of the spaces with these properties. We also com-
pare them with those spaces which have uniform normal structure and with
spaces with WCS(X) > 1.

1. Introduction

Normal structure is one of the basic concepts in metric fixed point theory.
It was introduced by Brodskii and Milman [6] and applied in Kirk’s well-
known fixed point theorem [24]. Asymptotic normal structure appeared for
the first time in a paper by Baillon and Schöneberg [4] in which they general-
ized Kirk’s theorem. The semi-Opial property was considered in the context
of the fixed point property in product spaces [25]. To study more carefully
the geometric structure of Banach spaces Bynum [9] introduced the normal
structure coefficient N (X) which was applied by Casini and Maluta [10] to
obtain a fixed point theorem for uniformly lipschitzian mappings. This result
has been recently improved by Domı́nguez Benavides [15] . In his paper he
used both N (X) and the weakly convergent sequence coefficient WCS (X)
[9]. In the first part of the present paper we introduce new geometric co-
efficients: the asymptotic normal structure and the semi-Opial coefficients.
In the second part of our paper we apply them to the fixed point theory of
uniformly lipschitzian nonlinear semigroups.
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2. The asymptotic normal structure and the semi-Opial
coefficients

Let (X, ‖·‖) be a Banach space. As we mentioned in the Introduction,
Bynum [9] introduced the coefficient N (X) related to normal structure.
Namely, he defined N (X) as the biggest constant k such that

k · r (C) ≤ diam (C)

for each nonempty bounded convex set C ⊂ X, where diam (C) denotes the
diameter of C and r (C) is the Chebyshev radius of C with respect to itself,
i.e.,

r (C) = inf
y∈C

sup
x∈C

‖x − y‖ .
If {xn}n≥1 is a bounded sequence in (X, ‖·‖) and {xni}i≥1 is a subse-

quence, then we denote by ra

(
{xni}i≥1

)
the asymptotic radius for the norm

‖·‖ of this subsequence with respect to the set conv
(
{xn}n≥1

)
( the closure

in the norm ‖·‖ of the convex hull of the whole sequence {xn}n≥1 ), i.e.,

ra

(
{xni}i≥1

)
=

= inf
{
ra

(
x, {xni}i≥1

)
= lim sup

i
‖x − xni‖ : x ∈ conv

(
{xn}n≥1

)}
.

Throughout this paper we will use the following notation:

αk = diam‖·‖
(
{xn}n≥k

)
, diama ({xn}) = lim

k
αk = α.

One can consider (see [9] and [2]) the following weakly convergent sequence
coefficient:

WCS (X) = sup {k : k · ra ({xn}) ≤ diam ({xn})
for every weakly convergent sequence {xn} in X} =

= sup
{
k : k · lim sup

n
‖xn‖ ≤ diam ({xn})

for every weakly null sequence {xn} in X

}
.

Let us observe that in the above definition of WCS (X) , diam ({xn}) can
be replaced by diama ({xn}) and that our definition is a little different from
the one in common use.
We always have

1 ≤ N (X) ≤ WCS (X) ,
and for some Banach spaces (see e.g. [15]) the strict inequalities

1 < N (X) < WCS (X)

are valid.
Recall that a bounded sequence {xn}n≥1 with xn − xn+1 → 0 is called

asymptotically regular.
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We say that X has asymptotic normal structure (with respect to the weak
topology) [4], ANS (respectively, w-ANS) for short, if for each bounded
closed (weakly compact) and convex subset C of X consisting of more than
one point and each asymptotically regular sequence {xn} in C, there is a
point x ∈ C such that

lim inf
n

‖x − xn‖ < diam (C)

(see also [1, 2, 7, 8, 19, 20, 26, 30, 36]).
Recall that a Banach space is said to have the semi-Opial (weak semi-

Opial) property [8, 25], SO (w-SO) for short, if for each bounded noncon-
stant asymptotically regular sequence {xn} (with a weakly compact convex
hull), there exists a subsequence {xni} , weakly convergent to x, such that

lim inf
i

‖x − xni‖ < diam ({xn}) .
Let us observe that in Examples 1 and 5 on page 461 in [25] the authors use,
in fact, the weak semi-Opial property. Similarly in Theorem 4 in [25] we can
assume that (X2, ‖·‖) has the weak semi-Opial property.
A Banach space X is said to satisfy the Opial condition [32] (respectively,

the nonstrict Opial condition [22]) if whenever a sequence {xn} in X con-
verges weakly to x, then

lim inf
n

‖x − xn‖ < lim inf
n

‖y − xn‖(
lim inf

n
‖x − xn‖ ≤ lim inf

n
‖y − xn‖

)
for every y ∈ X\ {x}.
For more information about the connections between the above mentioned

geometric properties of Banach spaces (and other ones) see [1, 2, 3, 13, 14, 18,
19, 20, 27, 29, 33, 34, 35, 37, 38, 39, 40].
We now define the asymptotic normal structure coefficient by

sup

k : k · inf
{xni}i≥1

ra

(
{xni}i≥1

)
≤ diama ({xn})

for each bounded sequence {xn}n≥1 with xn − xn+1 → 0

 .

We denote it by AN (X).
If in the definition of AN (X) we add the condition that the sequence

{xn}n≥1 has a weakly compact conv
(
{xn}n≥1

)
, then we get the asymptotic

normal structure coefficient with respect to the weak topology, w-AN (X),
for short. In other words,

w-AN (X) = sup

k : k · inf
{xni}i≥1

ra

(
{xni}i≥1

)
≤ diama ({xn})

for each sequence {xn}n≥1 such that
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conv
(
{xn}n≥1

)
is weakly compact and xn − xn+1 → 0

 .

The semi-Opial coefficient with respect to the weak topology, w-SOC for
short, is defined as follows:

w-SOC (X) = sup

k : k · inf
{xni}i≥1

,xni⇀y
ra

(
y, {xni}i≥1

)
≤ diama ({xn})

for each sequence {xn}n≥1 such that

conv
(
{xn}n≥1

)
is weakly compact and xn − xn+1 → 0

 .

If AN (X) > 1, then we say that (X, ‖·‖) has uniform asymptotic normal
structure, UAN for short. If w-AN (X) > 1, then we say that (X, ‖·‖)
has uniform asymptotic normal structure with respect to the weak topology
(w-UAN). Similarly, if w-SOC (X) > 1, then (X, ‖·‖) has the uniform
semi-Opial property with respect to the weak topology (w-USO).
Directly from the above definitions we get

1 ≤ AN (X) ≤ w-AN (X) ,

1 ≤ WCS (X) ≤ w-SOC (X) ≤ w-AN (X) .(1)

We do not know if w-AN (X) is different from w-SOC (X), but we will
present an example of a Banach space with 1 < WCS (X) < w-SOC (X)
(Example 6.2). There are Banach spaces which have asymptotic normal
structure but lack UAN, and there are also Banach spaces with 1 = AN (X) <
w-AN (X) (Example 6.1).

Proposition 2.1. In the definitions of w-AN (X) and w-SOC (X) we can
replace diama ({xn}) by diam ({xn}).
Proof. Let us observe that in the above definition every asymptotically regu-
lar sequence {xn} can be replaced by {xn}n≥m with arbitrary m. This yields
the claimed statement.

Theorem 2.1. If a Banach space (X, ‖·‖) has AN (X) > 1, then it is re-
flexive.

Proof. It is sufficient to recall the following result of D.P. Milman and V.D.
Milman [31]: If a Banach space (X, ‖·‖) is not reflexive, then for each ε > 0
there exists a sequence {yn} with the following properties:
1. ‖yn‖ = 1 for n = 1, 2, ...;
2. 1 + ε ≥ ‖z1j − zjω‖ ≥ 1 − ε for each j = 1, 2, ... and for each z1j ∈

conv
(
{yn}j

n=1

)
and zjω ∈ conv

(
{yn}∞

n=j+1

)
;

3. 1− ε ≤ ‖z1j‖ ≤ 1 and 1− ε ≤ ‖zjω‖ ≤ 1 for each z1j ∈ conv
(
{yn}j

n=1

)
and zjω ∈ conv

(
{y}∞

n=j+1

)
.
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Hence, if a Banach space (X, ‖·‖) is not reflexive and ε > 0, then we
can choose elements yn which satisfy the above conditions 1.-3. and next
we construct an asymptotically regular sequence {xn} by dividing every
segment [yn, yn+1] into 2n equal subsegments and taking their endpoints as
subsequent elements of {xn}. For this bounded sequence {xn}n≥1 we have
xn−xn+1 → 0 and 1+ε

1−ε ·ra

(
y, {xni}i≥1

)
≥ diama ({xn}) for each subsequence

{xni}i≥1 and y ∈ conv {xn}.
Remark 2.1. The condition w-AN (X) > 1 implies the weak fixed point
property for nonexpansive mappings as a consequence of the Baillon-Schöne-
berg theorem (see also [7]).

Theorem 2.2. i) If a Banach space (X, ‖·‖) has N (X) > 1, then
w-SOC (X) > 1.

ii) If a Banach space (X, ‖·‖) has the nonstrict Opial property, then
w-SOC (X) = w-AN (X).

Proof. i) If N (X) > 1, then X is reflexive [29] , and

1 < N (X) ≤ WCS (X) ≤ w-SOC (X)

(see (1) and [33]).
ii) We get this equality directly from the definition of the nonstrict Opial

property.

Remark 2.2. There exist w-USO spaces without the nonstrict Opial prop-
erty. For example, Lp ([0, 2π]) with 1 < p < ∞ and p = 2 is such a space. It
has uniform normal structure, and thus (see point i) in the above theorem)
it is w-USO, but it does not satisfy the nonstrict Opial condition [32].

We finish this section by showing the stability of the uniform asymptotic
normal structure and the uniform semi-Opial properties.

Theorem 2.3. Let (X1, ‖·‖1) and (X2, ‖·‖2) be isomorphic Banach spaces
and let d (X1, X2) be the Banach-Mazur distance between them. Then we
have

AN (X1) ≤ d (X1, X2) · AN (X2) ,
w-AN (X1) ≤ d (X1, X2) · w-AN (X2) ,

and
w-SOC (X1) ≤ d (X1, X2) · w-SOC (X2) .

Proof. All the inequalities have similar proofs. For example, we prove the
third one:

w-SOC (X1) ≤ d (X1, X2) · w-SOC (X2) .
Let {xn} be asymptotically regular in X2, and let conv {xn} be weakly com-
pact. Let T : X2 → X1 be an isomorphism and assume 0 < k < w-
SOC (X1). Then there exists a weakly convergent to y subsequence {Txni}
such that

kra

(
T−1y, {xni}i≥1

)
≤ k

∥∥∥T−1
∥∥∥ ra

(
y, {Txni}i≥1

)



138 M. BUDZYŃSKA, T. KUCZUMOW AND S. REICH

≤
∥∥∥T−1

∥∥∥ · diama ({Txn}) ≤
∥∥∥T−1

∥∥∥ · ‖T‖ · diama ({xn}) .
Hence we get

k

‖T−1‖ · ‖T‖ ≤ w-SOC (X2)

which yields the claimed inequality.

Remark 2.3. Theorem 2.3 can be understood as a stability result for the
weak fixed point property for nonexpansive mappings. This means that if
w-AN (X1) > 1 and d (X1, X2) < w-AN (X1), then w-AN (X2) > 1, and by
Remark 2.1 the space X2 also has the weak fixed point property for nonex-
pansive mappings.

3. Connections between asymptotically regular sequences and
properties of Banach spaces

It is natural to ask, when either AN (X) or w-SOC (X) is equal to ∞.
The following theorem gives the answer.

Theorem 3.1. i) AN (X) =∞ if and only if (X, ‖·‖) is finite dimensional.
ii) w-SOC (X) =∞ if and only if (X, ‖·‖) is a Schur space.
iii) w-AN (X) =∞ if and only if (X, ‖·‖) is a Schur space.

Proof. i) The equality AN (X) =∞ is equivalent to the following

sup

 inf
{xni}i≥1

ra

(
{xni}i≥1

)
: {xn}n≥1 is bounded and xn − xn+1 → 0

 = 0
If X is finite dimensional, then the above equality is obvious.
When X is infinite dimensional, then by the Riesz Lemma [12] there exists

a sequence {yn} such that
‖yn‖ = 1 for n=1,2,...

and for n = 1, 2, ...

‖y − yn+1‖ ≥ 1− 1
n+ 1

for every y ∈ lin {y1, y2, ..., yn} .
Let us observe that

lim inf
n

‖x − yn‖ ≥ 1
for each x ∈ lin {yn}. Now we construct a new sequence {xn} in the following
way. We divide each segment [yn, yn+1] into 2n equal parts and take the
endpoints as subsequent elements of {xn}. This sequence satisfies xn −
xn+1 → 0. We will show that for each x ∈ lin {xn} we have

inf
{xni}i≥1

ra

(
x, {xni}i≥1

)
≥ 1
4
.(2)

Indeed, every xn can be written in the following way:

xn = αnyk(n) + (1− αn) yk(n)+1,
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where 0 ≤ αn ≤ 1. If we choose any subsequence {xni}i≥1, then without loss
of generality we may assume that αni → α. It is obvious that k (n) → ∞
and therefore k (ni)→ ∞ too.
First we claim that for 0 ≤ α ≤ 3

4 and for each x ∈ lin {xn} = lin {yn}
we have

lim inf
i

‖x − xni‖ ≥ 1
4
.(3)

Indeed, for such an α we get

lim inf
i

‖x − xni‖ = lim inf
i

∥∥∥x − αniyk(ni) − (1− αni) yk(ni)+1

∥∥∥
≥ lim

i
(1− αni)

(
1− 1

k (ni) + 1

)
= 1− α ≥ 1

4
.

Next we obtain

(4)

lim inf
i

‖x − xni‖ = lim inf
i

∥∥∥x − αniyk(ni) − (1− αni) yk(ni)+1

∥∥∥
≥ lim inf

i

∥∥∥x − αniyk(ni)

∥∥∥− lim
i

∥∥∥(1− αni) yk(ni)+1

∥∥∥
≥ lim

i
αni

(
1− 1

k (ni)

)
− lim

i
(1− αni) = 2α − 1 ≥ 1

2

for 34 ≤ α ≤ 1 and for each x ∈ lin {xn}.
Hence (3) and (4) imply that the inequality (2) is valid and therefore

sup

 inf
{xni}n≥1

ra

(
{xni}i≥1

)
: {xn}n≥1 is bounded and xn − xn+1 → 0


≥ 1
4
.

This means that AN (X) < ∞.
ii) If (X, ‖·‖) is a Schur space [12] , then the following equality

sup
{
inf

{
ra

(
y, {xni}i≥1

)
: {xni}i≥1 is weakly convergent and

y = w- lim
i
xni

}
: {xn}n≥1 with a weakly compact conv

(
{xn}n≥1

)
and

xn − xn+1 → 0
}
= 0

is obvious.
Let us assume that (X, ‖·‖) is not a Schur space. We will show

sup
{
inf

{
ra

(
y, {xni}i≥1

)
: {xni}i≥1 is weakly convergent and

y = w- lim
i
xni

}
: {xn}n≥1 with a weakly compact conv

(
{xn}n≥1

)
and

xn − xn+1 → 0
}

≥ 1
8
.
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In X there exists a weakly null sequence {yn} with ‖yn‖ = 1, n = 1, 2, . . . .
Therefore, we can choose a subsequence {ynk

} such that for every y ∈[
ynk

, ynk+1

]
we have ‖y‖ ≥ 1

8 . Indeed, we take yn1 = y0 and next if we
have chosen yn1 , ..., ynk

, then we take nk+1 > nk so large that∥∥(1− α) ynk
+ αynk+1

∥∥ ≥ 1
8

for every 0 ≤ α ≤ 3
4 . This is possible because by the lower semicontinuity of‖·‖ with respect to the weak topology we get

lim inf
n

‖(1− α) ynk
+ αyn‖ ≥ (1− α) ‖ynk

‖ ≥ 1
4
.

Now for this ynk+1 and each
3
4 ≤ α ≤ 1 we also have∥∥(1− α) ynk

+ αynk+1

∥∥ ≥ ∥∥αynk+1

∥∥− ‖(1− α) ynk
‖ = 2α − 1 ≥ 1

2
.

Now we construct an asymptotically regular sequence {xn} by dividing every
segment

[
ynk

, ynk+1

]
into 2n equal parts and then taking the endpoints as

subsequent elements of {xn}. It is obvious that
inf

{xni}i≥1

ra

(
0, {xni}i≥1

)
≥ 1
8

and the proof is complete.
iii) Assume that X is not Schur. We will show that

sup

 inf
{xni}i≥1

ra

(
{xni}i≥1

)
: {xn}n≥1 with a weakly compact

conv
(
{xn}n≥1

)
and xn − xn+1 → 0

 > 0.

We use the asymptotically regular sequence {xn} constructed in the proof
of ii). We know that ‖xn‖ ≥ 1

8 for each n and that w-limxn = 0. Now we
prove that

lim inf
n

‖x − xn‖ ≥ 1
16

for every x ∈ X. Indeed, if ‖x‖ ≥ 1
16 , then by the lower semicontinuity of‖·‖ with respect to the weak topology we get

lim inf
n

‖x − xn‖ ≥ ‖x‖ ≥ 1
16

.

On the other hand for ‖x‖ ≤ 1
16 we obtain

lim inf
n

‖x − xn‖ ≥ lim inf
n

(‖xn‖ − ‖x‖) ≥ 1
16

and this completes the proof.

We end this section with a characterization of reflexive spaces by asymptot-
ically regular sequences.
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Theorem 3.2. A Banach space (X, ‖·‖) is reflexive if and only if every
asymptotically regular sequence has a weakly convergent subsequence.

Proof. It is known [11] that in reflexive spaces each bounded sequence has a
weakly convergent subsequence.
Let us now assume that in the Banach space (X, ‖·‖) every asymptotically
regular sequence has a weakly convergent subsequence. To get the reflexivity
of (X, ‖·‖) it is sufficient to prove ([11]) that each decreasing sequence {Cn}
of nonempty, bounded, closed and convex sets has a nonempty intersection.
Without loss of generality we can assume that diam (Cn) > 0 for each n.
Now we choose yn from each set Cn and next we construct an asymptotically
regular sequence {xn} by dividing every segment [yn, yn+1] into 2n equal
parts and the taking the endpoints as subsequent elements of {xn}. This
sequence contains a weakly convergent subsequence {xni} . Its weak limit is
a common element of Cn for n = 1, 2, . . . .

Remark 3.1. A proof similar to the above one was used in [8] to prove that
every Banach space with the SO property is reflexive.

4. On the 3-space problem

In this section we consider the following problem: When can the uniform
asymptotic normal structure property or the uniform semi-Opial property
be extended from a subspace to the whole space? Two slightly different ap-
proaches to the solution of this problem will be demonstrated in the following
theorems.

Theorem 4.1. Suppose that X = W ⊕ Z, where W is a closed subspace of
X, Z is a Schur space, and the projection onto W has norm 1. Then we
have w-SOC (X) = w-SOC (W ).

Proof. Suppose {xn} = {wn + zn} is an asymptotically regular sequence,
wn ∈ W , zn ∈ Z for n = 1, 2, ... and conv {xn} is weakly compact. For each
k < w-SOC (W ) we find a subsequence {xni} such that

xni = wni + zni ⇀ w + z, w ∈ W, z ∈ Z

and
k lim

i
‖wni − w‖ ≤ diama {wn} .

Then we have w + z ∈ conv {xn}, zni → z and

k lim
i

‖wni + zni − w − z‖ = k lim
i

‖wni − w‖ ≤ diama {wn} .
Now, since the projection on W is of norm 1, we obtain

k lim
i

‖wni + zni − w − z‖ ≤ diama {wn} ≤ diama {xn}

and therefore w-SOC (X) = w-SOC (W ).

Now we consider the Cartesian product of two spaces.
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Theorem 4.2. Let (X1, ‖·‖1) and (X2, ‖·‖2) be Banach spaces. If (X1, ‖·‖1)
is w-USO and (X2, ‖·‖2) has WCS (X2) > 1, then X1 × X2 equipped with

the lp-norm ‖·‖ = (‖·‖p
1 + ‖·‖p

2)
1
p (1 ≤ p < ∞) is also w-USO.

Proof. Let 0 < θ < 1 be such that 1θ < min (w-SOC (X1) ,WCS (X2)). Let
us take an arbitrary asymptotically regular sequence {xn} = {(x1n, x2n)} in
(X1 × X2, ‖·‖) with a weakly compact conv {xn}. Then {x1n} is also asymp-
totically regular in (X1, ‖·‖1) and we can choose a subsequence {xni} such
that {xni} tends weakly to (x1, x2) (see [13, 17, 33, 40]) and

d = diama {xn}
≥ diama {xni} = lim

i,k→∞
i�=k

‖xni − xnk
‖ = lim

i→∞
lim

k→∞
‖xni − xnk

‖ ,

r = lim
i→∞

‖xni − x‖ ,
d1 = diama {x1n}

≥ d1 = diama {x1ni} = lim
i,k→∞

i�=k

‖x1ni − x1nk
‖1 = lim

i→∞
lim

k→∞
‖x1ni − x1nk

‖1 ,

r1 = lim
i→∞

‖x1ni − x1‖1 ≤ θd1,

d2 = diama {x2ni} = lim
i,k→∞

i�=k

‖x2ni − x2nk
‖2 = lim

i→∞
lim

k→∞
‖x2ni − x2nk

‖2 ,

r2 = lim
i→∞

‖x2ni − x2‖2 .

Let us observe that
d1 ≤ d,

rp = rp
1 + rp

2 ≤ d
p
1 + d

p
2 ≤ dp,

r1 ≤ θd1 ≤ θd(5)

and
r2 ≤ θd2.

Now we have to consider two possibilities: either

rp
1 + d

p
2 ≤ 1 + 3θp

4
dp

or

rp
1 + d

p
2 ≥ 1 + 3θp

4
dp.

For the first possibility we obtain

rp = rp
1 + rp

2 ≤ rp
1 + d

p
2 ≤ 1 + 3θp

4
dp.(6)

For the second possibility we have

d
p
2 ≥ 1 + 3θp

4
dp − rp

1 ≥ 1 + 3θp

4
dp − θpdp =

1− θp

4
dp
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by (5) and therefore we get

(7)

rp = rp
1 + rp

2 ≤ rp
1 + θpd

p
2

≤ d
p
1 + d

p
2 − (1− θp) dp

2 ≤ dp − (1− θp)2

4
dp

=

[
1− (1− θp)2

4

]
dp.

Finally, inequalities (6) and (7) imply

r ≤ max

(
1 + 3θp

4

) 1
p

,

[
1− (1− θp)2

4

] 1
p

 d

=

[
1− (1− θp)2

4

] 1
p

d.

This completes the proof.

5. The space Xp
β and its w-SOC

In this section we give an example of a space with N (X) < AN (X) <
w-SOC (X). To this end, let us consider lp with the norm

‖x‖ = max
{

‖x‖∞ ,
‖x‖p

β

}
,

where p > 1, 1 < β < +∞, ‖x‖∞ = max {|x (j)| : j = 1, 2, ...} and
‖x‖p =

(∑∞
j=1 |x (j)|p

) 1
p . We denote this space by Xp

β. The space X
2
β was in-

troduced by R.C. James [5]. This is essentially the space which has been dis-
cussed in various places in the literature, e.g., [1, 2, 4, 5, 7, 8, 10, 15, 16, 19, 20,
21, 22, 23, 25, 26, 28, 39].
For the convenience of the reader we recall the notations from Section

2. If {xn}n≥1 is a bounded sequence in (l
p, ‖·‖) and {xni}i≥1 is a subse-

quence, then ra

(
{xni}n≥1

)
denote the asymptotic radius of this sequence

with respect to the set conv
(
{xn}n≥1

)
in the norm ‖·‖. We also have

αk = diam‖·‖
(
{xn}n≥k

)
and diama ({xn}) = lim

k
αk = α.

Let us observe that for each n ∈ N and for each y ∈ C there exists an index
jn,y

(we fix it here for every pair n,y) such that

‖xn − y‖∞ = |xn (jn,y)− y (jn,y)|(8)

(xn = (xn (j))j≥1 and y = (y (j))j≥1).
The space Xp

β has the nonstrict Opial property [22].
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Theorem 5.1. If a sequence {xn}n≥1 is bounded and xn − xn+1 → 0, then

(9)

inf
x∈conv({xn}n≥1)

(
lim inf

n
‖xn − x‖

)
= inf

{xni}
[
ra

(
{xni}i≥1

)]

≤ min
[
1,max

(
2− 1

p ,
β

4
1
p

)]
· diama ({xn})

and this constant is the best possible. Therefore

w-SOC
(
Xp

β

)
= max

1,min
2 1

p ,
4

1
p

β

 .
Proof. We begin our proof in the case 1 < β < 4

1
p .

Let

C = conv
(
{xn}n≥1

)
and Ck = conv

(
{xn}n≥k

)
, k = 1, 2, ....

Clearly diamCk = αk. Let us observe the following fact. For every subse-
quence {xni} which is weakly convergent to y we have ([2, 39])

(10)
lim inf

i
‖y − xni‖p ≤ lim sup

i
‖y − xni‖p ≤ 1

2
1
p

diama,‖·‖p
({xni})

≤ lim
k

1

2
1
p

diam‖·‖p
Ck ≤ lim

k

β

2
1
p

diam‖·‖Ck =
β

2
1
p

α.

Next choosing in an arbitrary way a subsequence
{
xnil

}
such that

lim inf
i

‖y − xni‖∞ = lim
l

∥∥∥y − xnil

∥∥∥∞ ,

we get

(11)

lim inf
i

‖y − xni‖ ≤ lim inf
l
max


∥∥∥y − xnil

∥∥∥∞ ,

∥∥∥y − xnil

∥∥∥
p

β


≤ max

liml
∥∥∥y − xnil

∥∥∥∞ , lim sup
l

∥∥∥y − xnil

∥∥∥
p

β


≤ max

{
lim

l

∥∥∥y − xnil

∥∥∥∞ ,
α

2
1
p

}

= max

{
lim inf

i
‖y − xni‖∞ ,

α

2
1
p

}
.
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Now we can begin the proof of our inequality (9) . For 1 < β < 4
1
p it reduces

to

inf
x∈conv({xn}n≥1)

(
lim inf

n
‖xn − x‖

)
≤ max

(
2− 1

p ,
β

4
1
p

)
· diama ({xn}) .

Without loss of generality we can assume that α > 0, and this implies
that for each k we have αk ≥ α > 0. Suppose that for some asymptotically

regular sequence {xn} and for some t with max

(
1

2
1
p
, β

4
1
p

)
< t < 1 the

following inequality is valid:

inf
x∈C

(
lim inf

n
‖xn − x‖

)
> tα.(12)

We will try to reach a contradiction. For our t there exists ε > 0 such that
the inequalities

ε < tα and
βp

2
αp + ε < 2 (tα − ε)p(13)

are valid.
Let us take an arbitrary subsequence {xni} which converges weakly to

some y. Directly from the definition of the norm ‖·‖ , by (11) and by t > 1

2
1
p
,

we have

tα < lim inf
n

‖xn − y‖ ≤ lim inf
i

‖xni − y‖

≤ max
{
lim inf

i
‖xni − y‖∞ ,

α

2
1
p

}
= lim inf

i
‖xni − y‖∞

≤ lim inf
i

max

{
‖xni − y‖∞ ,

‖xni − y‖p

β

}
= lim inf

i
‖xni − y‖ ,

which implies

lim inf
i

‖xni − y‖∞ = lim inf
i

‖xni − y‖ > tα.(14)

By formulas (8) and (14) and because {xni} tends weakly to y we get

lim
i
jni,y = +∞.(15)

Using (8, 14, 15) and limn ‖xn − xn+1‖ = 0 we can find ñ and ĩ, ĩ ≥ ñ,

such that for n ≥ ñ and i ≥ ĩ we have

‖xn − xn+1‖∞ ≤ ε

3
,(16)

‖xni − y‖∞ = |xni (jni,y)− y (jni,y)| > tα,(17)

and

|y (j)| ≤ ε

3
(18)
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for each j ≥ min
i≥̃i

jni,y. Therefore (17) and (18) yield

‖xni‖ ≥ ‖xni‖∞ ≥ |xni (jni,y)| ≥ tα − ε

3
(19)

for i ≥ ĩ.
Now let us return to the sequence {xn} and set

(20) jn =


max

{
j : |xn (j)| ≥ tα − ε

3
}
if there exists j
such that |xn (j)| ≥ tα − ε

3 ,

max {j : |xn (j)| = ‖xn‖∞} otherwise.

We claim that

lim
n

jn = +∞.(21)

If this were false, then there would exist a subsequence {ni} with a
bounded {jni} . We could then choose a subsequence

{
xnil

}
which tends

weakly to its weak limit y. In this case (see formulas (19) and (20)) we have

jnil
,y ≤ jnil

for all l greater than or equal to some l̃ and therefore (see (15)) liml jnil
=

+∞ which contradicts our assumption.
Since limn jn = +∞ (see (21)), there exists a subsequence {ni} such that

{xni} converges weakly to some y and
jni < jni+1(22)

for i = 1, 2, ... . Since ‖xn − xn+1‖ → 0 we get xni+1 ⇀ y and therefore for
i ≥ ĩ (see formulas (16, 17, 18, 19, 20)) we get

(23)
|xni+1 (jni+1,y)− y (jni+1,y)| = ‖xni+1 − y‖∞
≥ ‖xni − y‖∞ − ‖xni − xni+1‖∞ ≥ tα − ε

3
,

(24)

|xni+1 (jni,y)− y (jni,y)|
≥ |xni (jni,y)− y (jni,y)| − |xni (jni,y)− xni+1 (jni,y)|
≥ ‖xni − y‖∞ − ‖xni − xni+1‖∞ ≥ tα − ε

3
,

and

(25)

|xni+1 (jni+1)− y (jni+1)| ≥ |xni+1 (jni+1)| − |y (jni+1)|
≥ min

{
tα − ε

3
, ‖xni+1‖∞

}
− |y (jni+1)|

≥ min
{
tα − ε

3
, ‖xni‖∞ − ‖xni − xni+1‖∞

}
− |y (jni+1)|

≥ tα − 2ε
3

− ε

3
= tα − ε .

We will now show that there exists ˜̃i > ĩ such that for i ≥ ˜̃
i we have

jni+1,y = jni,y.
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Indeed, let us take ˜̃i > ĩ such that

‖y − xni+1‖p
p ≤ βp

2
αp + ε(26)

is satisfied for i ≥ ˜̃
i (this is possible by (10)). If jni+1,y = jni,y, then by

(13, 23, 24) we would obtain

2 (tα − ε)p ≤ |xni+1 (jni,y)− y (jni,y)|p + |xni+1 (jni+1,y)− y (jni+1,y)|p

≤ ‖xni+1 − y‖p
p ≤ βp

2
αp + ε < 2 (tα − ε)p .

But this is impossible.
Therefore for every i ≥ ˜̃

i we have

jni,y = jni+1,y.(27)

Next by (16, 22, 27) for i ≥ ˜̃
i we have

jni+1,y = jni,y ≤ jni < jni+1 and ‖xni − xni+1‖∞ ≤ ε

3
.

Hence by (13, 23, 25, 26) we get the following contradiction

2 (tα − ε)p ≤ |xni+1 (jni+1,y)− y (jni+1,y)|p + |xni+1 (jni+1)− y (jni+1)|p

≤ ‖xni+1 − y‖p
p ≤ βp

2
αp + ε < 2 (tα − ε)p .

Thus the sequence {jni} cannot be strictly increasing, contrary to (22).
Hence the inequality (12) is false and therefore the claimed inequality

inf
x∈C

(
lim inf

n
‖xn − x‖

)
≤ tα

is valid for arbitrary t satisfying max
(
1

2
1
p
, β

4
1
p

)
< t < 1. We conclude that

w-SOC
(
Xp

β

)
≥ max

2 1
p ,
4

1
p

β


for 1 < β < 4

1
p .

To show that the constant

min

1,max
2 1

p ,
4

1
p

β


is the best possible in Xp

β (1 < p < ∞ and 1 < β < ∞), let us consider two
sequences. We define the sequence {xn} by (see [4])

xn =


(2k+1)2−n
4k+1 ek + ek+1 if (2k)2 < n ≤ (2k + 1)2 ,

ek+1 +
n−(2k+1)2
4k+3 ek+2 if (2k + 1)2 < n ≤ (2k + 2)2 ,
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where {ek} is the standard basis in lp. Then we have xn ⇀ 0, xn+1−xn → 0,

diama‖·‖ {xn} = max
4 1

p

β
, 1


and ∥∥∥x(2k+1)2∥∥∥ = 1.
This yields

max

4 1
p

β
, 1

 · inf
x∈conv{xn}

(
lim inf

n
‖xn − x‖

)

= max

4 1
p

β
, 1

 · ra

({
x(2k+1)2

})
= max

4 1
p

β
, 1

 = diama‖·‖ ({xn}) .

The second sequence is defined as follows:

xn =

[
rn cos

(
n − (2k)2
8k + 4

· π
2

)]
ek +

[
rn sin

(
n − (2k)2
8k + 4

· π
2

)]
ek+1,

where

rn =

{[
cos

(
n − (2k)2
8k + 4

· π
2

)]p

+

[
sin

(
n − (2k)2
8k + 4

· π
2

)]p}− 1
p

for (2k)2 < n ≤ (2k + 2)2 and k = 1, 2, . . . . For this sequence we get xn ⇀ 0,
xn+1 − xn → 0,

diama‖·‖ {xn} = max
1, 2 1

p

β


and

‖x4k2+4k+2‖ = max
(
1

2
1
p

,
1
β

)
=
1

2
1
p

max

1, 2 1
p

β

 .

Hence we obtain

2
1
p · inf

x∈conv{xn}

(
lim inf

n
‖xn − x‖

)
=

= 2
1
p · ra ({x4k2+4k+2}) = max

1, 2 1
p

β

 = diama‖·‖ ({xn}) .

This completes the proof.

Remark 5.1. A Banach space Y which is isomorphic to Xp
β with 1 < β <

4
1
p has the weak fixed point property for nonexpansive mappings if

d
(
Y,Xp

β

)
< min

2 1
p ,
4

1
p

β
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(see Remark 2.3), but recently T. Domı́nguez Benavides and M.Á. Japón
Pineda obtained a better result for X2

β. Namely, if

d
(
Y,X2

β

)
< M

(
X2

β

)
=



√
3 for 1 < β ≤

√
3
2 ,√

2
β

(
1 +

√
β2−1
2

)
for

√
3
2 < β <

√
2,

1 + 1√
2

for
√
2 ≤ β,

then Y has the weak fixed point property [16]. But we have to mention
that in the second part of our paper the coefficient w-SOC (X) is applied to
the problem of existence of fixed points of asymptotically regular uniformly
lipschitzian semigroups, where till now we have not been able to use the
coefficient M (X) .

6. Comparison of the basic geometric coefficients of Banach
spaces

As we mentioned in Section 2 the following inequalities

AN (X) ≤ w-AN (X) ,

and
WCS (X) ≤ w-SOC (X)

are always valid. The following examples show that for particular spaces
strict inequalities may occur.

Example 6.1. If we take the Cartesian product X2√
2
× l1 equipped with the

l1 norm, then this space is nonreflexive and therefore by Theorem 2.1,
AN

(
X2√

2
× l1

)
= 1, but after applying Theorems 2.2, 4.2 and 5.1 we obtain

w-AN
(
X2√

2
× l1

)
= w-SOC

(
X2√

2
× l1

)
=

√
2.

Example 6.2. Taking X2
β with 1 < β <

√
2 and applying Theorem 5.1 we

obtain
1 < WCS

(
X2

β

)
=

√
2

β < w-SOC
(
X2

β

)
=

√
2.

Example 6.3. Let us consider the product space

X =

x = {xp}∞
p=1 : xp ∈ lp,

 ∞∑
p=1

‖xp‖2p


1
2

= ‖x‖
 .

Since X contains isometric copies of lp for every p and since both the semi-
Opial coefficient and the asymptotic normal structure coefficient satisfy

w-SOC (lp) = AN (lp) = 2
1
p ,

the space X has neither the uniform asymptotic normal structure nor the
uniform semi-Opial properties. But it easy to observe that X is still SO. In
fact, it has the Opial property [26].
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