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Skill learning autonomously through interactions with the environment is a crucial ability for intelligent robot. A perception-action
integration or sensorimotor cycle, as an important issue in imitation learning, is a naturalmechanismwithout the complex program
process. Recently, neurocomputing model and developmental intelligence method are considered as a new trend for implementing
the robot skill learning. In this paper, based on research of the human brain neocortex model, we present a skill learning method
by perception-action integration strategy from the perspective of hierarchical temporal memory (HTM) theory. The sequential
sensor data representing a certain skill from a RGB-D camera are received and then encoded as a sequence of Sparse Distributed
Representation (SDR) vectors.The sequential SDR vectors are treated as the inputs of the perception-actionHTM.TheHTM learns
sequences of SDRs andmakes predictions of what the next input SDRwill be. It stores the transitions of the current perceived sensor
data and next predicted actions. We evaluated the performance of this proposed framework for learning the shaking hands skill on
a humanoid NAO robot. The experimental results manifest that the skill learning method designed in this paper is promising.

1. Introduction

Skill learning autonomously through interactions with the
environment is a crucial ability for intelligent robot, and
it improves the flexibility and adaptiveness of robots [1].
Imitation learning is a primary method for implementa-
tion the skill learning [2]. A perception-action integration
or sensorimotor cycle, as an important issue in imitation
learning, refers to information flow from the environment to
a sensory and motor structure and back to the environment
and sensory inputs. It is the processing of sequential sensor
information and their transduction to the successive goal-
directed behaviors [3]. Skill learning of intelligent robot
actually is a paradigm of learning the links between the
perceptual environment inputs and the feedback action sys-
tem. Perception-action integration is a naturalmechanism for
skill learning without the complex program process. Several
research results from cognitive science provide convincing
evidence for this statement. Mental simulation [4] stemming
from neuropsychology is treated as part of the reactive and

perceptual components because it implements interaction
between the action and sensed state of the environment.
Perceptual-motor theory [5] states that a neurocomputational
framework is used to connect with up-to-date perceptual
data on the possible functional role of the motor system.
Wolpert et al. [6] reviewed on the computationalmechanisms
of sensorimotor learning. Also, the computational models of
perception-action integration are the dominant technique of
skill learning in robotics research field.

1.1. Related Work. Traditional computational model of artifi-
cial intelligence methods such as Bayesian modeling [7] and
reinforcement learning [8] were first concerned for learning
skill. Recently, neurocomputing model and developmental
intelligence method are considered as a new trend for
implementing the robot skill learning. Do et al. [9] proposed
a bootstrapping method for learning the wipe skill. This
method bootstrapped from the sensorimotor experience and
learned the association between object properties and action
parameters. PerAc neural network [10] is applied to learn
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the dynamics of coupling of perception of one partner
to the action of the other, and the learned association of
perception and action is used for recognizing the postures.
Neural motor activation [11] that mimics the neuron acti-
vation process assigns a weight to each motor component
to reveal its degree of activation. The weights are updated
by the perception procedure. Neural activation is induced
by perception processes with system feedback; therefore, it
realizes integration between perception and action. A neural
network architecture combining a recurrent neural network
with parametric biases (RNNPB) and a horizontal product
model was used to predict future percepts and behaviors of
a sensorimotor system according to the connections between
the development of the ventral/dorsal visual streams and the
emergence of conceptualization in the visual streams [12].

Furthermore, some complex cognitive architectures used
to simulate the brain pathways of perception-action cycles
have been studied. Cutsuridis and Taylor examined several
neurocomputational mechanisms of visuomotor brain pro-
cesses and coordinately integrated them to establish a neural
framework for the visual grasping tasks [13]. A cognitive
model [14] based on Skinner operant conditioning principle
is designed for a robot to master the balancing skill. This
model consists of cerebellum, basal ganglia, and cerebral
cortex. Each component imitates the basic functions of cor-
responding parts in human brain. In particular, cerebellum
maps sensorimotor states to actions with supervised learning
and basal ganglia provide the proper action based on the
operant conditioning theory.

1.2. Why Hierarchical Temporal Memory (HTM). As futurist
Kurzweil described in his book [15], the neocortex contains
a hierarchy of pattern recognition circuits and they are
responsible for most aspects of human thought. He also
explains that if there exists a design of the digital neocortex,
it could be used to create the same capabilities as the human
brains. Hierarchical temporal memory (HTM) theory [16],
first proposed by Hawkins [17], is an implementation version
of Kurzweil’s view of digital neocortex. It attempts to model
the brain at a functional level rather than at a neuron or
molecular level. HTM is a bioinspired model that captures
the predominant characteristics of the neocortex. It mimics
the neocortex’s abilities of learning, inference, and prediction
from sequential input patterns that are represented in sparse
distributed forms, and therefore, it can describe a complex
model of the world. Additionally, HTM uses the Sparse
Distributed Representations (SDRs) to represent the complex
input data and lend the HTM so much flexibility, which is
similar to the idea that the brain is a recursive probabilistic
fractal whose line of code is represented within the 30–100
million bytes of compressed code in the genome [15].

The cells (neurons) in HTMparticipate in the sensorimo-
tor integration and learning process, which is supported by
biological evidence [18]. In addition, the Cortical Learning
Algorithm (CLA) of HTM consists of spatial pooling and
temporal memory processes. These are the important com-
ponents for perception-action integration, which is proved by
Lalanne and Lorenceau [19]. Also spatial and temporal capa-
bilities facilitate the acquisition of sensory-motor mappings

with less amount of training data and facilitates the robust
behavior [20]. In that research work, they stated that the
brain utilizes spatial and temporal coincidence from spatial
information when spatial features gathered through different
modalities are interconnected.

The core of Kurzweil’s book is the pattern recognition
theory ofmind. Its main idea is that the hierarchical structure
is treated as pattern recognizer and is not just for sensing the
world, but for nearly all aspects of thought. It is natural that
HTM was first successfully applied for pattern recognition
system [21–23].

The reasons and relationships between HTM and neuro-
science stated above indicate that HTM can be considered as
a promising approach for the implementation of perception-
action integration. Therefore, in this study, we applied HTM
to design a perception-action integration framework for skill
learning. This framework receives the sequential sensor data
representing a certain skill from a RGB-D camera. These
sensory data are then encoded as a sequence of Sparse
Distributed Representation (SDR) vectors. The sequential
SDR vectors are treated as the inputs of the perception-
action HTM.The HTM learns sequences of SDRs and makes
predictions of what the next input SDR will be. It stores
the transitions of the current perceived sensor data and
next predicted actions. We evaluated the performance of this
proposed framework for learning the shaking hands skill on
a humanoid NAO robot.

2. HTM Preliminary

Thepurpose of this study is to implement the skill learning by
using HTM based perception-action integration framework,
and the process of design follows the general HTMworkflow
illustrated in Figure 1. The network learns from the time-
varying inputs. In this application, the inputs are the captured
skeleton joints and depth data. These inputs are encoded by
an encoder [16] as a sparse binary string or matrix, which is
the necessary input form for an HTM system. In our case,
sequential joints data for shaking hands accompanied with
depth data are recorded and encoded as a 1,024-bit binary
string by an encoder. The format of this string is as

32 bits⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞× ⋅ ⋅ ⋅ ×⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
joint 1

32 bits⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞× ⋅ ⋅ ⋅ ×⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
joint 2

⋅ ⋅ ⋅
32 bits⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞× ⋅ ⋅ ⋅ ×⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
joint 𝑛

32 bits⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞× ⋅ ⋅ ⋅ ×⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
depth

0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟
reserved

(1)

TheHTM system learns continuously with the input data.
The learning algorithms CLA are designed to work with
sensor andmotor data that is constantly changing.With each
change in the inputs, the memory of the HTM system is
updated. The HTM uses the CLA dynamic process to learn
the spatial and temporal variability commonly occurring in
sequential input data and then to make predictions. The
typical CLA is composed of two subprocesses: spatial pooling
(SP) and temporal memory (TM) algorithms.

Inputs coming from the senses or other parts of the HTM
are messy and irregular. The most fundamental function of
the SP algorithm is to convert a region’s input into an SDR via
overlapping computation, inhibition, and update processes
while retaining semantically encoded information. Each SDR



Complexity 3

data
Encoder Spatial

pooling
Temporal
memory

Prediction
or

CLA

classifier

Input

Figure 1: Workflow of an HTM application.

has semantic attributes of what is being represented. By
determining the overlap between any two SDRs we can
immediately see how two representations are semantically
similar and how they are semantically different. Because
of this semantic overlap property of SDRs, SP associatively
connects the input to the HTM cells in a way that they will
be able to learn once patterns in the space start to change.
TM algorithm is a memory of transitions in a data stream.
It learns sequences of SDRs formed by the SP algorithm
and makes predictions of what the next input SDR will be.
TM is used in both sensory inference and motor generation.
It forms a representation of the sparse input that captures
the temporal context of previous inputs and then forms
a prediction based on the current input in the context of
previous inputs. HTM theory postulates that every excitatory
neuron in the neocortex is learning transitions of patterns and
that the majority of synapses on every neuron are dedicated
to learning these transitions.

As a memory system, HTM is essentially a type of neural
network. It models the cells, connects and arranges cells in
columns, organizes columns in a 2D array to constitute the
HTM region, and finally establishes a hierarchical neural net-
work, which is shown in Figure 2. The detailed explanation,
properties, and learning pseudocode of HTM can be found
in technique reports [16]. In this section, we only describe the
crucial contents related to our application.

2.1. Cells. HTM cells extract the most important capabilities
of biological neurons, and as shown in Figure 3, they
have more complex structures than conventional artificial
neurons. A typical HTM cell has three output states: the
active state activated from feed-forward input, the predictive
state activated from lateral input, and the inactive state. Each
HTM cell in one column shares a single proximal dendrite
segment (closest to the cell body) and has a list of distal
dendrite segments (farther from the cell body).The proximal
dendrite segment receives all feed-forward inputs, including
the environmental sensory data and outputs of the lower-level
region, via active synapsesmarked by green dots.These active
synapses have a linear additive effect at the cell body. Distal
dendrite segments receive the lateral inputs from nearby cells
through active synapses marked by blue dots. Figure 3 shows
that each distal dendrite segment is a threshold detector. The
segment will be activated if the number of active synapses
on a segment is above a threshold Thseg. An OR operation
is executed on all active distal dendrite segments to make
the associated cell become the predictive state. Synapses of
the HTM cells have binary weights and are formed by a set
of potential synapses. The potential synapses are axons that
are sufficiently close to a dendrite segment and may become

Output
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Figure 2: The structure of a typical HTM network.
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Figure 3: The structure of an HTM cell.
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synapses. For the proximal dendrite, a potential synapse
consists of a subset of all inputs to a region, and for the distal
dendrite, the potential synapses are predominantly from the
nearby cells in a region. Each potential synapse is assigned a
scalar value ranging from 0 to 1. This scalar value is named
as permanence, which represents a closeness or connection
degree between an axon and dendrite segment. A larger
permanence yields a stronger connection. If the permanence
is above a threshold Thper, the potential synapse becomes a
valid synapse, and the weight of this valid synapse is set as 1.
The cell body receives the inputs of synapses from proximal
and distal segments and provides two outputs along the axon:
one is in an active state (red lines), which is horizontally sent
to other adjacent cells, and the other is the OR results of the
active and predictive states (blue lines) and sent to the cells
of the next region. Because the perception and action are
integrated in the HTM network, distal dendritic input can
also be the external input.That is, lateral connections between
cells will typically be turned off in sensorimotor inference.

2.2. Spatial Pooling (SP). The essential function of spatial
pooling is to form an SDR of the inputs. When an input
appears on a region, each bit in the input signal will be
assigned only to a fixed number of columns. Each column
has an associated proximal dendritic segment (shared by all
cells of a column, cf. Figure 3), serving as the connection to
the input space. Each proximal dendrite segment has a set
of potential synapses representing a subset of the input bits.
Each potential synapse has a permanence value.These values
are randomly initialized around the permanence threshold.
Based on their permanence values, when the permanences
are greater than the threshold value Thsyn per some of the
potential synapses will already be connected.

For any given input, determine how many connected
synapses on each column are connected to active input bits
(bit 1). The connected synapses become active synapses.
The number of active synapses is multiplied by a boost
factor bf, which is dynamically determined by how often
a column is active relative to its neighbors. The columns
with the highest activation after boosting disable a fixed
percentage of the columns within an inhibition radius. The
result of the inhibition is to form a sparse set of active
columns that are treated as the inputs of the TM subprocess
in the same region. A Hebbian-like learning procedure is
implemented for each of the active columns. Permanence
values of synapses alignedwith active input bits are increased,
and those aligned with inactive input bits are decreased. The
changes of permanence values make some synapses become
valid or invalid accordingly. Simultaneously, the boost factor
and inhibition radius are both updated according to

bf𝑐 = 𝑓bf (ADC𝑐avg,ADC𝑐min)

𝑟inh =
CSavg × PIcol − 1

2
,

(2)

where ADCavg (active duty cycle) is a sliding average that
represents how often column 𝑐 has been active after inhi-
bition, for example, over the last 500 iterations. ADCmin

bf

＜＠Ｇ；Ｒ

1

0
！＄＃ＧＣＨ

！＄＃；ＰＡ

Figure 4: Function for updating the boost factor.

represents the minimum desired firing rate for column 𝑐.
𝑓bf is the update function, which linearly interpolates the
boost factor between the points (0, bfmax) and (DCmin, 1),
as shown in Figure 4. In general, the boost factors for
all columns are updated simultaneously. For the inhibition
radius updating, the number of inputs to which a column
is connected (denoted by CSavg) should first be determined,
and then, this number is multiplied by the total number of
columns that exist for each input (denoted by PIcol). For
multiple dimensions, the aforementioned calculations are
averaged over all dimensions of inputs and columns.

2.3. Temporal Memory (TM). TM is more complex than SP
because it combines the learning and prediction procedures.
It learns SDRs formed by the SP algorithm and makes
predictions. TM consists of three phases.

2.3.1. Phase 1: Forming a Representation of the Input in the
Context of Previous Inputs (Determining the Active State of
Cells). After spatial pooling, the TM algorithm converts the
columnar representation of the input into a new representa-
tion that includes state, or context, from the past. The new
representation is formed by activating a subset of the cells
within each column, typically only one cell per column.

For each active column obtained in SP, the cells that are
fired to a predictive state from a previous time are activated
(referring to (3)). Simultaneously, the distal dendrite segment
on each of these cells is marked as active when the number
of synapses is over a threshold Thact. The learning cells are
chosen by (6). Additionally, if a segment is activated from the
learning cells during the previous time, the cell to which this
segment connects is set as the learning cell (see (4)). If no
cell is in a predictive state, all of the cells in the column are
activated, which is defined in (5). For this case, the segment
that has the largest number of active synapses is found in
column 𝑐 cell 𝑖 at time 𝑡 − 1, and then, the related cell to
which this segment connects is chosen as the learning cell.
If no cell has such a segment, we select the cell that has the
fewest number of segments as the learning cell (see (6)). In
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Phase 1, the resulting set of active cells consists of the current
input in the context of prior inputs.

For the perception-action integration case, there is an
optional “Learn-On-One-Cell (LOOC) (Available at https://
github.com/numenta/htmresearch/wiki/Sensorimotor-Infer-
ence-Algorithm)” hysteresis mode. This mode is switched
in the following situation. When a column is not predicted
but activated by the sensory input, cells that were previously
selected as the learning cell would still act as the learning cell
at the current time. If no such cell exists, the learning cell
is also determined by (6). If the LOOC mode is triggered, a
copy of the motor signal is added to the input of the distal
dendrites.

𝑛𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1,

𝑛𝑙𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 0,

if 𝑛𝑝𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡 − 1) = 1, sg𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡 − 1) = 1

(3)

𝑛𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1,

𝑛𝑙𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1,

if 𝑛𝑝𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡 − 1) = 1, sg𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡 − 1) = 1, sg𝑙𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡 − 1) = 1

(4)

𝑛𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1, 𝑖 = 1, . . . , 𝑛𝑐 (5)

𝑛𝑙𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1, (6)

Equation (6) is subject to the condition that “(cell 𝑖 has the
segment with the largest number of active synapses at time 𝑡−
1) ‖ (cell 𝑖with the fewest number of segments if at time 𝑡−1).”
𝑛𝑎𝑐𝑖 (𝑡) represents the active state of cell 𝑖 in column 𝑐 at time 𝑡
given the current feed-forward input and previous temporal
context; 𝑛𝑙𝑐𝑖 (𝑡) and 𝑛𝑝

𝑐
𝑖 (𝑡 − 1) are the learning and predictive

state of cell 𝑖 in column 𝑐 at time 𝑡 and 𝑡 − 1, respectively; and
sg𝑎𝑐𝑖 (𝑡 − 1) represents the active segment on cell 𝑖 in column 𝑐
at time 𝑡 − 1. Similarly, sg𝑙𝑐𝑖 (𝑡 − 1) is the segment activated by
the learning cell at time 𝑡 − 1. If multiple segments are active,
sequence segments are given preference. 𝑛𝑐 is the number of
cells in column 𝑐. 𝐶act(𝑡) is the set of the active column index
at time 𝑡.

2.3.2. Phase 2: Forming a Prediction Based on the Input in the
Context of Prior Inputs. Following Phase 1, according to (7),
the cells with active segments are admitted to the predictive
state unless they are already active due to feed-forward input.
𝑛𝑝𝑐𝑖 (𝑡) represents the predictive state of cell 𝑖 in column 𝑐 at
time 𝑡. All of the predictive cells form the prediction of the
region.

𝑛𝑝𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1, if sg𝑎𝑐𝑖
𝑐∈𝐶act(𝑡)

(𝑡) = 1. (7)

On column 𝑐 cell 𝑖, the current active segment is added to
the update list SU𝑐𝑖 (𝑡), whichwill be used inPhase 3. To extend

1.5 meters

Figure 5: Settings for performance examination.

the prediction back in time, another distal dendrite segment
that has the largest number of active synapses at the previous
time is also considered to add to the update list.

2.3.3. Phase 3: Updating Synapses. Similar to the synapse
updates of the proximal dendrite in the SP algorithm, when-
ever a distal dendrite segment becomes active, the perma-
nence values of its associated potential synapses are modified
by the Hebbian rule only if the cell correctly predicted the
feed-forward input.Thus, the synapse permanence values for
the segments in update list SU𝑐𝑖 (𝑡)will be reinforced positively
or negatively.

Finally, a vector representing the OR results of the active
and predictive states of all cells in a region becomes the input
to the next region in the hierarchy. Rather than storing a
set of predicted cells, TM algorithm stores a set of active
distal dendritic segments, that is, the segments related to
predicted skeleton positions for the shaking hands. With the
prediction, the HTM network can estimate approximately
when the inputswill likely arrive next and invoke and separate
the motor information.

3. Results

3.1. Experimental Setup. We applied the HTM based
perception-action integration for learning the shaking hands
skill on a NAO robot. Since there is no practical NAO robot
in our lab, the Webots NAO simulator combined with the
Kinect V1 RGB-D cameras is considered as the experimental
configuration for examining the skill learning performance.
As is shown in Figure 5, the RGB-D camera installed on the
top of LCD is for simulating the camera and sonar sensors of
the real NAO robot. The RGB-D camera captured sequential
human’s motion skeletons and depth data between the NAO
simulator and a human. It should be noted in Figure 5
that the distance between camera and the object has to be
configured within the effective detection range of RGB-D
camera, that is, 2 meters for Kinect V1. Here, we set 1.5
meters.

To learn the skill for NAO robot, we need the perception
and action data. Therefore, we collected the training data

https://github.com/numenta/htmresearch/wiki/Sensorimotor-Inference-Algorithm
https://github.com/numenta/htmresearch/wiki/Sensorimotor-Inference-Algorithm
https://github.com/numenta/htmresearch/wiki/Sensorimotor-Inference-Algorithm
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Figure 6: Settings for training data collection.

from two persons. These training data are used to swarm the
best HTM model parameters. The setting for training data
collection is shown in Figure 6. One person stood 1.5 meters
far from another one, and two RGB-D cameras were installed
on top of their heads. The distance between two sensor floor
stands is 2 meters. Camera 1, named as perception camera, is
used to acquire the skeleton data of person 2 and the depth
from person 2. The purpose of camera 2 (i.e., action camera)
is the same as camera 1 except that the data are from person 1.
Note that the depth data from the separate cameras have to be
converted to the distance between two persons. Combining
the skeleton data from two cameras and the converted
distance, we build up the training dataset. Two groups of
training data were recorded, and each group consists of ten
sets of shaking hands skeleton data and depth data. Group
one is for the case that one person (person 2) walked towards
and stopped 0.5 meters far from another one (person 1) and
then shook hands. Group two is for the case that two persons
walked towards and stopped 0.5 meters far from each other
and then began to shake hands. Camera 1 captured skeleton
data of person 2 which will be treated as the perception
data for NAO simulator; camera 2 recorded skeleton data of
person 1 which is to be taken as the action data for NAO
simulator. Because these perception-action skeleton motion
data are from different cameras, it is necessary to consider the
synchronization issue of data acquisition time. In this paper,
we applied asynchronous mechanism to address this prob-
lem. The perception camera acquisition thread first started

and then triggered the action camera acquisition thread.
These two threads are alternate. Furthermore, when two data
acquisition threads started, persons stood statically 5 seconds
to maintain the skeleton data stable before recording. This
asynchronous manner imitates the perception-action cycle.
When theHTMnetwork is trained, we used the experimental
setup in Figure 5 to examine the performance of skill learning
in online form. The RGB-D camera captured the first frame
of person’s skeleton and measured the distance between the
simulator and the person. These perception data were sent
to HTM network, and HTM network provided the predicted
skeleton actions.Thepredicted skeleton actions are converted
from the skeleton coordinates system of RGB-D camera to
the joint coordinate framework of NAO simulator and then
executed on the joints. This is a perception (sensor data
acquisition) action (prediction) cycle in online evaluation.
This cycle is performed frame by frameuntil the hand shaking
is completed.

The data structure of the recording file is as (8). The data
are ordered following the time stamp. “ID” depicts the RGB-
D camera ID which captured the skeleton data; depth data
are always acquired only by camera 1 (ID = 1) and for the
depth bits of camera 2 we copied the depth data of camera 1
directly. It can be found that the perception and action data
are recorded alternately. Each joint data consist of 3D Carte-
sian coordinates and 20 joints include 60 coordinate values
(referring to https://msdn.microsoft.com/en-us/library/nui-
skeleton.nui skeleton position index.aspx). Practically, for
NAO simulator, there are only 12 joints that can be controlled
and each joint comprises several Euler angle values (referring
to Table 1). It is necessary to address this issue before the
swarming process. We selected the corresponding skeleton
joints and converted their 3D Cartesian coordinates to Euler
angles and then reorganized the converted data following
the format of (9) for the optimal parameters swarming.
Therefore, 12 joints of NAO simulator cover 20 Euler angle
values. Since the size of image is 640 × 480, to make the
computation efficient, the depth information within a region
of interest (ROI) was extracted. The ROIs were selected as a
64×48 rectangle around the image center.The sampling time
is set as 100 milliseconds.

TimeStamp ID Joint1 Joint2 ⋅ ⋅ ⋅ Joint20 depth
15 : 26 : 46 : 151 1 (𝑥, 𝑦, 𝑧)1 (𝑥, 𝑦, 𝑧)2 ⋅ ⋅ ⋅ (𝑥, 𝑦, 𝑧)20 𝑑1
15 : 26 : 46 : 198 2 (𝑥, 𝑦, 𝑧)1 (𝑥, 𝑦, 𝑧)2 ⋅ ⋅ ⋅ (𝑥, 𝑦, 𝑧)20 𝑑1

...
...

...
...

...
...

(8)

TimeStamp ID Joint1 Joint2 ⋅ ⋅ ⋅ Joint12 depth
15 : 26 : 46 : 151 1 Euler1 Euler2 ⋅ ⋅ ⋅ Euler12 𝑑1
15 : 26 : 46 : 198 2 Euler1 Euler2 ⋅ ⋅ ⋅ Euler12 𝑑1

...
...

...
...

...
...

(9)

The HTM was designed based on the open source
NuPIC (available at https://github.com/numenta/nupic), and

its settings were identical for both of the two cases above.The
HTM model is one-region network. The size of the columns

https://msdn.microsoft.com/en-us/library/nuiskeleton.nui_skeleton_position_index.aspx
https://msdn.microsoft.com/en-us/library/nuiskeleton.nui_skeleton_position_index.aspx
https://github.com/numenta/nupic
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Table 1: The Euler angles of NAO simulator joints.

Joint Euler angle
Left shoulder Pitch & roll
Left elbow Yaw & roll
Left wrist Yaw
Right shoulder Pitch & roll
Right elbow Yaw & roll
Right wrist Yaw
Left hip Pitch & roll
Left knee Pitch
Left ankle Pitch & roll
Right hip Pitch & roll
Right knee Pitch
Right ankle Pitch & roll

in this region is set to 2,048 (arranged as 64 × 32 in a 2D
plane), and the number of cells in each column was set to
32. This configuration maintains the diversity of SDRs and
a low probability of a false match between any two SDRs.
As is shown in (1), the converted skeleton data are encoded
as a binary string by a scalar encoder and each joint data
occupied 32 bit. The depth data are also encoded as a 32-
bit binary string by a category encoder. Here we defined two
categories: Close and Far for depth data. “Close” means that
persons are close enough to begin to shake hands, and “Far”
means that persons keep walking. The encoding mechanism
is determined by the minimal distance extracted within the
ROI. If the minimal distance is less than a threshold, that is,
50 cm in our experiments, the category is “Close” and vice
versa.The reserved bits are designed for the additional sensor
information in the future work.

3.2. Results Analysis. We chose the first five sets of training
data in each group to swarm the optimal HTM network
parameters. The final swarming results of main parameters
for SP and TM algorithms described in the previous section
are listed in Table 2. With these optimal parameters and rest
of training data, we examined the skill learning performance
by offline and online form, respectively. Offline validation is
a paradigm of batch testing; that is, the skeleton and depth
data collected by camera 1 (perception camera) at sampling
time 𝑡𝑖 (𝑖 = 1, . . . , 𝑛 − 1) were first encoded as the sequential
binary strings and then sent to the HTM network to obtain
a batch of one-step ahead predicted action skeleton data
for sampling time 𝑡𝑗 (𝑗 = 2, . . . , 𝑛). We transferred the
predicted skeleton to the joint coordinate system of NAO
simulator and NAO simulator retrieved the shaking hands in
batch form. The predictions are compared with the original
skeleton data recorded by camera 2 (action camera) at 𝑡𝑗 (𝑗 =
2, . . . , 𝑛), and the compared joints trajectories and statistical
results are shown in Figure 7 and Table 3, respectively. Since
in Case 1 NAO simulator stood statically and only shook
right hand, the joints data of right arm are recorded only
in Figure 7(a), where the robot completed the task within

20th to 100th sampling time. Figures 7(b)–7(e) illustrate all
joints trajectories, where robot shakes hand within 100th to
180th sampling time and it walks 0.5 meters from 0 to 100th
sampling time. It can also be found in Figure 7 that the
predicted skeletons are consistent with the practical skeleton
actions captured by camera 2. Table 3 shows the statistics for
action predictions compared with the training data. It can
be seen that the mean and variance for each prediction are
close to zero, which manifests that the actions are predicted
correctly and successfully. Figure 8 shows grabbed frames
(the complete video clip can be found in attached media 1),
where the left columns are for Case 1 and the right column
is for Case 2. These offline examination results demonstrate
that our proposed perception-action integration provides
the correct action predictions according to the different
perceived input data.

In online evaluation, a person stood in front of the RGB-
D camera (refer to the camera in Figure 5). When the camera
captures the person’s skeleton, the HTMnetwork predicts the
corresponding actions and then the actions are transferred
to the joint positions for NAO simulator so that the NAO
simulator can shake hands with the person interactively.
Figure 9 displays the shaking hands interaction betweenNAO
simulator and the person (the complete video clip can be
found in attached media 2), where grabbed frames in the left
column are for Case 1 and the right column is for Case 2. The
joints trajectories of NAO simulator are shown in Figure 10.
In comparison with the training data curves in Figure 7,
it can be seen that the shapes of predicted skeleton data
curves are similar to those of training data, which manifests
that our proposed approach can also be used for online
skill learning. In comparison with the trajectories in offline
examination, it should be noted that in online evaluation
the NAO simulator has a default initial motion of which
the related trajectories are the data sampled from 0 to 50th
time in Figures 10(a)–10(e). We do not consider these parts
of joint trajectory in our proposed skill learning framework
and just simulated the initial actions of the real NAO robot.
Additionally, the learned action skeleton data in the training
process are remembered in the HTM, and they are treated
as the reference for the predicted actions. If the prediction
is abnormal, these stored actions can be used for anomaly
detection, which is discussed in Section 4.

The computational platform is a Corel i7-6500U
2.50GHz, with a 12G RAM laptop. The time for swarming
optimal parameters of HTM network is around 60 minutes
(the number of training data lines is around 1000). The
online evaluation process, which consists of loading optimal
parameters of HTM network, grabbing a frame of skeleton
and depth data, encoding these perception data, implemen-
ting SP and TM algorithms, and output predictions,
consumes 2.35 seconds. The cost time of online validation is
considerably less than that of the training because the train-
ing is an optimal searching processing which is usually time-
consuming. Additionally, only one frame of RGB-D data has
to be processed; hence, the computational time is reduced
considerably. Considering the results in terms of time cost,
it is reasonable to use the proposed perception-action
integration for real-time skill learning tasks.
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Table 2: Main optimal parameters for SP and TM algorithms.

Parameters Description Value
Thseg Threshold for the number of active synapses on a segment 15
Thper Threshold for the permanence of potential synapse 0.2
bf ini Initial value of the boost factor 1.0
bfmax Maximal boost factor 2.0
𝑟inh ini Initial value of the inhibition radius 0
LAmin Minimal number of winning columns 1
pmsyn inc Incremented permanence value in spatial pooling 0.05
pmsyn dec Decremented permanence value in spatial pooling 0.05

Thsyn per
Any synapse whose permanence value is above this threshold will become an active

synapse 0.1

ADCmin Minimum active duty cycle 0.001
Thact Threshold used to determine whether a distal segment is activated 14
pminc Incremented permanence value in temporal pooling 0.1
pmdec Decremented permanence value in temporal pooling 0.1

Table 3: Statistics for offline evaluation.

Case LShoulder Pitch LShoulder Roll LElbow Yaw LElbow Roll LWrist Yaw
𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

1 — — — — — — — — — —
2 −0.0051 0.819𝑒 − 5 −0.0015 0.068𝑒 − 5 −0.0048 0.786𝑒 − 5 −0.0049 0.814𝑒 − 5 −0.0015 0.073𝑒 − 5

Case LHip Roll LHip Pitch LKnee Pitch LAnkle Pitch LAnkle Roll
𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

1 — — — — — — — — — —
2 −0.0016 0.078𝑒 − 5 −0.0052 0.81𝑒 − 5 −0.0050 0.827𝑒 − 5 −0.0051 0.814𝑒 − 5 −0.0014 0.075𝑒 − 5

Case RShoulder Pitch RShoulder Roll RElbow Yaw RElbow Roll RWrist Yaw
𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

1 −0.0051 0.822𝑒 − 5 −0.0048 0.814𝑒 − 5 −0.0050 0.775𝑒 − 5 −0.0048 0.906𝑒 − 5 — —
2 −0.0048 0.862𝑒 − 5 −0.0015 0.076𝑒 − 5 −0.0050 0.86𝑒 − 5 −0.0051 0.824𝑒 − 5 −0.0015 0.081𝑒 − 5

Case RHip Roll RHip Pitch RKnee Pitch Rankle Pitch Rankle Roll
𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

1 — — — — — — — — — —
2 −0.0015 0.072𝑒 − 5 −0.0051 0.797𝑒 − 5 −0.0049 0.881𝑒 − 5 −0.0049 0.893𝑒 − 5 −0.0016 0.077𝑒 − 5

4. Discussion

4.1. Anomaly Detection. There is an important issue to be
considered in the online evaluation. If the predicted actions
deviate from those expected, the robot likely fails in the
tasks of shaking hands. This situation is referred to in the
terms of NuPIC as an anomaly. It is valuable to detect
anomalies in real-time for many applications. CLA takes
the anomaly likelihood computed from an anomaly score, a
powerful anomaly detection analysis approach, to address
this problem [24]. The anomaly likelihood enables the CLA
to provide a metric representing the degree to which each
record of the input sequence is predictable. It is relative to
the data stream rather than an absolute measurement of
abnormal behavior and is thus a critical reference to detect
whether the pattern with a high anomaly score is actually

anomalous. Anomaly likelihood creates an average of the
error score and then compares the current average error
to a distribution of what the average error has been over
the past data stream. This allows us to identify anomalies
based on probability. As shown in Figure 11, if the anomaly
likelihood is in the green section, this suggests that the record
is normal. If it is in the red section, the record shows an
abnormal value, which indicates that the pattern is a novel
one not seen in any sequence. The yellow section indicates
the pattern is somewhat unusual and that we do not have
high confidence. In our application, we consider a pattern
anomalous if its likelihood is in the yellow section. Based on
the concept of anomaly detection, we calculated the anomaly
likelihood for each predicted action in the shaking hands
learning task. If the anomaly likelihood of any action is
above a predefined probability threshold 𝑃Th ano (0.90 in
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Figure 7: Continued.
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(e) Joints trajectories in Case 2 (cont.)

Figure 7: Joints trajectories compared with the training data in offline evaluation.

our experiment, that is, the probability or accuracy of the
green section is 90%, which is equivalent to a 1.65𝜎 tolerance
interval for a normal distribution), we designed a simple
action retrieval strategy, that is, recalling the stored cells’
active distal dendritic segments corresponding to the action
sequence of training data to replace the predicted action
which has a higher anomaly likelihood. The retrieved action
is treated as the prediction for the next time.

It can be found in Figure 8 that the person’s hand skeleton
data in the grabbed frame of Case 1 video clip are deviation.
The anomaly likelihood of predicted action corresponding to
this perceived hand skeleton is 0.954, which is over 0.90. We
replaced this anomalous action with the stored action during
the training and sent it back to HTM as the prediction for

the next time.With this replacement procedure, the following
predicted actions were correctly maintained and the NAO
simulator continued to shake hands correctly. Because the
CLA prediction mechanism in our experiment is one step
ahead, we only retrieved one predicted action. If a multistep
ahead prediction mechanism is adopted, the number of
action retrievals is determined by the number of prediction
steps and anomaly likelihoods.

4.2. Biological Evidence for Action Prediction. Learning the
incorporated actions from different persons is an important
cognitive function in the perception-action integration sys-
tem, which has been examined by Knoblich and Flach [25].
They also proved that this type of prediction becomes more
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Figure 8: Grabbed frames of shaking hands learning in offline evaluation.
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Figure 9: Grabbed frames of shaking hands learning in online evaluation.

accurate when one obtains the knowledge from one’s own
actions rather than those of others. Their research provides
the biological evidence to support the action prediction
mechanism of HTM and its application for skill learning
tasks. However, the current HTM only implements a simple
consequence prediction. It provides a sequence of predicted
actions, including one-step or multistep predictions, but
does not consider the potential information behind these

predictions. From a biological viewpoint, the present version
of HTM does not link the perceptual input with the action
system to predict the future outcome of actions [25]; that is,
it does not explain the perception of intentionality for goal-
related actions [26] or implement the understanding of the
intention hidden in the sequential predicted actions [27] and
how to learn to perceive something new [28]. Additionally,
how the predicted actions guide the future perception process
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(c) Joints trajectories in Case 2 (cont.)

Figure 10: Continued.
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Figure 10: Joints trajectories in online evaluation.

is not considered. Therefore, both of these two issues above
will be the topics of our future work.

5. Conclusion

This study is the first attempt to explore the perception-
action integration from the view of HTM for skill learning
issue in intelligent robot. The main concept is that sequential
perceptual information contributes to predicting one-step
future actions. We selected the shaking hands as an example
to evaluate the skill learning performance of our proposed
framework on the NAO simulator. The perceived skeleton

of the target person and depth data from the target person
are grabbed from a RGB-D camera. The perception data are
first encoded as a sequential binary string. By using the SP
algorithm, the binary string sequences are organized as a
2D SDRs. With the SDRs, TM algorithm makes predicted
skeleton data for NAO simulator via storing the transitions
between the current perceived skeleton data and predictions
for the next future time. The prediction data are transformed
to the joint coordinates framework so that theNAO simulator
can implement the hands shaking actions with a real person.
The experimental results manifest that the proposed method
in this paper is promising for the skill learning of intelligent
robots.
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Figure 11: Anomaly likelihood curve.
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