
Research Article
A Dynamic Platform for Developing 3D Facial Avatars in
a Networked Virtual Environment

Anis Zarrad

Department of Computer Science and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Correspondence should be addressed to Anis Zarrad; anis.zarrad@gmail.com

Received 1 October 2015; Revised 8 January 2016; Accepted 18 January 2016

Academic Editor: Michela Mortara

Copyright © 2016 Anis Zarrad. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Avatar facial expression and animation in 3D collaborative virtual environment (CVE) systems are reconstructed through a complex
manipulation of muscles, bones, and wrinkles in 3D space.The need for a fast and easy reconstruction approach has emerged in the
recent years due to its application in various domains: 3D disastermanagement, virtual shopping, andmilitary training. In this work
we proposed a new script language based on atomic parametric action to easily produce real-time facial animation. To minimize
use of the game engine, we introduced script-based component where the user introduces simple short script fragments to feed
the engine with a new animation on the fly. During runtime, when an embedded animation is required, an xml file is created and
injected into the game engine without stopping or restarting the engine. The resulting animation method preserves the real-time
performance because the modification occurs not through the modification of the 3D code that describes the CVE and its objects
but rather through modification of the action scenario that rules when an animation happens or might happen in that specific
situation.

1. Introduction

There is a growing interest in online collaborative virtual
environment (CVE) applications. CVE applications are as a
distributed 3D graphic application where multiple users can
interact and collaborate. Each player in the VE is represented
by a 3D body called an avatar [1], which allows the players
to see, interact with, and hear each other. Many successful
applications are already launched in educational, social,
gaming, commercial, virtual shopping, and training simula-
tions.

Today, the growth of game engines is accelerating, and
the development of VE applications continues to increase.
Therefore, there is a need for new approaches that handle
VE runtime extensibility requirements without a complex
manual initialization and engine restarting. Such a require-
ment is vital for critical virtual environmental applications
likemilitary training, emergency preparedness scenarios, and
E-shopping. The integration of the avatars’ face animation as
an on the fly feature will complicate the task and require an
important amount of work for qualified artists with a strong
knowledge in facial anatomy.

The ability to change an application without having to
stop it is an important nonfunctional requirement for 3D
CVEs especially if they are to be used as disastermanagement
systems, which should be available around the clock. In CVE,
changes in the CVE requirements are driven by changes
in the game engine and are time-consuming. Broadly, 3D
objects and avatars’ faces may change in various ways to give
the users a visual display about the actions that are being
applied to the objects or embed animation modeling into an
avatar according to the constantly changing situation during
a disaster. Traditionally, any modifications to the virtual
environment system require collaborative effort from graphic
designers and 3D programmers to develop the required new
scenario and then stop and restart the engine to reflect the
new modification in the VE. Due to its complexity, we focus
here on avatar facial animations. Several research studies on
3D disaster management have been used to model human
behavior and offer true-to-life VE. However, there is still a
lack of studies that can easily present avatar animation in
emergent situations [2–5] and in real time without stopping
the engine. Therefore, 3D modifications can be very time-
consuming and costly.

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2016, Article ID 8489278, 13 pages
http://dx.doi.org/10.1155/2016/8489278

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193477002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Computer Games Technology

The challenge that the 3D game engine had to deal
with is the change of the avatars behavior during the game
scenario. We propose a framework that implements a mod-
ular architecture based on atomic simulation concepts to
manage both the virtual environment content and avatars
behavior in dynamic environments and guarantee continuity
during runtime. The proposed game engine is designed to
separate the language used to implement the game from
the game scenario and offer flexibility and simplicity to
the user when modification is required. We integrate a
scripting story interpreter component in the game engine
to control and manage avatar face animation changes. We
found that using an eXtensible Virtual Environment Markup
Language (XVEML) as a general-purpose of event-based
state machine language can make the development easier
and faster during the runtime and discharge designers and
professionals’ programmers.

The XVEML provides hierarchical structure content for
simulation description, objects behaviors, and avatar facial
animation.We chooseMPEG-4Facial AnimationParameters
(FAP) for avatar facial animation [6, 7]. We used VRML
to define the avatars’ face because VRML provides a stan-
dardized functionality and is also aligned with the MPEG-
4 standard [2]. We adopt two script levels called Class and
Instance for fast creation of large-scale VE applications. In
the Class level we incorporate the atomic simulation [8]
concept to model all possible simulation scenarios. In the
Instance level, we incorporate the atomic behavior and action
concepts to manage entities behavior and avatars’ facial
animation. Two types of state machines can be distinguished
in our system—those modeling avatars and entities (mainly
avatars’ facial expression) and those modeling the simula-
tion scenario. Consequently, two script files called Scenario
Simulation XML (SCXML) and Instance XML (IXML) are
generated automatically and independently based on each
state machine modeling. The use of two separate scripting
levels offers more flexibility to our solution and allows
simulation flow, object specifications, and avatar behavior to
be managed independently.

In BIM (building information modeling) [5] a significant
number of developer and graphic designers are needed to rep-
resent human behavior in a real-time game environment for
fire evacuation to conduct effective information interaction
between the building and the avatars. Many previous studies
have completely discarded avatars’ behavior and animation
[3, 9] concepts. In 3D disaster management applications,
the avatar behavior is necessary to offer full realism for
effective interpersonal communication on a level of richness
interchangeable with face-to-face interactions.

Game engine systems have recently been in the popular
press. Before the appearance of game engine technologies
[10–12], most systems were developed as virtual reality
systems to handle specific task such as NPSNET [13], DIVE
[1], and SPLINE [14]. Thus, any modification requires a hard
change in the programming environment and architecture.
As game engine technology matures and becomes more
flexible to 3D environments, programming skills remain
a concern and can hamper the development of complex
environments. Existing programming approaches such as

VRML [4], OpenGL [15], X3D [16], and MPEG-4 [2] can
build CVE applications. However, most of them cannot
provide native support for such systems. Consequently,
extensibility action requires complete loading of the CVE
application into memory before the modification occurs.

The remainder of the paper is organized into five main
sections. In Section 2, we provide some related works.
An overall system architecture is presented in Section 3.
Section 4 describes the novelty in our proposed approach to
build and/or extend a VE application as avatar facial expres-
sion during runtime. In Section 5 we propose a firefighter
case study. An overview of the proposed XVEML language is
given in Section 6. An extensity scenario example is provided
in Section 7. Section 8 describes the modular architecture
used in our system and prototype implementation. We
conclude with a discussion and future direction of system
development.

2. Related Works

CVEs are increasingly attractive especially in education,
entertainment, simulation, and many others. Today, the
research tendency leans towards easy and rapid runtime
without having intensive programming skills.

Most game engines use the Unity engine [10], the Unreal
engine [17, 18], Gamebryo engine [12], CryEngine [19], and
Software’s Source engine [11]. However, these are limited to
specific tasks, and their features are coupled with proposed
game characteristics. Thus, any extension or change that
adopts a new feature in the application requires a game
engine restart. Such systems are promising platforms as long
as they serve a specific application without extensions. In
addition, only professional programmers can modify the
virtual environments within games because they are complex.
Choosing an adequate game engine depends on the goal,
platform, and speed with which changes are needed.

Wang et al. [5] developed a BIM game based on virtual
reality to provide real-time fire evacuation guidance. How-
ever, modification is static and limited, which means that
it cannot dynamically change the 3D content according to
a constantly changing situation during a fire emergency. In
addition, a significant number of developers are needed to
design and implement this system. In [20], the authors intro-
duced a fire-training simulator to allow trainees to experience
a realistic fire scenario and assess different rescue plans in
a graphic environment. Representations of human behavior
are completely ignored in the implemented case studies. This
influences the validity and the true-to-life concept of the VE.
Cao et al. [21] presented complex real-time facial recognition
using 3D shape regression. The animation algorithm uses a
set of training data generated from 2D facial images. System
accuracy is improved when the captured image and training
data are increased. This requires considerable data to process
and may lead to failure in real time.

Before game engine, virtual environments were devel-
oped using dedicated systems to implement a specific sce-
nario. Some of the most well-known former systems are
DIVE [1], MASSIVE [22], NPSNET [13], SPLINE [14], and

International Journal of Computer Games Technology 3

VLNET [23]. They focus on particular applications to reduce
the overall implementation complexity. The problem stems
from the fact that systems are strongly coupled in terms
of implementation. Consequently, any modifications in the
application require modifications in the supporting architec-
ture because the complexity is due to a combination of the
internal architecture and specific application functionalities.

Zarraonandia et al. [24] described a 3D virtual environ-
ment to improve the learning of airport emergency protocols.
Each user plays a different role in a particular emergency
situation.The idea is based on replication and does not reflect
a real context. In [25], the authors proposed a solution to help
specialists and decision makers better understand, analyze,
and predict natural disasters to reduce damage and save lives.
One important factor that is not taken into consideration is
the dynamic behavior of the disaster. System interruption is
required to adopt new scenarios.

To support extensibility, several approaches have been
implemented. Magerko and Laird [26] used a microkernel-
based architecture to separate the system elements from
the kernel to add, remove, and modify during runtime.
Unfortunately, this highly accredited approach incurs a
great deal of complexity particularly in terms of facilitating
communication between components written in different
languages. Also, extensibility requires an intensive knowledge
of programming language. Oliveira et al. [9] developed a Java
Adaptive Dynamic Environment (JADE) based on the Java
architecture. It consists of a lightweight cross platform kernel
that permits system evolution during runtime. The adoption
of JADE does not provide an efficient solution to problems
from extending CVE applications.

In [3, 27], the authors developed a Virtual Environment
Markup Language (VEML) based on the nonlinear story
concept defined by Szilas [28] to build and/or extend CVE
applications. This model allows story progress during the
simulation, which is implemented independently of the
3D environment programming. In [3], a repetitive atomic
simulation was modeled in response to similar events. For
example, in virtual shopping, the Real Madrid FC store may
run many sales around the year (every game). To control
this situation, VE manager will send a VEML script file to
all participating clients whenever a sale event is set. Thus, by
transferring many descriptions, the files regularly impact the
network bandwidth. Also, any change in the script file must
be done manually. This may lead to unplanned atomic simu-
lation and the loss of realistic appearances of the application.

Many other systems have adopted script language tech-
nology to design avatar facial and body gesture animations.
The Virtual Human Markup Language (VHML) [28] is an
independent XML-based language used in MPEG-4 appli-
cations which encapsulates a markup language dedicated to
body animation (BAML). Perlin and Goldberg [29] describe
an IMPROV system using a high-level script language for the
creation of real-time behavior with nonrepetitive gestures.
Arafa et al. [30] describe an avatar markup language AML
based on XML to encapsulate text to speech as well as facial
and body animations in a unified manner with appropriate
synchronization. The main concern in the proposed work is
the complexity implementation that requires realistic avatar

facial animation. Furthermore, their supporting architectures
are typically designed to handle only avatar behaviors. As
a result, it is difficult to apply any relevant code from a
particular system and adapt it to our target system. In
addition, implementation and change in the code are done
manually and require a change in the supporting structure.

3. System Architecture

This work is a part of a funding project from a Research and
Translation Center (RTC) in Riyadh, Saudi Arabia. The goal
of the project is the design and implementation of a complete
3D collaborative virtual environment application for disaster
management. It is important to have a believable 3D virtual
environment to prepare a rescue scenario with an acceptable
response time whenever there is a need. Having such system
with a 3D representation of current situation as input is very
helpful for police, military, and medical staff in order to let
them react properly with an appropriate effort management
when they arrive to the accident site.

The overall scenario can be described as follows: once
deployed sensors in the monitored area detect a fire disaster
or crowded zone, a protocol for gathering data like location
and severity is set. The data is sent to the central location
through a communication mechanism between sensor node
and central station. Many robots are sent to the accident site
to investigate site and sendmore details to the central station.
Based on the received data, a new 3D representation is created
to closely reflect the reality.

Depending on the situation, a rescue plan is established
using the IA mechanism to give workers (firefighters, police,
etc.) the quickest access with improved response. Rescue
implementation will vary according to the work situations,
the equipment used, and the victim’s condition. An imple-
mented rescue plan is governed by the on-site rescue plan.
In this work we focus only on the avatars facial behavior
during the runtime to reflect the real situation described in
the sensors data. The overall system architecture is presented
in Figure 1. Three layers are identified: (1) the WSN layer, (2)
the 3D virtual environment server layer, and (3) the client side
3D player.

Initial 3D representation of the VE is preloaded into the
server for quick access and modeling. We focus only on the
game engine components implemented in the 3D server layer
to manage facial animation changes in the VE when there is a
need for requirements adjustment.Wireless sensors protocols
and the artificial intelligence (AI) mechanism to establish the
rescue plan are out of the paper scope. Engine architecture is
detailed in Section 8.

The implementation of the main game engine compo-
nents in the server side offers the user the freedom to use
any device (desktop, mobile devices, etc.) when operating the
system.

4. Proposed Approach

In addition to advancing our understanding of the factors
that contribute to the 3D disaster management application

4 International Journal of Computer Games Technology

Wireless sensor

3D server

Data
communication
interface

Data
communication
interface

Client

Wireless interface

Event
buffer

Routing protocol

Event detection

3D player

User
input

3D
rendering
XVEML decoder

Data communication
XVEML
validator

Objects
repositoryScenario engine

Physical
modeling

Scene
engine

Collision
detection

Communication
protocol

3D compression
Event interpreter

Scenario
analyzer

Figure 1: The overall system architecture.

platforms, the results are useful for other applications such as
military training and virtual shopping via an automatic sce-
nario for face expression adaptation. Disaster management is
a dynamic and delicate environment where many events can
occur suddenly in real life. They must be reflected in the 3D
environment to enable better performance in live exercises
and real incidents.

In our previous work [3], we described a script language
through the concept of atomic simulations. The resulting
file language is generated manually and emphasizes the
simulation scenario and completely ignores the avatars’ facial
animations and objects’ behaviors. In this way, the file gen-
eration process becomes tedious, and the scenario becomes
complex. The number of avatars participating in the VE is
very large.

In conclusion, a lack of facile tools limits freelance
developers. Thus, our goal was to overcome the complexity
of established modeling tools by combining them with the
concept of atomic behaviors. Our methodology models the
avatars and objects separately from the simulation execution
scenario to consider the importance of the avatars’ behavior.

4.1. StateMachinesModeling. Wepropose to design the entire
virtual environment simulation scenario and its entities
(avatars facial animations, 3D geometric objects, and their
behaviors) through the state machine theory. We use a
branching graph story [31] incorporated with atomic model
concepts. Through atomic modeling, we mean both atomic

simulation and atomic action including avatar facial anima-
tion and object behavior.We use an atomic simulation similar
to [8]. Atomic avatar facial animation is a primitive state that
cannot be divided further. It is needed for building complex
facial expressions, for example, talking with the headmoving.
Each atomic model runs as a distinct process to facilitate the
modification. As a result, the user and designer canmake any
modifications in the simulation scenario without affecting
the facial animations and vice versa. The branching graph
takes the form of directed graph containing nodes and arcs
between nodes. In this approach, we define chapters as a
set of atomic simulations, and a node denotes a chapter.
Some nodes exist outside the simulation graph to denote the
planned set of avatars facial animation in a specific chapter
and can be activated by precondition rule-based or without
any incoming transition.

We denote 𝐸
𝑖,avj as a facial animation expression for a

designed avatar with ID avj:

𝑖 ∈ {“Happy”, “Frightened”, “Stressed”, “Neutral”} . (1)

Each chapter can be designed through a state machine which
is defined as a set:

𝐴 = {𝑆, 𝐸, 𝑇, 𝑆
0
, 𝐹} , (2)

where 𝑆 is a set of finite states,𝐸 is an alphabet,𝑇 is a transition
function 𝑇 : 𝑆×𝐸 → 𝑆, 𝑆

0
is initial states, and 𝐹 is final states.

International Journal of Computer Games Technology 5

Database

Wireless sensor
Corresponding 3D
 environment

3D rendering system

Real environment

Figure 2: Fire scenario in meeting room.

4.2. Script Languages. The proposed script language is
retrieved directly from the state machines as output. Two
separate script files are generated tomake theVE extensibility
procedure more rapid and easy in large-scale VE systems as
follows:

(i) The first script language file is called Scenario Sim-
ulation XML (SCXML) and it is used to model the
scenario simulation (scene description and objects)
and predefined avatar facial animation; it is class
modeling. This file is less susceptible to changes.
However, when any modification has to be reported
to the scenario (delete a chapter, add a new chapter,
etc.) or to the facial animation (define a new avatar
expression and modify an expression), it can be
done easily through our state machines. A new script
language will be generated and will be injected to
the environment. Moreover, the modified script is
uploaded into the VE application during the runtime
without the need to stop the application.

(ii) The second script language file is called Instance XML
(IXML). Here, all the object properties are set to
defined values: 3D geometry objects specifications,
avatar representation (ID, type, etc.), and the assigned
facial animation for a specific avatar. For example,
avatar 2 will be happy at time point 00:00 in chapter
X. This script language is a class instance for a given
scenario.

Clearly the use of two separatemodeling ideas is very promis-
ing because the VE changes are more frequent in objects and
avatar behaviors rather than the simulation scenario. Thus,
there is no need to modify our entire VE when the 3D object
behavior or avatar facial animation needs to be changed.

5. Case Study: Firefighters Emergency
Preparedness Scenario

To better understand the impetus of our proposed approach,
we illustrate a true-to-life firefighter emergency preparedness

scenario in a meeting room that is used for training purpose.
The overall scenario is presented in Figure 2.

Wireless sensors are deployed in the monitoring area
(meeting room, real environment). An initial 3D environ-
ment covering the monitored area is loaded in the server
priorly. When sensors detect a fire situation in this real
environment, many events are collected and are sent back to
a central database.

A rendering protocol is used tomodify the initial 3D envi-
ronment in order to visualize the detailed live representation
in the meeting room and everything that is going on within
the target environment including the new events such as fire
and smoke.

To deal with the fire disaster, many human resources
are involved including firefighters, fire truck drivers, police
officers, and ambulance services. The Emergency Service
(ES) receives an emergency call from a witness reporting a
fire disaster somewhere in the city. ES informs the closest
fire station (FS) having sufficient efforts. In addition we
may inform ambulance service and police in case there are
injuries. Players take the role of witnesses, firefighters, police
officers, and medical staff to deal with the fire. Based on the
fire densitywemayneed to call two fire stations. Table 1 shows
the story structure.

When the game begins, the fire location is not known. FS1
has higher effort than FS2. For simplicity, effort is measured
based on the number of firefighters. The game initializations
are as follows: the number of fire stations is 2 (FS1 and
FS2), the number of firefighters in FS1 is 5, the number of
firefighters in FS2 is 3, the number of medical staff is 2, and
the number of policemen is 2.

After defining the simulation scenario and its chapters
as described in Table 1, we modeled the complete scenario
using a state machine. Each chapter is modeled separately
using a state machine concept. Every state has a label, which
will help us to determine, at any moment, in which state
of which chapter our scenario is. Some states are blocking
because they need a specific external event. For example, the
state “PrepareEquipment” in chapter 3 is waiting for the event
“3000” (an event can be modeled as a simple OS signal),

6 International Journal of Computer Games Technology

Table 1: Fire scenario.

Chapters Chapter details
1 Fire scene
1.1 Observe scene by witness, witness face expression: frightened
1.1.2 Get location info
1.1.3 Estimate the fire density
1.2 Call emergency center, witness face expression: stress
2 Emergency center
2.1 Ask the closet fire station (FS)
2.1.1 FS1 identified
2.1.1.1 Firefighters availability indicates weak efforts
2.1.1.2 Firefighters availability indicates good efforts
2.1.1.3 Firefighters availability indicates excellent efforts
2.1.2 FS2 identified
2.1.2.1 Firefighters availability indicates weak efforts
2.1.2.2 Firefighters availability indicates good efforts
2.1.2.3 Firefighters availability indicates excellent efforts
2.2 Call the police center
2.3 Call the ambulance service
3 Fire station (one selected)
3.1 Prepare equipment
3.1.1 Firefighter inside the trucks, firefighters face expression: stressed (all)
3.2 Move to location
3.3 Manage the fire
3.3.1 Set equipment
3.3.2 Deal with the fire
3.3.2.1 FS1.AV1, FS1.AV2 evacuate people, face expression: happy
3.3.2.2 FS1.AV3, FS1.AV4 extinct fire, face expression: frightened
3.3.2.3 FS1.AV5 control equipment, face expression: stressed
4 Fire station (two selected)
4.1 Prepare equipment
4.1.1 Firefighter inside the trucks
4.2 Move to location
4.3 Manage the fire
4.3.1 Set equipment
4.3.2 Deal with the fire
4.3.2.1 FS2.AV1 evacuate people, face expression: happy
4.3.2.2 FS2.AV2 extinct fire, face expression: frightened
4.3.2.3 FS2.AV3 control equipment, face expression: stressed
5 Police service arrives
5.1 Clean the area
5.1.1 Control the local traffic
5.1.2 Secure the fire site
5.2 Investigate the area
5.2.1 Ask witness, witness face expression: stressed
6 Ambulance service arrives
6.1 Manage evacuated people, staff face expression: stressed (all)
6.1.1 Injuries identified, staff face expression: compassionate (all)
6.1.1.1 Provide first-aid on site
6.1.1.2 Transport to hospital
6.1.2 No injuries identified, staff face expression: happy (all)
7 Fire extinct
7.1 By FS1, firefighters face expression: happy (all)
7.2 By FS2, firefighters face expression: happy (all)
7.3 By FS1 and FS2, firefighters face expression: happy (all)

International Journal of Computer Games Technology 7

stm faceExpression

Initial

InfosFaceExpression

+ do / getExpression
+ do / getDuration
+ do / getIntensity

HoldExpression
+ do / setTimer
+ do / saveStatus

Final

PlayExpression

+ do / setTimer
+ do / saveStatus

End

+ do / saveStatus

Replay

+ do / saveStatus

[Evt==1004]

[Evt==1003]

[Evt==1002]

[Evt==1001]

[ExpressionEvt==1001 || ExpressionEvt==1002 || ExpressionEvt==1003 || ExpressionEvt==1004]

[Expression=="Happy" || Expression== "Stressed" || Expression=="Fear" || Expression== "Compasionate"]

Figure 3: Avatars face animation modeling.

which will be emitted by a state in another chapter as shown
in Figure 3.

In this scenario, we focus on the avatars facial animation
expressions. The avatar dynamically changes his behavior to
reflect the surrounding situation in the virtual environment
depending on the current situation and what is being exe-
cuted.

In Figure 3, we present facial animation modeling. Any
facial animation is defined with specific attributes such as a
file name describing the animation type and two parameters,
duration and start time. Duration is used to define the
duration of the animation (e.g., happy for 25 seconds). Start
time parameters are used to define when the animation
should start.

It is important to notice that any animations can be
planned for a replay when there is a need without the involve-
ment of a VE designer in each replay. Such modeling offers

a better solution especially for an application that requires
regular modifications. For example, doctor should be happy
when meeting patient in E-health application or during end
of year sale in E-shopping application where many red sale
signs should be integrated into the 3D E-shopping.

6. Markup Language VEXML

In this section we explore the syntax and elements of the pro-
posed XVEML language. Algorithms 1 and 2 show screen-
shots of the language. It is composed principally of SCXML
and IXML.The root tag <XVEML>marks the beginning and
end of the script.

6.1. Syntax and Simulation Scenario. Algorithm 1 gives an
overview of our SCXML script language file. The original file
has been relieved of some irrelevant tags. The resulting script

8 International Journal of Computer Games Technology

<?xml version="1.0" encoding="UTF-8"?>

<XVEML>

<connector xmi:idref="EAID 11A4687E B5B3 451e 95F1 0CAF77327D4D">

<source xmi:idref="EAID 85BFDD36 7149 43b8 8F62 7A0EBE5D338F">

<model ea localid="54" type="State" name="MoveToLocation"/>

</source>

<target xmi:idref="EAID 9F1539F4 2DF9 40db 8FE5 0E6F7B8EB2AB">

<model ea localid="55" type="State" name="ExtinctFire"/>

</target>

<labels mt=" [Expression==1]"/>

</connector>

<connector xmi:idref="EAID 42C7882B A52A 4a2e A03B 63DC132DFBAD">

<source xmi:idref="EAID E5E29AA8 0921 444f 9666 EC47340F9417">

<model ea localid="53" type="State" name="PrepareEquipment"/>

</source>

<target xmi:idref="EAID 85BFDD36 7149 43b8 8F62 7A0EBE5D338F">

<model ea localid="54" type="State" name="MoveToLocation"/>

</target>

<labels/>

</connector>

<connector xmi:idref="EAID 82DBB96D 4094 4428 AD2C 0EE4C8848FC5">

<source xmi:idref="EAID C0E3E4C7 ECED 48d3 9478 0E4720678FC9">

<model ea localid="52" type="StateNode" name="Initial"/>

</source>

<target xmi:idref="EAID E5E29AA8 0921 444f 9666 EC47340F9417">

<model ea localid="53" type="State" name="PrepareEquipment"/>

</target>

<labels mt=" [Evt==3000 || Evt==4000]"/>

</connector>

</XVEML>

Algorithm 1: SCXML script file.

language is organized as set of “connectors” which mean two
states: “Source” and “Target.” Each state is defined by its
name and its ID. An extra tag “Label” is used when there
is a transition from “Source” to “Target” that meets some
prerequisite conditions.

The root tag <AFSL> marks the beginning and the end
of Avatar Facial Script Language. It accepts four attributes:
avatar face ID (unique reference ID for the 3D face to be
animated), file path (the path for animated file used in the
animation), start time (the time where the animation must
start), and description (describes the animation).

Expressions tag has two subelements <TTS> or text to
speech and <Expression>. There may be many Expressions
and only one <TTS>; text to speech cannot be overlapped.
The Tag TTS accepts three attributes: start time (starting time
of the animation), fab file (file used to generate the Facial
Animation Parameters FAP output), and Audio File (file
used to generate the audio output of the text to be spoken).
Expression may or may not overlap.

Each <Expression> has a start time, repeat number (to
specify the number of repeats in need, otherwise default
value 0), pause time (when a repeat is needed, we specify the
pause time between consecutive expressions), and animation
description. We choose this scheme to define expressions
using a set of distinct expression to allow the designer to

add as many expressions as desired from the FAP database.
However, only one TTS is allowed in Expressions to control
the overlapping.

7. Extensibility Mechanism at Runtime

Changing and/or extending the existing VE application
during the runtime must be done easily and smoothly.
Most systems require extensive programming activities and
collaboration with different professional to manipulate the
extended action. The dual modeling of our VE application
allows us to rapidly and easily prevent any changes in the
VE simulation during modeling. For example, as shown in
Figures 2 and 3, if we need to modify the simulation scenario
by dropping chapter B from the global scenario, we have
to modify the corresponding state machine by removing
chapter B and then automatically generate the new SCXML
file. Consequently, when the simulation scenario changes,
it must be followed by instances modification. Thus, there
is a need to generate a new IXML file as well. On the
contrary, anymodifications in instancemodels do not require
a modification in the class model. Such an approach makes
code that would otherwise be mitigated and challenging to
modify simple, easy, and accessible to novices. In addition,
the challenges of developing SCXML and IXML script codes

International Journal of Computer Games Technology 9

<IXML>

<xmi:Extension extender="...">

<declaration>

<Object name= "AV1" file = "Firefighter.mp4" manager= "Keyboard"/>

<Expression name = "Happy" File = "Happy.mp4"/>

<TTS start="t2" fab file ="ABS" wav file="SS" Text="Text to speak">

</declaration>>

<elements>

<element xmi:idref="EAID ...2C38" xmi:type="uml:State" name="ControlEquipment" scope="public">

<EAModel.scenario>

<EAScenario name="Expression (FS1.AV5, "Stressed", StartTime = 12, Duration=30,

Intensity= "Medium") " type="Alternate"../>

</EAModel.scenario>

</element>

<element xmi:idref="EAID ...7E34" xmi:type="uml:State" name="EvacuatePeople" scope="public">

<EAModel.scenario>

<EAScenario name="Expression (FS1.AV1, "Happy", StartTime = 12, Repeat = n,

PauseTime= p, Duration=40, Intensity= "Low") />

<EAScenario name="Expression (FS1.AV2, "Happy", StartTime = 32, Duration=40,

Intensity= "Low") " type="Alternate" />

</EAModel.scenario>

</element>

<element xmi:idref="EAID ...B2AB" xmi:type="uml:State" name="ExtinctFire" scope="public">

......

</element>

<element xmi:idref="EAID ...338F" xmi:type="uml:State" name="MoveToLocation" scope="public">

<EAModel.scenario>

<EAScenario name="MoveTo(FS1.AV1,"")" type="Simple" weight="1,00"

subject="EAID ...338F" xmi:id="EAID ...C3AD"/>

....

</EAModel.scenario>

</element>

<element xmi:idref="EAID ...9417" xmi:type="uml:State" name="PrepareEquipment" scope="public">

<EAModel.scenario>

<EAScenario name="Expression (FS1.AV1, "Stressed", StartTime = 12, Duration=30,

Intensity= "Low") " type="Alternate"../>

.....

</EAModel.scenario>

</element>

<element xmi:idref="EAID ...056A" xmi:type="uml:StateNode" name="Final" scope="public">

<extendedProperties tagged="0" package name="Chapter3 4"/>

</element>

<element xmi:idref="EAID ...8FC9" xmi:type="uml:StateNode" name="Initial" scope="public">

<extendedProperties tagged="0" package name="Chapter3 4"/>

</element>

</elements>

</xmi:XMI>

</IXML>

Algorithm 2: IXML script file.

for execution in large-scale VE application can completely
avoid limitations in traditional development processes. The
resulting files are sent to all users participating in the VE
during runtime without interrupting the system.

In addition, there is a need to manipulate existing avatars
in the dropped chapter to guarantee in a natural and realistic
way the developed application. Two approaches can be pro-
posed: managing the singletonmanually by directly changing
the avatar attributes in the objects’ repository database or

creating specific state machines (migration state machine)
that will remove the avatars from the ghost chapter B to any
other chapter.

8. Game Engine Architecture and
Prototype Implementation

The proposed architecture is specifically designed to bridge
the gap between extending the 3D VE during runtime and

10 International Journal of Computer Games Technology

Session information

Physical modeling

Input interpreter

Graphical rendering Audio rendering Tactile rendering

Scene engine

User interface

Story engine
VRML

facial expressions
repository

Facial animations
controller

Collision detection

Story controller

State machines interpreters

Objects repository

SCXML file

IXML file

Figure 4: Proposed game engine architecture.

Figure 5: Face animation control.

the system functionality interruption.We use modular archi-
tecture to facilitate the integration and the management of
new components and offer qualities to the developed system.
In client side architecture, the model as well as animations
engines are web-based, and animation results can be viewed
locally in the end user browser. Figure 4 shows the detailed
proposed architecture.

The low level architecture deals with the extensibility at
runtime and is composed of the following:

(a) Message controller: it acts as an entry point to receive
a message from the server side and identifies the set
of message that can be accepted.

The high-level architecture is composed of the following:

(a) User interface: it is composed of GUI and VRML
viewer. GUI stands for the graphical user interface

of the system to transmit the user’s commands such
as the following: modify the scene content or add
avatar face animation. VRML viewer visualizes the
virtual environment content and the VRML avatars’
face animations.

(b) Story engine: it is the main component in this archi-
tecture. It models the simulation scenario of the pro-
posed system and avatar facial behavior through the
state machine concept. This component is composed
principally of the following.

(i) State Machines Interpreter. In a classic case, this
module will get in its input only once from a
SCXML file (the scenario story). It models the
states and transitions and manages all possible
transitions through the defined states. There are
several examples of the IXML file, which repre-
sent one instance for the given scenario. Also,
this module is responsible for the validation of
the files using a parser.

(ii) Story Controller. This is a component responsi-
ble for converting the SCXML into commands
for the story engine.

(iii) Face Animation Controller. It is a component
responsible for managing the IXNML file and
performing core functionalities of the execution
of facial animations.

(c) Conflict detection: it will address the conflict issue
in facial animation such as when two animations
cannot be combined (happy expression and angry
expression).

(d) VRML faces expressions and animation database: it
contains a description of a face. Each facial object

International Journal of Computer Games Technology 11

Figure 6: Firefighter face animation.

is implemented as a VRML transform node, which
describes shapes and other properties.This also has all
new facial animations created during the simulation.

Avatars participating in this scenario are modeled with four
animations: frightened, stressed, neutral, and happy depend-
ing on the situation context.

The XVEML file is first written by serializing the expres-
sion data. We then write into the file using the standard C#
IO functions:

var serializer = new XmlSerializer(typeof
(xExpressionList));

var stream = new FileStream
("ExpressionList.xml", FileMode.Create);

serializer.Serialize(stream,
expressionList);

Figure 5 shows the firefighter face modeling and the ani-
mation control features. We used sixteen features marked
as black dots on the face. Texturing was done using Photo-
shop.

For easy facial animation we adapt the Rigging Process
[32]. We have built a “Custom Controller” for every feature
to get a real avatar emotion in the Face Animation Controller
module. Figure 6 shows four animations (frightened, happy,
neutral, and stressed) depending on the fire density in the
actual scene. The corresponding XML file structure is as in
Algorithm 3.

When fire density becomes low, the firefighter changes his
expression to happy. The State Machine Interpreters module
communicates events to the Face Animation Controller to be
reflected on the firefighter face. Appropriate face expression
file is loaded for rendering.

<ExpressionList>
<Expression>
<Firefighter ID>1</Firefighter ID>
<ExpressionName>Frightened</ExpressionName>
<ExpressionFile>Frightened</ExpressionFile>

<Parameters>
.......

</Parameters>
</Expression>
<Expression>
<Firefighter ID>2</Firefighter ID>
<ExpressionName>Stressed</ExpressionName>
................
</Expression>
<Expression>
<Firefighter ID>2</Firefighter ID>
<ExpressionName>Happy</ExpressionName>
<Parameters>

<Replay value=“No” >
<Start value=“10”>
.....

</Parameters>
</Expression>
</ExpressionList>

Algorithm 3

9. Conclusions

In this work, we present a new architecture to develop and
extend VE applications with facial modeling without game
engine interruption during runtime. This approach offers
benefits to human life especially when used for critical actions
that require an immediate update like E-health and military
training applications.

12 International Journal of Computer Games Technology

We describe our game scenario as a nonlinear story using
state machine concepts. Avatars and object behaviors are
modeled separately to offer more flexibility and robustness
when updates are required. The script file describing facial
animation is retrieved directly from the state machine mod-
ule and injected on the fly in the game engine. Generated
scripts can be reused and customized to fit a wide range
of other virtual environment applications such as military
training, E-learning, E-shopping, and E-health. However, the
system still has some limitations for further improvement in
the validation process about facial features in complex scene.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author would like to acknowledge the support of
Research and Translation Center (RTC) in Prince SultanUni-
versity, Saudi Arabia. This work was supported by Grant no.
GP-CCIS-2013-11-10 from Research and Translation Center.

References

[1] O. Hagsand, “Interactive MUVEs in the DIVE system,” IEEE
Computer, vol. 3, no. 1, pp. 30–39, 1996.

[2] Information Technology—Coding of audio-visual objects—
Part 1: Systems, ISO/IEC JTC 1/SC 29/WG 11-14496-1, 2000.

[3] A. Boukerche, D. Duarte, R. Araujo, L. Andrade, and A. Zarrad,
“A novel solution for the development of collaborative virtual
environment simulations in large scale,” inProceedings of the 9th
IEEE International Symposium on Distributed Simulation and
Real Times (DS-RT ’05), pp. 86–97, Montreal, Canada, October
2005.

[4] VRML Homepage, 2012, http://www.w3.org/MarkUp/VRML/.
[5] B. Wang, H. Li, Y. Rezgui, A. Bradley, and H. N. Ong, “BIM

based virtual environment for fire emergency evacuation,” The
Scientific World Journal, vol. 2014, Article ID 589016, 22 pages,
2014.

[6] J. Noh and U. Neumann, “A survey of facial modeling and
animation techniques,” Tech. Rep. 99-705, USC, 1998.

[7] I. S. Pandzic and R. Forchheimer, MPEG-4 Facial Animation:
The Standard, Implementation and Applications, John Wiley &
Sons, New York, NY, USA, 2002.

[8] A. Boukerche, D.D.Duarte, andR. B. deAraujo, “A language for
building and extending 3D virtual web-based environments,” in
Proceedings of the 2th Latin AmericanWeb Congress and the 10th
Brazilian Symposium on Multimedia and the Web (WebMedia-
LA-Web ’04), pp. 114–116, IEEE, Ribeirão Preto, Brazil, October
2004.

[9] M. Oliveira, J. Crowcroft, and M. Slater, “Component frame-
work infrastructure for virtual environments,” in Proceedings
of the 3rd International Conference on Collaborative Virtual
Environments (CVE ’00), pp. 139–146, ACM, San Francisco,
Calif, USA, September 2000.

[10] Unity, http://www.unity3d.com.
[11] Valve Software, Source engine, 2015, http://source.valvesoftware

.com/.

[12] Emergent Game Technologies, Gamebryo, 2015, http://www
.gamebryo.com/gamebryo.php.

[13] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S.
Zeswitz, “NPSNET: a network software architecture for large
scale virtual environments,” Presence: Teleoperators and Virtual
Environments, vol. 3, no. 4, pp. 265–287, 1994.

[14] SPLINE Homepage, http://www.merl.com/projects/spline/.
[15] OpenGL Homepage, 2015, http://www.opengl.org.
[16] Web3D, 2012, http://www.web3d.org.
[17] T. Sweeney, Unreal Script Language Reference, 1998, http://

unreal.epicgames.com/UnrealScript.htm.
[18] EpicGames. Epic games’ unreal development kit eclipses 50,000

users in one week, 2015, http://www.udk.com/udk50k.
[19] CryEngine, 2015, http://www.crytek.com/cryengine.
[20] A. Ren, C. Chen, and Y. Luo, “Simulation of emergency

evacuation in virtual reality,” Tsinghua Science and Technology,
vol. 13, no. 5, pp. 674–680, 2008.

[21] C. Cao, Y. Weng, S. Lin, and K. Zhou, “3D shape regression for
real-time facial animation,”ACMTransactions on Graphics, vol.
32, no. 4, article 41, 2013.

[22] S. Benford and L. Fahlén, “A spatialmodel of interaction in large
virtual environments,” in Proceedings of the Third European
Conference on Computer-Supported Cooperative Work 13–17
September 1993, Milan, Italy ECSCW ’93, pp. 109–124, Springer,
Berlin, Germany, 1993.

[23] S. Pandžić, K. Tolga, L. Elwin, N. Thalmann, and D. Thalmann,
“A flexible architecture for virtual humans in networked collab-
orative virtual environments,” in Proceedings of the Eurograph-
ics, pp. 177–188, Budapest, Hungary, 1997.

[24] T. Zarraonandia,M. R. R. Vargas, P. Dı́az, and I. Aedo, “A virtual
environment for learning aiport emergency management pro-
tocols,” in Human-Computer Interaction. Ambient, Ubiquitous
and Intelligent Interaction, vol. 5612 ofLectureNotes inComputer
Science, pp. 228–235, Springer, Berlin, Germany, 2009.

[25] L. Hashemi Beni, M. A. Mostafavi, and J. Pouliot, “3D dynamic
simulation within GIS in support of disaster management,” in
Geomatics Solutions for Disaster Management, Lecture Notes in
Geoinformation andCartography, pp. 165–184, Springer, Berlin,
Germany, 2007.

[26] B. Magerko and J. E. Laird, “Building an interactive drama
architecture,” in Proceedings of the 1st International Conference
on Technologies for Interactive Digital Storytelling and Entertain-
ment, pp. 24–26, Darmstadt, Gemany, 2003.

[27] A. Zarrad and A. Bensefia, “A novel approach to develop large-
scale virtual environment applications using script-language,”
inProceedings of the 9th International Conference on Innovations
in Information Technology (IIT ’13), pp. 169–174, Abu Dhabi,
United Arab Emirates, March 2013.

[28] N. Szilas, “IDtension: a narrative engine for interactive drama,”
in Proceedings of the 1st International Conference on Technologies
for Interactive Digital Storytelling and Entertainment (TIDSE
’03), Göbel, Ed., Fraunhofer IRB, Darmstadt, Germany, March
2003.

[29] K. Perlin and A. Goldberg, “Improv: a system for scripting
interactive actors in virtual worlds,” in Proceedings of the
Computer Graphics Conference (SIGGRAPH ’96), pp. 205–216,
ACM Press, August 1996.

[30] Y. Arafa, K. Kamyab, S. Kshirsagar, N. Magnenat-Thalmann,
A. Guye-Vuille, and D. Thalmann, “Avatar markup language,”
in Proceedings of the 8th Eurographics Workshop on Virtual
Environments (EWVE ’02), pp. 109–118, Barcelona, Spain, May
2002.

International Journal of Computer Games Technology 13

[31] M. O. Riedl and R. M. Young, “From linear story generation
to branching story graphs,” IEEE Computer Graphics and
Applications, vol. 26, no. 3, pp. 23–31, 2006.

[32] I. Baran and J. Popovi, “Automatic rigging and animation of 3D
characters,” in Proceedings of the International ACM Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’07), San Diego, Calif, USA, August 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

