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A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-
CBDCS) is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft
(QTRA). Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia
is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to
eliminate the approximation error, where a radial basis function (RBF) neural network is used to online regulate the equivalent
sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network
weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage
term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the
overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network
sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and
comparative simulations are included to verify the efficacy of the proposed control method.

1. Introduction

It is well known that quad tilt rotors aircraft (QTRA) can be
taken as a specific robotic system, whose dynamic modeling
and control can be further tailored for further application
to generic robotics. In particular, QTRA has been receiving
an increasing attention among the global researchers, due
to its specific capabilities combined with the advantages of
both fixed-wing aerial and helicopters, for example, high
cruising speed, long flight range, large loading, and ability
of vertical take-off and landing (VTOL) in limited space [1].
Hence, they are more suitable for commercial, firefighting,
and investigation purposes, such as assembly of large pieces,
natural disasters assessment, reconnaissance of forest fires,
and traffic surveillance [2]. However, as a specific robotic
manipulators, QTRA is an underactuated system with six-
freedom degree and 4 inputs, which rely on wings and
rotors for generating lift; that is, it will have to deal with
serious aerodynamic interference between rotors and wings
due to their positional relationship [3]. Consequently, the

mechanical structure of the QTRA and its strong nonlineari-
ties, unknown external disturbances, coupled dynamics, and
multivariable properties, increase the complexity of attitude
control designs. In fact, the control design forQTRAhas been
relatively immature, and any inappropriate control strategy
could lead to instability issues, such as the 4 major accidents
in the tilt rotor V-22 caused by out of attitude control in the
VTOL stage.

With respect to this challenging issue, a considerable
amount of effort has been invested for the attitude control of
QTRA. In particular, the PID and LQR control methods have
been well recognized, where nonlinear structure algorithms
are used to suppress integral saturation [4, 5], and two
linear structure algorithms have beenmorewidely adopted to
control integral saturation, including conditional integration
[6] and feedback inhibition method [7]. In the subsequent
studies, several modifications have beenmade on the integral
part to improve the control capability against saturation,
for example, integral part prediction PID modification [8],
variable structure PID modification [9], and multimode PID
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modification [10], where the value of integral part will eventu-
ally be adjustedwith the saturation of controller.However, the
majority of these available PID controlmethods all impose an
assumption that the disturbances to be considered are none
or varying lowly.

In practical flight scenarios, the uncertainties in the sys-
tem parameters along the attitude varying may be unavoid-
able due to complex couplings between the attitude and
position, the unknown external disturbances, or the mod-
eling uncertainties and attitude constraints that affect the
control system dynamics [11, 12]. Consequently, the precise
attitude control is of great importance for the control system
design of QTRA. To deal with this issue, some efforts have
been advanced to exploit the ability of robustness, invariance
to uncertainties, and resistance to external disturbance for
sliding mode control (SMC) [13] to improve the robustness
of flying craft control. In recent years, many researchers
have investigated the incorporation of SMC into adaptive
control and intelligent control methods, such as combining
SMC with neural networks [14] or with fuzzy logic systems
[15]. Particularly, in the application of SMC, its combination
with neural network is validated to overcome an obvious
shortcoming; that is, the chattering problem that impedes the
application of SMC.

It is well known that radial basis function (RBF) neural
network can locally approximate unknown dynamic func-
tionswith arbitrary precision in certain conditions, which has
strong self-learning, adaptation, and fault-tolerant capability
[16, 17]. Accordingly, RBF neural network has been adopted
for SMC systems to eliminate chattering phenomenon. It
is shown in [18] that the sliding mode variable structure
controller using a RBF neural network is more robust to
disturbances with a state observer. In [19, 20], the application
of neural network to estimate the changeable control law and
combined boundary layer integral to eliminate the chattering
are validated to improve the dynamics of system. It is noted
that the presented methods depend on the integral boundary
expansion or observer design, where the induced expansion-
boundary or observer errors are used to reduce the switching
frequency of control law for improving the robustness of
the traditional sliding mode controller. Moreover, the dis-
turbances and the potential approximation errors are not
considered in [21]. Following this framework, the authors
of [22] proposed a neural network adaptive backstepping
high-order terminal sliding mode control scheme, where
neural networks are employed to approximate the unknown
nonlinear functions, and a high-order sliding mode control
law using the nonsingular terminal is designed to eliminate
chattering. Although it was proved that the system is robust
to both matched and mismatched uncertainties, the control
law of lower-order emerges order coupling during deriving
the equivalent control law; that is, the controller is difficult
to implement. Besides the observer design and control law
regulation, fractional-order calculus theory [23] and discrete
time terminal method [24] combing RBF neural network
were also exploited to eliminate the chattering of SMC.

In particular, a complementary sliding mode controller
is designed by adopting the combination of the generalized
sliding surface and the complementary sliding surface to

improve the system dynamic performance and robustness
[25]. In the latest work, a bioinspired algorithm has attracted
researchers to apply such intelligent approaches to optimize
the network structure parameters, and the slidingmode error
is introduced in the adaptive law to improve the performance
of the systems by regulating the centers, widths, and weight
of RBF network online. Noticeably, for the attitude control
of QTRAwith unknown external disturbances andmodeling
errors, the long convergence time and significant chattering
are still a problem to be solved in most of the aforementioned
results.

According to the sliding mode control principle, if the
system converged to the sliding surface, the performance of
sliding mode can be greatly improved. Motivated by this fact
and our recent work [26, 27], we proposed a novel adaptive
neural network sliding mode control for QTRA attitude with
external uncertain disturbances and multichannel couplings,
where RBF neural network is used to online regulate the
equivalent sliding mode control law, and a robust control
law is added to eliminate the approximation error. Then an
adaptive control algorithm is designed, where the attitude sta-
bility requirements concerning the propeller tension, channel
arm, and moment of inertia are all studied. Especially,
considering the influence of the hidden layer unit number
and the network essential structure parameters on the validity
of neural network approximation, a novel multicommunity
bidirectional drive collaborative search algorithm is devel-
oped to uniformly update the unknown neural network
weights and essential model parameters adaptively, where
the nonlinear approximation error is obtained and serves as
a novel leakage term in the adaptations. Consequently, the
attitude of the control system is guaranteed to converge to
the sliding surface stably, which can effectively improve the
convergence rate and eliminate chattering phenomenon of
equivalent sliding mode control law and benefit the overall
attitude control performance for QTRA. Appropriate com-
parisons among the novel adaptive neural network sliding
mode control, the classical neural network sliding mode
control, and the dynamic inverse PID control are examined.
Simulation results are provided to validate the efficacy of the
proposed control method.

This paper is organized as follows: the problem to be
studied and the attitude dynamicsmodel of QTRA is stated in
Section 2. Adaptive neural network slidingmode control with
a novel multicommunity bidirectional drive collaborative
search algorithm is presented in Section 3. Comparison
simulation results are given in Section 4 and conclusion is
made in Section 5.

2. Problem Formulation

In this section, the proposed QTRA in Figure 1 has 8 inputs
of the motors, which includes 4 inputs of regular QTRA and
the additional 1 input for each of 4 of the tilting motors, and
they are not fixed and are able to tilt-roll separately from
each other. In particular, the motors could rotate around
pitch to compensate for unexpected effects occurred from
internal or external environment. Nevertheless, the body
fixed coordinate is defined, where the focal point 𝑂𝑏 of
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Figure 1: Coordinate systems: inertial earth fixed frame and body fixed frame.

gravity for QTRA upwards concurring is chosen as the 𝑍𝑏
axis, the perpendicular lever is the 𝑋𝑏 axis, and the 𝑌𝑏 axis
is defined by the right hand rule. Then 𝑋𝑏, 𝑌𝑏, and 𝑍𝑏 axes
are characterized individually as roll (𝜙), pitch (𝜃), and yaw
(𝜑) angles, respectively. For inertial earth fixed frame, an
east-north-up orthogonal coordinate system is created by
setting the QTRA flight starting point 𝑂𝑒 as the origin.

Consequently, a nonlinear attitude control system for
QTRA aircraft with attitude angles defined as in Figure 2 is
studied, where the QTRA is assumed to be a symmetric rigid
body with constant mass, and the roll (𝜙) pitch (𝜃) and yaw
(𝜑) angles have a little variation during the VTOL stage. The
transformation matrix 𝑅(𝜙, 𝜃, 𝜑) from inertial coordinates to
body fixed coordinates is given by [23]

𝑅 (𝜙, 𝜃, 𝜑) = [[[
[

cos (𝜑) cos (𝜃) cos (𝜑) sin (𝜃) sin (𝜙) − sin (𝜑) cos (𝜙) cos (𝜑) sin (𝜃) cos (𝜙) + sin (𝜑) sin (𝜙)
sin (𝜑) cos (𝜃) sin (𝜑) sin (𝜃) sin (𝜙) − cos (𝜑) cos (𝜙) sin (𝜑) sin (𝜃) sin (𝜙) − sin (𝜙) cos (𝜑)
− sin (𝜃) cos (𝜃) sin (𝜙) cos (𝜃) cos (𝜙)

]]]
]
. (1)

If the propeller pull and earth’s gravitational force are
represented as T and G, respectively, in Figure 2 and the
resultant force of QTRA body frame is denoted by 𝐹𝑖, each of
the axis thrust vectors󳨀→𝐹 𝑖 can be given in (2) by using rotation
matrix

󳨀→𝐹 𝑖 = [[
[
𝐹𝑖𝑥𝐹𝑖𝑦𝐹𝑖𝑧
]]
]
⋅ 𝑅 (𝜙𝑖, 𝜃𝑖, 𝜑𝑖)

= [[
[

(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4) sin 𝜕 + 𝑚𝑔 sin 𝜃𝑚𝑔 sin𝜙 cos 𝜃
(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4) cos 𝜕 − 𝑚𝑔 cos𝜙 cos 𝜃

]]
]
,

(2)

where 𝐹𝑖, 𝐹𝑖𝑦, and 𝐹𝑖𝑧 are the thrust force of the components
along the axis, respectively, 𝑇1, 𝑇2, 𝑇3, and 𝑇4 are the pull for
each of propeller, and 𝛾 represents the rotor tilting angle.

Suppose 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 as the arm length of the rotational
torque for x-, y-, z-axis, respectively; each of the axis torques
can be calculated as follows:

󳨀→𝑀𝑖 = [[
[
𝑀𝑖𝑥𝑀𝑖𝑦𝑀𝑖𝑧
]]
]
⋅ 𝑅 (𝜙𝑖, 𝜃𝑖, 𝜑𝑖)

= [[[
[

(𝑇1 cos 𝛾 + 𝑇4 cos 𝛾) 𝐿𝑥 − (𝑇2 cos 𝛾 + 𝑇3 cos 𝛾) 𝐿𝑥(𝑇1 cos 𝛾 + 𝑇2 cos 𝛾) 𝐿𝑦 − (𝑇3 cos 𝛾 + 𝑇4 cos 𝛾) 𝐿𝑦(𝑇1 sin 𝛾 + 𝑇4 sin 𝛾) 𝐿𝑧 − (𝑇2 sin 𝛾 + 𝑇3 sin 𝛾) 𝐿𝑧
]]]
]
.

(3)

Therefore, the resultant torque of each axis can be calculated,
respectively, as follows:

𝑀𝑖 = √𝑀2𝑖𝑥 +𝑀2𝑖𝑦 +𝑀2𝑖𝑧. (4)

According to the law of severity, the torque equation in (4) is
produced by the rotation speeds of the propellers, such that
(3) becomes

∑𝑀 = 𝛿𝐻𝛿𝑡 + 𝜔 × 𝐻, (5)

where 𝐻 is the moment of momentum of QTRA to the
earth frame, and the component of rotation along the angular
velocity vector can be given as follows:

𝜔 = 𝑝𝑖 + 𝑞𝑗 + 𝑟𝑘. (6)

If the moment of inertia to the body frame is denoted
by I, the relation between angular momentum and angular
velocity can be given as

𝐻 = 𝐼𝜔. (7)

The kinetic equation of centroids for QTRA can be
derived in

𝑀𝑥 = 𝐼𝑥𝑥�̇� − 𝐼𝑥𝑦 ̇𝑞 − 𝐼𝑥𝑧 ̇𝑟 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦) 𝑞𝑟
+ 𝐼𝑦𝑧 (𝑟2 − 𝑞2) − 𝐼𝑥𝑧𝑝𝑞 + 𝐼𝑥𝑦𝑝𝑟,
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Figure 2: Body scheme showing the forces acting on the QTRA.

𝑀𝑦 = −𝐼𝑥𝑦�̇� + 𝐼𝑦𝑦 ̇𝑞 − 𝐼𝑦𝑧 ̇𝑟 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧) 𝑝𝑟
+ 𝐼𝑥𝑧 (𝑝2 − 𝑟2) + 𝐼𝑧𝑦𝑝𝑞 − 𝐼𝑥𝑦𝑞𝑟,

𝑀𝑦 = −𝐼𝑥𝑧�̇� − 𝐼𝑧𝑦 ̇𝑞 + 𝐼𝑧𝑧 ̇𝑟 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥) 𝑝𝑞
+ 𝐼𝑥𝑦 (𝑞2 − 𝑝2) + 𝐼𝑥𝑧𝑞𝑟 − 𝐼𝑦𝑧𝑝𝑟,

(8)

where 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 donate the rotary inertia of body frame
axis and 𝐼𝑥𝑦, 𝐼𝑥𝑧, and 𝐼𝑦𝑧 are the inertial products, respectively.

In this study, the roll (𝜙) pitch (𝜃) and yaw (𝜑) are 1 to
5 degrees, respectively, by the user input during the VTOL
stage. In this case we assume that (𝜙, 𝜃, 𝜑) equals (𝑝, 𝑞, 𝑟)
and (cos𝜙, cos 𝜃, cos𝜑) equals (1, 1, 1).Therefore, the attitude
dynamics of QTRA can be derived with modeling errors and
external disturbances using the formula in (9):

̈𝜙 = 𝐼𝑥𝑧 (𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧) ̇𝜃�̇� + [𝐼𝑧𝑧 (𝐼𝑦𝑦 − 𝐼𝑥𝑥) − 𝐼2𝑥𝑧] ̇𝜙𝜑 + 𝐼𝑧𝑧𝐿𝜙𝜕𝑇 (𝜔21 − 𝜔22 + 𝜔23 − 𝜔24) − 𝐼𝑥𝑧𝐿𝜑𝑚𝑔𝛾𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧 +R1, (9)

̈𝜃 = (𝐼𝑧𝑧 − 𝐼𝑥𝑥) ̇𝜙�̇� + 𝐼𝑥𝑧 ( ̇𝜑2 − ̇𝜙2) + 𝐿𝜃𝜕𝑇 (𝜔21 + 𝜔22 − 𝜔23 − 𝜔24)𝐼𝑦𝑦 +R2, (10)

�̈� = 𝐼𝑥𝑥 (𝐼𝑥𝑥 − 𝐼𝑦𝑦) ̇𝜃�̇� + 𝐼𝑥𝑧 (𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑥𝑧) ̇𝜙𝜑 + 𝐼𝑥𝑧𝐿𝜙𝜕𝑇 (𝜔21 − �̇�22 + 𝜔23 − 𝜔24) − 𝐼𝑥𝑥𝐿𝜑𝑚𝑔𝛾𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧 +R3. (11)

In (11),R1,R2, andR3 donate composite disturbance for
each channel, and in this case we assume that 𝑢1 = 𝐿𝜙𝜕𝑇(𝜔21 −𝜔22 +𝜔23 −𝜔24), 𝑢2 = 𝐿𝜃𝜕𝑇(𝜔21 +𝜔22 −𝜔23 −𝜔24), and 𝑢3 = 𝐿𝜑𝑚𝑔𝛾
stand for control inputs for each channel, respectively, where𝜕T donates tension coefficient of propeller, 𝜔𝑖 is the rotation
velocity of propeller, m is themass of aircraft, and 𝐿𝜙, 𝐿𝜃, and𝐿𝜑 are the arm of each channel.

Consequently, the nonlinear system of attitude hold
control with uncertainties can be written as (12) by defining𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] as ℏ = [𝜙, ̇𝜙, 𝜃, ̇𝜃, 𝜑, �̇�] using
(9)–(11)

�̇�(2𝑘−1) (𝑡) = 𝑥(2𝑘) (𝑡)�̇�(2𝑘) (𝑡) = 𝑓𝑘 (𝑥, 𝑡) + Γ𝑘𝑢𝑘 +R𝑘𝑘 = 1, 2, 3,
(12)

where 𝑢𝑘 = [𝑢1, 𝑢2, 𝑢3]𝑇,R𝑘 = Δ𝑓𝑘(𝑥, 𝑡)+ΔΓ𝑘ℓ𝑘+Ψ𝑘, Δ𝑓 andΔΓ𝑘 represent modeling errors, and Ψ𝑘 represents external
disturbance,

Γ𝑘 =
[[[[[[[
[

𝐼𝑧𝑧𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧 0 𝐼𝑥𝑧𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧0 1𝐼𝑦𝑦 0
𝐼𝑥𝑧𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧 0 𝐼𝑥𝑥𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

]]]]]]]
]
. (13)

3. Neural Network Sliding Mode
Control Optimization Design

In this section, the design of an adaptive neural network
sliding mode controller for QTRA is presented. First, the
conventional equivalent sliding mode control for QTRA is
designed.Then, the adaptive RBF neural network is proposed
based on multicommunity bidirectional drive collabora-
tive search algorithm (M-CBDCS), where the coefficient
of switching control is adaptively calculated to overcome
the chattering phenomenon of traditional equivalent sliding
control. Finally, the stability of the adaptive neural network
sliding mode control is proven using Lyapunov theory.

3.1. Equivalent Sliding Mode Control for QTRA. The sliding
mode control law based on equivalent control usually consists
of an equivalent control law ueq𝑘 and a switching control law𝑢sw𝑘 which can be obtained:

𝑢𝑘 = 𝑢eq𝑘 + 𝑢sw𝑘 . (14)

Conventionally, the equivalent law is deduced from the
relationship between the sliding mode s and its differential ̇𝑠
on the basic of the pertinent mathematic mode of the system,
which could ensure the state of system along the sliding
surface. The switching control law is applied to compensate
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for uncertainty and external disturbance, which ensures the
state of system not leaving the sliding surface.

Considering the nonlinear system about QTRA, the
tracking error between the desired reference and the system
response is taken as

𝑒(2𝑘−1) = 𝑥(2𝑘−1) − 𝑥𝑑(2𝑘−1), (15)

where

̇𝑒(2𝑘−1) = 𝑒(2𝑘). (16)

According to the theories of sliding mode control, the
switching function for the sliding mode can be defined as
follows:

𝑠𝑘 = 𝑐𝑘𝑒(2𝑘−1) + ̇𝑒(2𝑘−1), 𝑐𝑘 > 0. (17)

Combining (12)–(15) and (5), we can get

̇𝑠𝑘 = 𝑐𝑘 ̇𝑒(2𝑘−1) + ̇𝑒(2𝑘) = 𝑐𝑘 ̇𝑒(2𝑘−1) + �̇�(2𝑘) − �̇�𝑑(2𝑘)
= 𝑐𝑘 ̇𝑒(2𝑘−1) − �̇�𝑑(2𝑘) + 𝑓𝑘 (𝑥, 𝑡) + Γ𝑘𝑢𝑘 +R𝑘. (18)

According to ̇𝑠𝑘 = 0, we can get equivalent control of the
sliding mode as follows

𝑐𝑘 ̇𝑒(2𝑘−1) − �̇�𝑑(2𝑘) + 𝑓𝑘 (𝑥, 𝑡) + Γ𝑘𝑢eq𝑘 +R𝑘 = 0,
𝑢eq𝑘 = 1Γ𝑘 (−𝑐𝑘 ̇𝑒(2𝑘−1) + �̇�𝑑(2𝑘) − 𝑓𝑘 (𝑥, 𝑡) −R𝑘) .

(19)

To ensure the slidingmode reaching condition 𝑠(𝑡) ⋅ ̇𝑠(𝑡) ≤−𝜂|𝑠(𝑡)|, 𝜂 > 0, the switching law can be designed as

𝑢sw𝑘 = −𝜂 ⋅ sgn (𝑠𝑘)Γ𝑘 , (20)

where

sgn (𝑠𝑘) = {{{
1, 𝑠𝑘 > 0
−1, 𝑠𝑘 < 0. (21)

Remark 1. The switching law shown in (20) is mainly used to
compensate for the uncertainties and external disturbances
so that system state can retain on the sliding surface andmove
along it. However, the switching law is actually a nonlinear set
of discontinuous functions leading to the chattering problem.

3.2. Adaptive Neural Network Sliding Mode Control. Usually,
the equivalent law of sliding mode control depends heavily
upon themodels and the accuracy of parameters. However, in
most cases, these models of complicated system always exist
in simplified or linear form by regulating its parameters in
different working conditions. Therefore, to compensate for
the inaccuracy arising from these uncertainties, the switching
law becomes necessary and critical.

In order to overcome the chattering phenomenon of
traditional sliding mode control effectively, (20) is replaced
by the adaptive switching control law as follows:

𝑢sw𝑘 = −𝜇𝑁𝑘 ⋅ 𝜂 ⋅ sgn (𝑠𝑘)Γ𝑘 , (22)

where 𝜇𝑁𝑘 is the adaptive adjusting factor depending on the
output of RBF neural network. Thus, this parameter will be
optimized using RBF neural network in the following section.

Therefore, we can get the adaptive neural network sliding
mode control law as follows:

𝑢𝑘 = 𝑢eq𝑘 + 𝑢sw𝑘 = 1Γ𝑘 [−𝑐𝑘 ̇𝑒(2𝑘−1) + �̇�𝑑(2𝑘) − 𝑓𝑘 (𝑥, 𝑡)
−R𝑘] − 𝜇𝑁𝑘 ⋅ 𝜂 ⋅ sgn (𝑠𝑘)Γ𝑘 = 1Γ𝑘 [−𝑐𝑘 ̇𝑒(2𝑘−1)
+ �̇�𝑑(2𝑘) − 𝑓𝑘 (𝑥, 𝑡) −R𝑘 − 𝜇𝑁𝑘 ⋅ 𝜂 ⋅ sgn (𝑠𝑘)] .

(23)

Remark 2. The adaptive neural network sliding mode con-
troller presented in (23) not only inherits the capacity of
parameters optimization for M-CBDCS described in Sec-
tion 3.2.1 but also can identify and estimate the modeling
errors Δ𝑓, ΔΓ𝑘 and composite disturbance for each channel
R𝑘.

Proof. In order to demonstrate the stability of the designed
controller, consider the following Lyapunov function candi-
date:

𝑉 = 12𝑠2. (24)

Based on (18) and (24), we can obtain the following
differential equation:

�̇� = 𝑠 ̇𝑠 = 𝑠 [𝑐𝑘 ̇𝑒(2𝑘−1) − �̇�𝑑(2𝑘) + 𝑓𝑘 (𝑥, 𝑡) + Γ𝑘𝑢𝑘 +R𝑘]
= 𝑠 [𝑐𝑘 ̇𝑒(2𝑘−1) − �̇�𝑑(2𝑘) + 𝑓𝑘 (𝑥, 𝑡)
+ Γ𝑘 ( 1Γ𝑘 [−𝑐𝑘 ̇𝑒(2𝑘−1) + �̇�𝑑(2𝑘) − 𝑓𝑘 (𝑥, 𝑡) −R𝑘
− 𝜇𝑁𝑘 ⋅ 𝜂 ⋅ sgn (𝑠𝑘)]) +R𝑘] = 𝑠 (−𝜇𝑁𝑘 ⋅ 𝜂
⋅ sgn (𝑠𝑘)) = −𝜇𝑁𝑘 ⋅ 𝜂 ⋅ |𝑠| .

(25)

If 𝜇𝑁𝑘 ≥ 0, we can get

�̇� = 𝑠 ̇𝑠 ≤ 0. (26)

Therefore, the stability of adaptive neural network sliding
mode controller designed in this paper can be guaranteed
when 𝜇𝑁𝑘 , the output of RBF neural network, is used to adap-
tively adjust the switching control law of sliding mode.

3.2.1. Adaptive RBF Neural Network Based on M-CBDCS.
For performance and applicability purposes, the M-CBDCS
is chosen for optimizing the essential parameters of RBF
network as described in Figure 3. There exist two kinds of
communities according to its characteristics in M-CBDCS,
where the community searching capacity is evaluated by the
cooperation weights and response performance between dif-
ferent communities. Thus, considering the essential parame-
ters optimization problem, the adaptive performance of RBF
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Figure 3: The flow diagram about the adaptive RBF neural network with M-CBDCS.

neural network is improved by guiding the evolution of
the entire collaboration network from the community with
powerful searching ability. Consequently, the center vector𝐶𝑗, width vector 𝑏𝑗, and connection weightsW are optimized
online adaptively during the RBF neural network training
procedure.

Note that RBF neural network has a great advantage of
high speed learning and generalization [28, 29], which could
realize the linearization of nonlinear problem through the
transformation of hidden layer. Therefore, the RBF neural
network is selected as an approach for switching law adaptive
production expressed by (22).

The structure of RBF neural network is shown as follows.
The input layer 𝑋 = [𝑥1, 𝑥2]𝑇 is the vector of two inputs

for this network. The input vector is designed to be two
elements, which are the sliding mode s and its differential ̇𝑠.

The hidden layer 𝐻 = [ℎ1, ℎ2, ℎ3, ℎ4]𝑇 is the vector of
activation functions in RBF neural network. The activation
function chosen as the Gaussian function is as follows:

ℎ𝑗 = exp(
󵄩󵄩󵄩󵄩󵄩𝑋 − 𝐶𝑗󵄩󵄩󵄩󵄩󵄩2𝑏2𝑗 ) 𝑗 = 1, 2, . . . , 4, (27)

where𝐶𝑗 is the center vector of this network and 𝑏𝑗 is the base
width vector of this network.

The output layer 𝜇𝑁 = ∑4𝑗=1 𝜔𝑗 ⋅ ℎ𝑗 = 𝑊𝑇 ⋅ 𝐻 is used as
the adaptive adjusting factor for sliding mode control.

𝑊 = [𝜔1, 𝜔2, 𝜔3, 𝜔4] is the vector of weighting factors
which connect the hidden layer and the output layer of the
network.

Remark 3. For the RBF neural network, the location of
hidden unit is determined by the center vector and the size
of control area is determined by the width vector. Moreover,
the connection weights could directly influence the training
time and the output of training as part of the network output.
Therefore, the selection of essential parameters including the
center vector, width vector, and connection weights is most
important to improve the approximation performance of RBF
neural network.

In this study a novel M-CBDCS algorithm is presented to
uniformly update the essential parameters adaptively for RBF
neural network with perfect convergence and high precision.
The essential parameters of RBF neural network, including
the center vector, width vector, and connection weights, are
defined as the particle position vector in particle searching
space. Noticeably, the communities are divided into model
community (MC) and common community (CC) according
to the advantages and disadvantages of community fitness,
and the bidirectional interactionmode between communities
is constructed as is shown in Figure 4. Under this mode,
the member of common community CC𝑗 will be selected
into the model community and the worst community in
MC will be abandoned according to the bidirectional evolu-
tionary rules. Besides, the learning factor 𝑃𝑚 is introduced



Complexity 7

Begin

Begin

Iterated evolutionary Collaboration rule

Feedback(Pm)

Push(CCi)

Feedback(Pm)

Push(CCi)

End

End

Pid

Pgd

Begin

Pid

Pgd

Pmd

Begin
Pid

Pgd

Begin
Pid

Pgd

id xid

id xid EndBegin

Pid

Pgd

Pmd

id xid EndBegin

Pid

Pgd

Pmd

id xid

Endid xid End

End

id xid· · ·

· · ·

Rule 2.3
Rule 2.1 Rule 2.2

Rule 2.2

Rule 2.1 Rule 2.1 Rule 2.3
Rule 2.3

Pg

PG

Pg

MC1 MC2 MCn

G＜？ＭＮ1 G＜？ＭＮ2

G＜？ＭＮi

G＜？ＭＮn

S＃＃i

S＃＃i

S＃＃iS＃＃i

g＜？ＭＮi

g＜？ＭＮi

g＜？ＭＮi

g＜？ＭＮi g＜？ＭＮi

S－＃j

S－＃j

S－＃jS－＃j

G＜？ＭＮi

G＜？ＭＮi

G＜？ＭＮi

g＜？ＭＮ1

＃＃1

g＜？ＭＮ2

＃＃2

g＜？ＭＮm

＃＃m

Figure 4: The multicommunity bidirectional drive mode.

into the evolution rules of the common communities to
improve the searching ability.Thus, the asynchronous parallel
implementation strategy forM-CBDCS is given, which could
realize the parallel evolution within community and among
communities.Thedesigned searching strategywill benefit the
overall optimization performance for RBF neural network.

Then, considering the influence of the network structure
parameters on the validity of neural network approximating,
the fitness function of parameters optimizing in M-CBDCS
algorithm can be constructed as follows:

𝑓 = 1𝑁
𝑁∑
𝑛=1

𝑀∑
𝑚=1

(𝑦𝑚𝑛 − 𝑦𝑚𝑛)2 , (28)

where 𝑦𝑚𝑛 is the practical output value of network after
optimization; 𝑦𝑚𝑛 is the desired output value of network; 𝑁
is the number of training samples;𝑀 is the number of output
neurons.

Particularly, the asynchronous parallel implementation
strategy for RBF neural network is displayed in Figure 5. The
M-CBDCS is thought to regulate the essential parameters
adaptively, where the structure parameters of RBF neural
network are used as initial space. The nonlinear approxima-
tion error is obtained and serves as a novel leakage term in
the adaptations to guarantee the sliding surface convergence
stably and estimate the chattering phenomenon.The detailed
implementation can be seen in the following steps.

Step 1 (initialization). Determine the RBF neural network
topology including the number of hidden layer and neurons
for each layer.

An initial population is selected from the structure
parameters of RBF neural network. Assume the total number
of particles in population is 𝑛; the number of communities is𝑞; the iteration times, acceleration coefficients, and the inertia
coefficient are initial set.

Step 2. According to the number of communities, the initial
particles are evenly distributed to the processes and the
community size is int(𝑛/𝑞) at present.The remaining particles
are randomly assigned to processes after rounding.

Step 3. Calculate the fitness of each particle in communities
by (28).

Step 4. Calculate the fitness value of populations and divide
the populations into two groups according to the decision
threshold:model community and common community.Then
construct the multicommunity cooperation network.

Step 5. Update the position and velocity of particles accord-
ing to the multicommunity bidirectional drive rules.

Step 6. Update the global optimal value frommodel commu-
nities.
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Figure 5: The flow diagram about the adaptive RBF neural network with the optimization of M-CBDCS.

Step 7. Loop to the Step 5 until the iterative termination
condition of M-CBDCS is met.

Step 8. Get the optimal parameters for RBF neural network
fromM-CBDCS.

Step 9. Calculate the error between the actual output value
and the desired output value of network.

Step 10. Update the parameters for RBF neural network
according to the error above.

Step 11. Loop to Step 9 until the iterative termination con-
dition of RBF neural network is met. And we can get the
adaptive adjusting parameter for sliding mode control.

Figure 5 displays the flow chart of the adaptive RBF neural
network under the optimization of M-CBDCS.

3.2.2. Adaptive Neural Network Sliding Mode Control for
QTRA Attitude. The block diagram of the designed adaptive
neural network sliding mode control structure is shown in
Figure 6. In this diagram, the advantage of M-CBDCS is to
adjust the value of the three key parameters adaptively, which
can enhance the ability of nonlinear approximation and
accelerate the convergence speed for RBF neural network.
Similarly, the adaptive RBFneural network is used to generate
the adaptive adjustment factor in sliding mode control to
reduce the chattering phenomenon.

Table 1: Parameters for experiment.

Parameter Value
Mass for QTRA (kg) 6.25𝐼𝑥𝑥 (kg⋅m2) 4.568𝐼𝑦𝑦 (kg⋅m2) 3.109
𝐼𝑧𝑧 (kg⋅m2) 2.796𝐼𝑥𝑧 (kg⋅m2) 0.028

4. Simulations

In this section, in order to verify the effectiveness of the
controller design algorithm proposed in this paper, simula-
tions by using Matlab/Simulink for three control schemes
are performed: (1) the adaptive neural network sliding
mode controller (ANNSMC) proposed in this paper; (2) the
classical neural network sliding mode controller (CNNSMC)
proposed in [30]; (3) the dynamic inverse PID controller
(DIPID) proposed in [31].

The designed controller is applied to the attitude control
of the QTRA with respect to different reference signals:
step signal, random noise, external disturbances, and hybrid
superposition signal. And the parameters for the experiment
are shown in Table 1.

Case 1 (step response). Considering that the landing process
of QTRA usually adopts the method of equal angle descent,
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5 6 7 8 9
2.95

3
3.05

3.1

CNNSMC
DIPID
ANNSMC

5 10 15 20 25 300
Time (s)

0
0.5

1
1.5

2
2.5

3
3.5

4

Ro
ll 

an
gl

e (
∘ )

(a)

CNNSMC
DIPID
ANNSMC

5 10 15 20 25 300
Time (s)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Pi
tc

h 
an

gl
e (

∘ )

(b)

CNNSMC
DIPID
ANNSMC

2 2.5 3 3.5 4

5 10 15 20 25 300
Time (s)

0

0.5

1

1.5

2

2.5

3

Ya
w

 an
gl

e (
∘ )

1.9
1.95

2

(c)

Figure 7: Helicopter attitude behavior response to the step signal.

the step signal is used to verify the control performance of
these controllers for steady tracking in the simulation. We
start the aircraft at the attitude (𝜙, 𝜃, 𝜑) = (0, 0, 0) and the
aircraft has the task of performing hover flight at (𝜙, 𝜃, 𝜑) =(3∘, 1∘, 2∘). The evolution and convergence of states (𝜙, 𝜃, 𝜑)
to the desired reference with the initial conditions are shown
in Figure 7.

The results show that the method presented in this paper
can eliminate steady state errors effectively with the fast

convergence speed. But the other methods about CNNSMC
and DIPID have a certain fluctuation in the process of
tracking instruction with poor steady state performance.

Case 2 (random noise). Normally this simulation is designed
to observe the effects of a white Gaussian random noise,
which is generated with a maximum amplitude of 0.01.
In this case, the disturbance in the feedback loops is to
simulate the sensor noise. And the simulation results show
the comparison of adaptive controller versus other controllers



10 Complexity

3.5 4 4.5 5 5.5 6

3
3.1
3.2

CNNSMC
DIPID
ANNSMC

5 10 15 20 25 300
Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4
Ro

ll 
an

gl
e (

∘ )

(a)

CNNSMC
DIPID
ANNSMC

6.4 6.6 6.8 7
0.995

1
1.005

1.01
1.015

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Pi
tc

h 
an

gl
e (

∘ )

5 10 15 20 25 300
Time (s)

(b)

CNNSMC
DIPID
ANNSMC

0
0.5

1
1.5

2
2.5

3

4 5 6
1.98

2
2.02
2.04

5 10 15 20 25 300
Time (s)

Ya
w

 an
gl

e (
∘ )

(c)

Figure 8: Helicopter attitude behavior response to the step signal with random noise.

in Figure 8, which implied that the ANNSMC controller
has a better capability of suppressing noise than the other
two methods. It can be concluded that the adaptive learned
upper bound of noise can reduce chattering significantly with
the introduction of M-CBDCS. And then a small boundary
layer about switching surface can be generated by using the
adaptive sliding mode control. Consequently, the ANNSMC
controller gives a smooth control and proves to be effective
for attitude control of QTRA.

Case 3 (external disturbances). In the actual system, the
parameter perturbation and external disturbance are
inevitable. In order to further verify the anti-interference
performance of the ANNSMC controller, the external
disturbances test is carried in this section. As we can see
form Figure 9, the capacity of the presented controller
guarantees a more steady flight of the airframe.

Case 4 (dynamic tracking). To verify the tracking capacity for
the proposed method, one more simulation is run such that
the desired reference is given using a hybrid superposition
signal. The simulation results indicate that the maximum
tracking error percentage in the attitude of QTRA is approx-
imately 1.89% as shown in Figure 10. It is important to note
that angle references are tracked with negligible steady state
errors.

In summary, the control strategy proposed in this paper
has good performance for QTRA attitude control. Results in
Case 1 show that the presented control strategy has relatively
lesser settling time in the attitude control performance
compared to other controllers. And Cases 2, 3, and 4 further
verify the robustness and stability of the designed controller.

5. Conclusion

This paper describes an adaptive online control of attitude
angles for nonlinear QTRA systems. The attitude dynamics
of this aircraft including uncertain external disturbance are
derived at VTOLmode.The proposed control strategies were
evaluated by appropriate comparisons showing satisfactory
results. A novel RBF neural network sliding mode control
system was designed and built to implement an attitude con-
trol law.The presented adaptive RBF neural network is based
on amulticommunity bidirectional drive collaborative search
algorithm since it is suitable for implementation purposes
with powerful parallel computing capacity. The comparative
simulations between the proposed controlmethod and classi-
cal neural network slidingmode control and dynamic inverse
PID control were designed to simulate an attitude stabilized
flight in VTOL stage with external disturbances.

Future work includes the transition flight between cruise
and hover flightmodes to evaluate the accuracy of the control
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Figure 9: Helicopter attitude behavior response to the step signal with external disturbances.
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Figure 10: Helicopter attitude behavior response to the hybrid superposition signal.
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model to validate the control algorithm and the development
of experimental convertible aircraft to implement the pro-
posed design and configuration.
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[31] A. Alkamachi and E. Erçelebi, “Modelling and genetic algo-
rithm based-PID control of H-shaped racing quadcopter,”
Arabian Journal for Science & Engineering, pp. 1–10, 2017.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


