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Sparse representation has been successfully used in pattern recognition and machine learning. However, most existing sparse
representation based classification (SRC) methods are to achieve the highest classification accuracy, assuming the same losses
for different misclassifications. This assumption, however, may not hold in many practical applications as different types of
misclassification could lead to different losses. In real-world application, much data sets are imbalanced of the class distribution.
To address these problems, we propose a cost-sensitive sparse representation based classification (CSSRC) for class-imbalance
problem method by using probabilistic modeling. Unlike traditional SRC methods, we predict the class label of test samples by
minimizing the misclassification losses, which are obtained via computing the posterior probabilities. Experimental results on the
UCI databases validate the efficacy of the proposed approach on average misclassification cost, positive class misclassification rate,
and negative class misclassification rate. In addition, we sampled test samples and training samples with different imbalance ratio
and use 𝐹-measure, 𝐺-mean, classification accuracy, and running time to evaluate the performance of the proposed method. The
experiments show that our proposed method performs competitively compared to SRC, CSSVM, and CS4VM.

1. Introduction

As a powerful tool for statistical signal modeling, sparse rep-
resentation (or sparse coding) has been successfully used in
pattern recognition fields [1], such as texture classification [2]
and face recognition [3, 4], in the past few years. In [3], John
et al. proposed a sparse representation based classification
(SRC) method when they solve the face recognition under
various illuminations and occlusions, which represents an
input test image as a sparse linear combination of training
images and assigned the test image to the class whose training
samples can best reconstruct it. In theirs work, they used
𝐿1-regularizer rather than 𝐿0-regularizer to regularize the
objective function and then calculated the residuals between
the original test sample and the reconstructed one to identify
the query image’s label. Such a sparse representation based
classification framework has achieved a great success in face
recognition and has boosted the research of sparsity related
machine learning methods.

Traditional classification algorithms [5], including SRC,
are designed to achieve the lowest recognition errors and
assume the same losses for different types of misclassifica-
tions. However, this assumptionmay not be suitable formany
real-world applications. For example, it may cause inconve-
nience to a gallery who is misclassified as an impostor and
not allowed to enter the room controlled by a face recognition
system but may result in a serious loss if an impostor is
misclassified as a gallery and allowed entering the room. In
such settings, the loss of misclassification should be taken
into consideration, and “cost” information can be introduced
to measure the severity of misclassification. In recent years,
many cost-sensitivemethods have been proposed.The typical
works include the Cost-Sensitive Semisupervised Support
VectorMachine (CS4VM) and Cost-Sensitive Laplacian Sup-
port Vector Machines (CSLSVM) proposed by Zhou et al.
[6, 7], a cost-sensitive Näıve Bayes method from a novel
perspective of inferring the order relation [8] proposed by
Fang et al., and novel cost-sensitive approach proposed by
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Castro and Braga to improve the performance of multilayer
perceptron [9]. In [10], an instance weighting method was
incorporated into various Bayesian network classifiers. The
probability estimation of Bayesian network classifiers was
modified by the instance weighting method, which made
Bayesian network classifiers cost-sensitive. In [11], Lo et al.
presented a basis expansions model for multilabel classifi-
cation to handle the cost-sensitive multilabel classification
problem, where a basis function is an LP classifier trained
on a random 𝑘-label set. In [12], Wan et al. proposed a
cost-sensitive feature selection method called Discriminative
Cost-Sensitive Laplacian Score (DCSLS) for face recognition,
which incorporated the idea of local discriminant analysis
into Laplacian Score.

Cost-sensitive learning always coexists with class-imbal-
ance in most applications with the goal of minimizing the
total misclassification cost [13]. Class-imbalance has been
considered as one of the most challenging problems in ma-
chine learning and data mining. The ratio of imbalance (the
size of majority class to minority class) can be as huge as 100,
even up to 10000. Much work has been done in addressing
the class-imbalance problem. Cost-sensitive learning is an
effectivemethod to dealwith the imbalance data classification
problem. In recent year, cost-sensitive learning has been
studied widely and become one of the most important topics
for solving the class-imbalance problem. In [14], Zhou and
Liu studied empirically the effect of sampling and threshold-
moving in training cost-sensitive neural networks and
revealed that threshold-moving and soft-ensemble are rela-
tively good choices in training cost-sensitive neural networks.
There are also some other cost-sensitive learning methods by
improving the existed method. In [15], Sun et al. proposed
a cost-sensitive boosting algorithms, which are developed
by introducing cost items into the learning framework of
AdaBoost. Another strategy for class-imbalance problem is
based on exchanging the distribution of data sets. In [16],
Jiang et al. proposed a novel Minority Cloning Technique
(MCT) for class-imbalanced cost-sensitive learning. MCT
alters the class distribution of training data by cloning each
minority class instance according to the similarity between
it and the mode of the minority class. Generally, users
focus more on the minority class and consider the cost of
misclassifying a minority class to be more expensive. In our
study, we adopt the same strategy to address this problem.

In [17], a probabilistic cost-sensitive classifier was pro-
posed for face recognition; they utilize the probabilistic
model to estimate the posterior probability of a testing
sample and calculate all the misclassification losses via the
posterior probabilities. Motivated by this probabilistic model
and probabilistic subspace clustering [17–19], we proposed a
new method to handle misclassification cost. In sparse rep-
resentation, it will play an important role for reconstruction
if the value of coefficient is higher [20]. In other words,
the coefficient is 1 when a query sample was represented
by a dictionary with the same sample as the query one.
Just like Gaussian distribution, a sample that is close to the
mean vector has a higher probability. Inspired by probabilistic
model, we use coefficient matrix to calculate the posterior
probabilities rather than the distribution of noise (residual)

in [17] and they have to estimate the distribution of noise.The
main advantage of our method is to reduce the computation
complexity and computation cost, and the contribution of the
proposed method is obtaining the posterior probability by
coefficient vector of sparse representation. After calculating
all the misclassification losses via the posterior probabilities,
the test sample is assigned to the class whose loss is minimal.
Experimental results on UCI databases validate the effective-
ness and efficiency of our methods.

This paper is organized as follows. Section 2 outlines the
details of the relevant method. Section 3 presents the details
of the proposed algorithm. Section 4 reports the experiments.
Finally, Section 5 concludes the paper and offers suggestions
for future research.

2. Related Works

In this section, we briefly introduce some related works, in-
cluding sparse representation based classification and cost-
sensitive learning framework.

2.1. Sparse Representation Based Classification. Sparse repre-
sentation is a typicallymethod inmachine learning [3, 21, 22],
which is to use labeled training samples from 𝑘 distinct object
classes to learn a dictionary and determine the label of an
unseen new test sample correctly. We denote the data set
with 𝑘𝑖 training samples from the 𝑖th class as a matrix 𝐴 𝑖 =
[V𝑖,1, V𝑖,2, . . . , V𝑖,𝑛𝑖] ∈ 𝑅𝑚×𝑘𝑖 and 𝑛 = ∑𝑘𝑖=1 𝑘𝑖 is the number of all
training samples, where 𝑘 is the number of classes in training
set. Given sufficient training samples of the 𝑖th class, any test
sample 𝑦 ∈ 𝑅𝑚 from the same class will be approximately
represented linearly by the training samples of class 𝑖:

𝑦 = 𝑥𝑖,1V𝑖,1 + 𝑥𝑖,2V𝑖,2 + ⋅ ⋅ ⋅ + 𝑥𝑖,𝑘𝑖V𝑖,𝑘𝑖 . (1)

Then, rewrite the above representation of 𝑦 in matrix form as
𝑦 = 𝐴 𝑖𝑥𝑖, where 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑘𝑖] ∈ 𝑅𝑘𝑖 . Then, define a
new matrix 𝐴 for the entire training set as follows:

𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝑘]
= [V1,1, V1,2, . . . , V1,𝑛𝑖 , . . . , V𝑖,1, . . . , V𝑖,𝑛𝑖 , . . . , V𝑘,1, . . . , V𝑘,𝑛𝑘]
∈ 𝑅𝑚×𝑛.

(2)

Many method based distances are not robust in real-world
applications because of various occlusions. To overcome
this limitations, Wright introduced the sparse representation
based classification method to represent the query image.
Then, the linear representation of 𝑦 can be rewritten in terms
of all training samples as

𝑦 = 𝐴𝑥0, (3)

where 𝑥0 = [0, . . . , 0, 𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑘𝑖 , 0, . . . , 0]T ∈ 𝑅𝑛, whose
entries are zero except those associated with the 𝑖th class.
This motivates us to seek the sparsest solution by solving the
following optimization problem:

�̂�0 = argmin ‖𝑥‖0 s.t. 𝐴𝑥 = 𝑦, (4)
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where ‖ ⋅ ‖0 denotes the 𝐿0-norm, which counts the number
of nonzero entries in a vector. However, the above problem
of finding the sparsest solution (𝐿0-norm minimization
problem) is nonconvex and actually NP-hard. Generally, if
the solution sought is sparse enough, the solution of the
𝐿0-minimization problem is equal to the solution of the
following 𝐿1-minimization problem [4, 22, 23]:

�̂�1 = argmin ‖𝑥‖1 s.t. 𝐴𝑥 = 𝑦. (5)

The real data are noisy; it may not represent the test sample
exactly. To deal with the noises, John et al. extended the 𝐿1-
norm minimization problem to the following formulation:

𝑦 = 𝐴𝑥0 + 𝑧, (6)

where 𝑧 is a noise term with bounded energy ‖𝑧‖2 < 𝜀.
The sparse solution 𝑥0 can still be obtained by solving the
following stable 𝐿1-minimization problem:

�̂�1 = argmin ‖𝑥‖1 s.t. 𝑦 − 𝐴𝑥2 ≤ 𝜀. (7)

To better harness such linear structure, they instead classify 𝑦
based on howwell the coefficients associated with all training
samples of each object reproduce 𝑦. Let �̂� be the solution of
(7), for each class 𝑖, let 𝛿𝑖 be the characteristic function that
selects the coefficients associated with the 𝑖th class. Using the
coefficients, one can approximate the given test sample 𝑦 as
�̂�𝑖 = 𝐴𝛿𝑖(�̂�), where 𝛿𝑖(�̂�) = [0, . . . , 𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑘𝑖 , . . . , 0]T.
They then compute the residual (Euclidean distance) 𝑟𝑖(𝑦)
between 𝑦 and �̂�:

𝑟𝑖 (𝑦) = 𝑦 − 𝐴𝛿𝑖 (�̂�)2 . (8)

The label of the test sample 𝑦 can be identified byminimizing
𝑟𝑖(𝑦) as follows:

𝐿 (𝑦) = argmin
𝑖

𝑟𝑖 (𝑦) . (9)

2.2. Cost-Sensitive Function. In multiclass cost-sensitive
learning, considering 𝑐 gallery subjects with their class labels
𝐺 = {𝐺𝑖}𝑖=1,2,...,𝑐, many impostors, whose labels are 𝐼. In [7],
Zhang and Zhou categorized the costs into three types: cost
of false acceptance 𝐶𝐼𝐺, cost of false rejection 𝐶𝐺𝐼, and cost
of false identification 𝐶𝐺𝐺. Empirically, it is evident that 𝐶𝐼𝐺,
𝐶𝐺𝐼, and 𝐶𝐺𝐺 are unequal. Give a cost setting according to
the users and reassign 𝐶𝐼𝐺 = 𝐶𝐼𝐺/𝐶𝐺𝐺, 𝐶𝐺𝐼 = 𝐶𝐺𝐼/𝐶𝐺𝐺, and
𝐶𝐺𝐺 = 1. Here, for the ease of understanding, we still preserve
the original formulation. We can construct a multiclass cost
matrix 𝐶 as shown in

𝐺1 ⋅ ⋅ ⋅ 𝐺𝑀 𝐼
𝐺1 0 ⋅ ⋅ ⋅ 𝐶𝐺𝐺 𝐶𝐺𝐼
... ... 0 ... ...

𝐺𝑀 𝐶𝐺𝐺 ⋅ ⋅ ⋅ 0 𝐶𝐺𝐼
𝐼 𝐶𝐼𝐺 ⋅ ⋅ ⋅ 𝐶𝐼𝐺 0

(10)

where 𝐶𝑖𝑗 indicates the cost of misclassifying a sample of the
𝑖th class as the 𝑗th class. The diagonal elements of 𝐶 are all
zero since there is no loss for correct recognition.

Cost-sensitive learning usually sets the misclassification
cost as objective function and identifies the label byminimiz-
ing loss function. Given a test sample 𝑦 and its predicted class
label as 𝜙(𝑦), respectively, the label is obtained byminimizing
the objective function:

𝐿 (𝑦) = arg min
𝜙(𝑦)∈{𝐺1 ,...,𝐺𝑐 ,𝐼}

loss (𝑦, 𝜙 (𝑦)) , (11)

where

loss (𝑦, 𝜙 (𝑦))

=
{{{{{
{{{{{
{

𝑐

∑
𝑖=1

𝑃 (𝐺𝑖 | 𝑦) 𝐶𝐺𝐼 if 𝜙 (𝑦) = 𝐼
𝑐

∑
𝑖=1
𝑖 ̸=𝜏

𝑃 (𝐺𝑖 | 𝑦) 𝐶𝐺𝐺 + 𝑃 (𝐼 | 𝑦) 𝐶𝐼𝐺, if 𝜙 (𝑦) = 𝐺𝜏,
(12)

where �̂�(𝑦) is the optimal prediction of 𝑦 and 𝑐 represents the
gallery subjects in classification problem.

3. Cost-Sensitive SRC

In [5], Alpaydın calculated the residuals to identify the class
label of a test sample 𝑦, which is the Euclidean distance
between reconstructed sample and the original test sample
𝑦. In cost-sensitive learning, the loss function (see (7)) is
regarded as an objective function to identify the label of a
test sample. In binary classification problem, there are two
misclassification costs, and we denote the cost that misclassi-
fies positive class as negative class by 𝐶10 and the cost by 𝐶01
conversely. Then a cost matrix can be constructed as shown
in

𝐺0 𝐺1
𝐺0 0 𝐶01
𝐺1 𝐶10 0

(13)

where 𝐺1 and 𝐺0 represents the label of minority class and
majority class, respectively.

It is well known that the loss function can be related to the
posterior probability 𝑃(𝜙(𝑦) | 𝑦) ≈ 𝑃(𝛿𝑖(𝑥𝑖) | 𝑦). Then the
loss function can be rewritten as follows:

loss (𝑦, 𝜙 (𝑦)) =
{{{
{{{
{

∑
𝑖=𝐺1

𝑃 (𝛿𝑖 | 𝑦) 𝐶10 if 𝜙 (𝑦) = 𝐺0
∑
𝑗=𝐺0

𝑃 (𝛿𝑗 | 𝑦) 𝐶01 if 𝜙 (𝑦) = 𝐺1.
(14)

The test sample 𝑦 belongs to the class with higher probability.
Now, we will estimate 𝑃(𝛿𝑖(𝑥) | 𝑦), (𝑖 = 0, 1).

In coefficient matrix, the larger the element value is, the
more important the role it will play for reconstructing a
test sample. In other words, it is best to represent the test
sample by training samples and they have the same class label,
and there are no samples from different class in this linear
combination. The posterior probability can be related to the
coefficient matrix. Accordingly, we rewrite the solution of (7)
as �̂� = [𝑥+ 𝑥−]T, where 𝑥+ = [𝑥+1 , 𝑥+2 , . . . , 𝑥+𝑛+] ∈ 𝑅𝑛+ and
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𝑥− = [𝑥−1 , 𝑥−2 , . . . , 𝑥−𝑛−] ∈ 𝑅𝑛− represent the positive class
coefficient and negative class coefficient, respectively. Here,
𝑛+ is the number of positive samples and 𝑛− is the number
of negative samples in dictionary. Then, we can obtain the
posterior probabilities:

𝑃 (𝛿𝑖 | 𝑦) =
𝑛+

∑
𝑖=1

𝑥+𝑖
𝑋 if 𝑖 = 𝐺1,

𝑃 (𝛿𝑗 | 𝑦) =
𝑛−

∑
𝑗=1

𝑥−𝑗
𝑋 if 𝑗 = 𝐺0,

(15)

where𝑋 = ∑𝑛−𝑗=1 𝑥−𝑗 + ∑𝑛+𝑖=1 𝑥+𝑖 . Then, (14) can be written as

loss (𝑦, 𝜙 (𝑦)) =
{{{{{
{{{{{
{

𝑛+

∑
𝑖=1

𝑥+𝑖
𝑋 𝐶10 if 𝜙 (𝑦) = 𝐺1
𝑛−

∑
𝑗=1

𝑥−𝑗
𝑋 𝐶01 if 𝜙 (𝑦) = 𝐺0.

(16)

We can obtain the label of a test sample 𝑦 byminimizing (16):

𝐿 (𝑦) = argmin
𝑖∈{0,1}

loss (𝑦, 𝜙 (𝑦)) . (17)

The whole process of CSSRC is described in Algorithm 1.

Algorithm 1 (CSSRC algorithm).

Input. Dictionary 𝐴 ∈ 𝑅𝑚×𝑛, test sample 𝑦 ∈ 𝑅𝑚

Output. The label 𝐿(𝑦) of test sample 𝑦
(1) Normalize the columns of 𝐴 to unit 𝐿2-norm
(2) Solve the 𝐿1-minimization problem:

�̂� = argmin ‖𝑥‖1 s.t. 𝑦 = 𝐴𝑥 (18)

Or alternatively, solve

�̂� = argmin ‖𝑥‖1 s.t. 𝐴𝑥 − 𝑦2 ≤ 𝜀 (19)

Assume the solution is �̂� = [𝑥+ 𝑥−]T
(3) Calculate the loss function:

loss (𝑦, 𝜙 (𝑦)) =
{{{{{
{{{{{
{

𝑛+

∑
𝑖=1

𝑥+𝑖
𝑋 𝐶10 if 𝜙 (𝑦) = 𝐺1
𝑛−

∑
𝑗=1

𝑥−𝑗
𝑋 𝐶01 if 𝜙 (𝑦) = 𝐺0,

(20)

where 𝑋 = ∑𝑛−𝑗=1 𝑥−𝑗 + ∑𝑛+𝑖=1 𝑥+𝑖
(4) Obtain the label of y:

𝐿 (𝑦) = argmin
𝑖∈{0,1}

loss (𝑦, 𝜙 (𝑦)) . (21)

Table 1: Description of data sets.

Dataset Size Target Ratio min/maj
Abalone 4117 Ring = 7 9.7 391/3786
Housing 506 [20, 23] 3.8 106/400
Nursery 12960 Very-recom 38.5 328/12632
Letter 20000 A 24.3 789/19211
Pima 786 Class 1 1.7 268/500
Cmc 1473 Class 2 3.4 333/1344
Car 1728 acc 3.5 384/1344

4. Experiments

4.1. Data Sets and Experimental Setting. We test the proposed
method on seven UCI data sets [24]. Detailed information
about these data sets is summarized in Table 1.

In cost-sensitive learning, false positive (actual negative
but predicted as positive, denoted as FP), false negative
(actual positive but predicted as negative, FN), true positive
(actual positive and predicted as positive, TP), and true
negative (actual negative and predicted as negative, TN) can
be given in a confusion matrix as follows:

Positive Class Negative Class
Positive Class TP FN
Negative Class FP TN

(22)

To binary classification problems, four kinds of mis-
classification cost are needed, which is referred to as CTP,
CFP, CTN, and CFN, respectively. CTP and CTN are the
costs of true positive (TP) and true negative (TN). In order
to simplify the cost matrix, we set CTP = 0 and CTN
= 0. CFN and CFP are the costs of false negative (FN)
and false positive (FP). We always assume that the cost of
misclassifying positive class instances ismuch higher than the
cost of misclassifying negative class instances, so we set CFN
≫ CFP. In this paper, CFP is set to be a unit cost of 1; CFN
is assigned different values: 5, 10, 15, . . . , 50, respectively. In
our experiments, we adopt 10-folder cross-validation to get
the average cost, and three evaluation criteria are adopted
to evaluate the classification performance in cost-sensitive
experiments: average cost (AC), error rate of false acceptance
(Err(IG)), and error rate of false rejection (Err(GI)). For class-
imbalance problem, we choose 𝐹-measure and 𝐺-mean to
evaluate the performance.They are defined as follows [25, 26]:

AC = 𝐶10 |FP| + 𝐶01 |FN|
𝑁 ,

Err (𝐺𝐼) = |FP|
𝑁+ ,

Err (𝐼𝐺) = |FN|
𝑁− ,
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Table 2: Average cost of the four methods (cost ratio 1 : 10).

Methods CSSRC SRC CSSVM CS4VM
Abalone 0.0122 0.6585 1.5905 0.4590
Housing 0.0610 0.1585 1.6333 0.4190
Nursery 0.0488 0.3902 0.3110 0.0817
Letter 0.1220 0.6219 0.1774 0.3378
Pima 0.0122 2.4390 2.4495 0.5027
Cmc 0.5122 0.5488 1.9905 0.5105
Car 0.0244 0.0976 0.6714 0.2610

Recall = Acc+ = TP
TP + FN

,

Acc− = TN
TN + FP

,

Accuracy = Acc− + Acc+,

Precision = TP
TP + FP

,

𝐺-mean = √Acc+ × Acc−,

𝐹-measure = 2 × Precision × Recall
Precision + Recall

,
(23)

where |FP| and |FN| represent the number of false accep-
tances and false rejections, respectively. 𝑁, 𝑁+, and 𝑁−
represent the number of test samples, positive class samples,
and negative class samples, and𝑁 = 𝑁+ + 𝑁−.

In order to illustrate the performance of CSSRC, sparse
representation based classification (SRC), Cost-Sensitive
Support Vector Machine (CSSVM), and Cost-Sensitive
Semisupervised Support Vector Machine (CS4VM) are cho-
sen to compare the performance on three experiments.
The experiments are performed on Matlab 2014a and the
computer with a 2.6GHz Intel Xeon CPU.

4.2. The Effect of Cost for SRC. For data set Housing, the size
is smaller than the other six data sets, so less samples are
selected for train set and test set.We select 31 positive samples
and 31 negative samples randomly from Housing as test
samples and 41 positive samples and 41 negative samples
as training samples. We select 61 positive samples and 61
negative samples as test samples from Abalone, Nursery,
Letter, Pima, Cmc, and Car and 101 positive samples and 101
negative samples as training samples.We repeat sampling 100
times and get the average results.

Experiment 1. We compare the performance of these 4 meth-
ods (CSSRC, SRC, CSSVM, and CS4VM) on Abalone, Nurs-
ery, Letter, Pima, Cmc, Housing, and Car. We set cost ratio
(the cost of false acceptance respect to false rejection) as 10,
and the results are summarized in (22). From Table 2, we can
see that the proposed cost-sensitive approach achieves lower
average misclassification cost than the other three methods
on Abalone, Nursery, Letter, Pima, Housing, and Car except

Cmc. CSSRC’s average cost is higher than CS4VM but lower
than the other two methods on Cmc and lower than CS4VM
on the other 6 data sets. The average cost of CSSRC is 0.5122
and CS4VM’s average cost is 0.5105. They are in the same
order of magnitudes. In other words, our method has better
performance than SRC, CSSVM, and CS4VM.

Experiment 2. According to the results in Experiment 1, we
plot two pictures from Figure 1. For either positive class or
negative class, the proposedmethod can achieve a lower error
rate on Nursery and Abalone when the cost ratio ranges
from 5 to 50. Although CS4VM can obtain a lower error
rate of false rejection, its error rate of false acceptance is very
high, this can generate a serious total cost. From Figure 1,
we can easily find that our method can achieve lower error
rate of false rejection and lower error rate of false acceptance
simultaneously.

Experiment 3. In this section, we set cost ratio from 10 to 50,
and the results are summarized as Table 3. The first row is
coat ratios and the first two columns represent data sets and
classification methods, respectively. In Experiment 2 we use
merely two data sets, for proving the robust of our method;
more data sets are adopted in this experiment. Our proposed
cost-sensitive SRC achieved a lower average costs on four data
sets. Although it is not the lowest cost on Nursery and Letter,
it has the same order of magnitude as the lowest cost value.

The above there experiments have proved the effect of
cost term for SRC. Particularly, the comparison of SRC and
CSSRC canwell validate the conclusion that the cost term can
improve the performance of SRC.

4.3. Solving Class-Imbalance Problem

Experiment 1. In this section we will solve the class-im-
balance problem. Table 1 has summarized the information
of data sets we used, and the imbalance ratio higher 10 is
Nursery and Letter. In order to set a higher imbalance ratio,
we select Nursery in this experiment. Similarly, we compare
the performance of these four methods (SRC, CSSVM,
CS4VM, and CSSRC) on Nursery. It is difficult to reflect the
performance of ourmethod for class-imbalance problem, and
𝐹-measure, 𝐺-mean, and classification accuracy have been
adopted for the class-imbalance problem. In this experiment,
we take the imbalance ratio from [1, 2, . . . , 10], respectively.
The size of minority class is 30 and the majority class is 30
multiplying the imbalance ratios in training set, accordingly.
We select 61 positive samples and 61 negative samples as test
set and run and summarize the results as in Figures 2 and
3; the sampling process has repeated 100 times and gets the
average results.

Figure 2 shows the results of 𝐹-measure on Nursery, and
the definition of 𝐹-measure (the harmonic mean between
the classification accuracy of positive class and the clas-
sification accuracy of negative class) has been shown in
Section 4.1. It is obvious that our method has achieved a
higher 𝐹-measure value with respect to sparse representation
based classification, Cost-Sensitive Support Vector Machine,
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(a) The result on Nursery
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(b) The result on Abalone

Figure 1: Error rate of false acceptance and false rejection.

Table 3: Average cost of methods on five data sets with cost ratio from 10 to 50.

Cost ratio 10 15 20 25 30 35 40 45 50
Abalone

CSSRC 0.365 0.548 0.487 0.304 0.365 0.426 0.975 0.975 0.609
SRC 1.621 1.646 2.256 2.512 5.487 4.365 5.853 2.280 9.146
CS4VM 4.267 7.036 9.498 12.024 14.561 17.124 19.220 21.809 24.183
CSSVM 1.615 2.213 2.746 3.795 4.175 5.569 6.238 6.542 7.643

Nursery
CSSRC 0.365 0.365 0.731 0.304 0.365 0.426 0.975 0.548 1.829
SRC 4.268 6.585 6.341 6.500 12.804 11.536 13.670 19.207 22.560
CS4VM 0.670 1.001 1.416 1.764 2.108 2.700 2.753 3.152 3.733
CSSVM 0.348 0.394 0.691 0.836 0.895 1.204 1.204 1.531 1.613

Housing
CSSRC 0.487 0.365 0.000 0.000 0.000 0.426 0.000 0.000 0.000
SRC 2.439 2.561 1.256 6.707 5.853 8.109 6.341 12.073 12.195
CS4VM 3.765 6.007 8.091 10.046 11.975 13.491 15.878 17.793 19.420
CSSVM 1.689 2.544 3.106 4.326 4.983 5.228 6.703 6.265 7.647

Letter
CSSRC 0.024 0.049 0.024 0.036 0.012 0.061 0.036 0.085 0.037
SRC 0.036 0.049 0.025 0.305 0.036 0.024 0.049 0.049 1.244
CS4VM 0.606 1.150 1.146 1.483 1.891 2.282 2.405 2.760 3.983
CSSVM 0.158 0.277 0.388 0.298 0.409 0.319 0.466 0.757 0.798

Car
CSSRC 0.000 0.183 0.488 0.000 0.366 0.000 0.488 0.548 0.610
SRC 1.097 1.463 2.195 3.354 1.463 5.549 4.878 5.134 5.488
CS4VM 2.500 3.849 5.307 6.556 7.939 9.365 10.605 11.514 12.854
CSSVM 1.335 1.486 1.711 2.250 2.388 2.561 2.570 2.895 2.998
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Table 4: Classification accuracy on Nursery.

Accuracy 1 2 3 4 5 6 7 8 9 10
SRC 0.9298 0.9305 0.9343 0.9412 0.9420 0.9460 0.9484 0.9484 0.9530 0.9572
CS4VM 0.9186 0.9256 0.9307 0.9345 0.9335 0.9414 0.9400 0.9396 0.9369 0.9421
CSSVM 0.9279 0.9398 0.9314 0.9393 0.9345 0.9319 0.9285 0.9279 0.9285 0.9294
CSSRC 0.9601 0.9623 0.9610 0.9585 0.9610 0.9600 0.9610 0.9627 0.9597 0.9616

Table 5: Running time on Nursery.

Time/s 1 2 3 4 5 6 7 8 9 10
SRC 0.0105 0.0385 0.0664 0.0973 0.1324 0.1721 0.2158 0.2620 0.3137 0.3702
CS4VM 1.7131 1.7114 1.9854 2.0866 2.0969 2.2246 2.2572 2.3539 2.3044 2.4455
CSSVM 3.7136 8.5207 15.1722 23.3593 33.2055 45.8405 59.8414 74.8664 93.9153 115.6757
CSSRC 0.0102 0.0237 0.0408 0.0594 0.0818 0.1069 0.1328 0.1594 0.1907 0.2236
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Figure 2: The result of 𝐹-measure on Nursery.

and Cost-Sensitive Semisupervised Support Vector Machine.
Moreover, the method we proposed achieved a more stable
performancewith the increasing of imbalance ratio. Similarly,
𝐺-mean (the geometric mean between the classification
accuracy of positive class and the classification accuracy of
negative class) also achieved a higher value with respect the
other three methods in Figure 3.

It is difficult to evaluate the performance of methods
solving class-imbalance problem, but we use classification
accuracy to reflect the method additionally for persuasive,
and this is summarized in Table 4. On the other hand,
running time represents the computation cost of a method.
The result is shown in Table 5. It is obvious that our method
can get the highest classification accuracy and the lowest
running time on Nursery. In this paper, we use sparse
representation coefficient vectors to estimate the posterior
probability; this can well reduce the computing complexity
and computation cost.

Experiment 2. In this experiment, we intend to validate the
applicability of our method for class-imbalance problem. In
Experiment 1 1 we have tested the validity of our method
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Figure 3: The result of 𝐺-mean on Nursery.

when the class distribution of training samples is imbalance.
Now, we will select some training samples to validate our
method, where the distribution of training samples is imbal-
ance. Table 1 has summarized the information of data sets we
used, and the imbalance ratio of Letter is 24.3. In order to set
a higher imbalance ratio, we select Letter in this experiment.
Similarly, we compare the performance of these fourmethods
(SRC, CSSVM, CS4VM, and CSSRC) on Nursery. In this
experiment, we take the imbalance ratio from [1, 2, . . . , 10],
respectively. The size of minority class is 30 and the majority
class is 30 multiplying the imbalance ratios in training set,
accordingly. We select 61 positive samples and 61 negative
samples as test set and run and summarize the results as
Figures 4 and 5; the sampling process has repeated 100 times
and gets the average results.

Figure 4 has shown the 𝐹-measure with imbalanced
training samples; Figure 5 has shown the 𝐹-measure with
imbalanced test samples. It is obvious that our method
achieves a stable and higher result on Letter than the other
three methods from Figures 4 and 5. Although sparse rep-
resentation based classification has a similar result of 𝐹-
measure with our method in Figure 5, the running time is
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Table 6: Running time on Letter.

Time/s 1 2 3 4 5 6 7 8 9 10
SRC 0.0968 0.4103 0.6356 0.9178 1.2650 1.6695 2.1277 2.6364 3.3029 3.8405
CS4VM 2.0102 2.3504 2.6401 2.9405 3.2302 3.5415 3.8596 4.1482 5.4454 5.7497
CSSVM 7.5763 14.9397 22.1502 25.5690 37.0908 44.1674 51.6777 59.1158 66.6602 74.3515
CSSRC 0.0308 0.1170 0.1914 0.2806 0.3954 1.3279 1.4672 1.6153 1.7826 1.9640
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Figure 4: The result of 𝐹-measure on Letter (the distribution of
training samples is imbalanced).
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Figure 5:The result of 𝐹-measure on Letter (the distribution of test
samples is imbalanced).

higher than our method in Table 6. Much experiments has
been done in this section, we have compared 𝐹-measure with
the imbalanced distribution of training samples and testing
samples and running time, we can easily make a conclusion
that our method is better than the other three methods, and
we can well resolve the class-imbalance problem.

5. Conclusions and Future Works

This paper, we propose a novel cost-sensitive SRC classi-
fier approach. The proposed approach adopted probabilistic
model and sparse representation coefficient matrix to esti-
mate the prior probability and then obtain the label of a
testing sample byminimizing themisclassification losses.The
experimental results show that the proposed cost-sensitive
SRC has a comparable or even lower total cost with higher
accuracy compare to the other three classification algorithms.
Much experiment has been done and concluded that our
method can well solve the class-imbalance problem. In real-
world application, nearly all the data sets are class-imbalance.
Our research can overcome the difficult the imbalanced
distribution of data sets brought in.

In order to simplify the cost matrix, we restrict our
discussion to two-class problems. So extending our current
work to multiclass scenario is a main research direction for
our future work.
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