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Anaerobic digestion (AD) is amicrobiologically coordinated process with dynamic relationships between bacterial players. Current
understanding of dynamic changes in the bacterial composition during the AD process is incomplete.The objective of this research
was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass
cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae
decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to
next-generation sequencing usingmethanogenmcrA gene specific anduniversal bacterial primers. Analysis of the data revealed that
samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales,
and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis
phase was dominated byMethanosarcina mazei. Results of observed changes in the composition of microbial communities during
AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate
of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without
any biomass pretreatment.

1. Introduction

Anaerobic digestion (AD), being a dynamically changing
microbiological process, has long been manipulated only at
the level of reactor design and physicochemical maintenance.
Manipulation on the level of microorganisms in the system
is more recent as evidenced by the rising number of studies
investigating key bacterial players in AD [1–5]. Since AD
consists of tightly linked biochemical stages that include
hydrolysis, acetogenesis/acidogenesis, and methanogenesis,
each of these stages is a possible aim for targeted manipu-
lation of microbial consortia. A targeted manipulation at a
certain stage of AD can remove a process bottleneck asso-
ciated with rate-limiting hydrolysis, accumulation of volatile
fatty acids that are toxic to the methanogenic bacteria, and
even low amount of biogas production [6]. To facilitate
targeted manipulation and monitor microbial diversity in
working bioreactors, recent studies have highlighted the
utilization of molecular techniques such as FISH (fluorescent

in situ hybridization), DNA-hybridization on microchips,
qPCR, and flow cytometry [7, 8]. Suchmanagement would be
beneficial in order to predict possible failures in the AD due
to shifts in the microbial communities and also to maintain
proper organic loading rates of substrate and assess overall
healthy condition of digesters.

The spectrum of substrates used for the AD has broad-
ened greatly during the last five years, with utilization of
a previously thought difficult to digest biomass, such as
biomass with high cellulose content like grass and silage
[9–13]. One substrate still resistant to AD is microalgal
biomass. Microalgae, being widely present in eutrophicated
lakes and wastewater lagoons, can serve as a biomass source
for the production of biofuels. Microalgal biomass has been
historically used for biodiesel production, due to its high
lipid content [14–16], and only within the last 5–7 years have
microalgae received an increased attention as a substrate for
AD. Resistance of microalgal biomass to AD is mainly con-
tributed by the presence of complex polysaccharides in the

Hindawi
International Journal of Microbiology
Volume 2017, Article ID 5291283, 12 pages
https://doi.org/10.1155/2017/5291283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193474706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/5291283


2 International Journal of Microbiology

structure of microalgal cell walls, whichmakes the hydrolysis
of this biomass a rate-limiting step in the biomethane pro-
duction process. This limitation can be resolved with initial
pretreatment of microalgal biomass by thermal, chemical,
ultrasound, and ozonation processes and even application of
constant magnetic field [17–26]. In addition to the difficulties
with initial hydrolysis of microalgae, natural low carbon to
nitrogen ratio of this substrate is not sufficient to sustain
AD, and to overcome this limitation, a usual strategy is
blending microalgal biomass with rich carbon sources prior
to digestion, such as paper and maize silage [24, 27, 28].
Codigestion with conventional AD substrates, such as swine
manure and waste activated sludge, is also popular, but in
some cases yields of methane are decreased, yielding, how-
ever, higher total biogas yields [29, 30].

In our study, we investigated AD of intact microalgal
biomass, harvested fromwastewater lagoons (LoganWastew-
ater Lagoons, Logan, Utah). The Logan Lagoons municipal
wastewater treatment plant utilizes a system of facultative
lagoons in parallel and series arrangement with a total
wastewater detention time of 60 to 90 days, occupies an area
of 640 acres (2.56 km), and treats 10–15MGD. Microalgal
biomass grows at the surface of the water-air interface
throughout the lagoon system.Harvestedmicroalgal biomass
for the experimentwasmixedwith sodium acetate to increase
carbon to nitrogen ratio. Anaerobic digestion was performed
in an upflow anaerobic sludge blanket reactor (UASB) (see
Supplemental Figure 1 in Supplementary Material available
online at https://doi.org/10.1155/2017/5291283). In the UASB
process, influent is distributed throughout the system in
upflowmode, bottom to up, flowing through a sludge blanket
of anaerobic microorganisms. A constant contact between
influent and microorganisms in a sludge bed results in a
digestion of organic matter in the influent and production of
a biogas. Generated biogas in a form of gas bubbles raises to
the upper part of the reactor, where it is captured in a gas
collection dome. A mixture of digested influent and sludge is
kept from rising into the gas collection dome due to the sepa-
rating baffles, installed around the circumference of the reac-
tor. Liquid without sludge and heavy particles is allowed to
pass into the effluent collection system, located above
baffles.

In this study sludge bed microorganisms were analyzed
over the course of time to assess microbial dynamics and
to identify potential alga-lytic bacteria via analysis of a
bacterial metagenome. Understanding how microorganisms
coordinate AD of microalgal biomass will help to maintain
biosystem stability during future AD and can be incorporated
into the growing knowledge database on the microbiology of
AD. This information can be further utilized to create an
effective system to monitor AD with molecular techniques
(FISH, qPCR, etc.) and to design effectivemicrobial consortia
that will increase biogas yields.

2. Materials and Methods

2.1. Reactor Design and Operation. Duplicates of UASB reac-
tors were made of Plexiglass at the Utah Water Research
Laboratory (UWRL) and each had a working volume of

32.4 L. Reactors had deflectors to prevent washout of sludge
bed solids and three phase separators to direct collection
of biogas (Supplemental Figure 1). There were three sam-
ple collection ports along the height of the reactor and a
substrate distribution system 5 cm above the reactor bottom.
Thermostat control of a rubber heating tape around reactor,
thermocouple, and insulation enabled maintenance of a
temperature regime at 35 ± 2∘C. A peristaltic pump with a
double channel head was used to feed both reactors. Gener-
ated biogas passed through the ice-cooling system to ensure
moisture-free monitoring of biogas flow via flow meter with
a working range of 0 to 500 sccm/min. The flow meters
were calibrated using a mixture of methane and carbon
dioxide of 80% and 20%, respectively, and were connected to
a Campbell Scientific data logger type CR800 to mea-
sure millivolts of the output form the flow meters. The
methane composition was measured every 5 to 6 days using
a gas chromatograph (GC) with a thermal conductivity
detector (TCD), a packed column (Alltec, CTR1) 1.83m ×
6.35mm, and a Valco injection valve with a 500𝜇L sample
loop.

Each reactor was seeded with 11 L of anaerobic sediment
from Logan Lagoons, Utah, which resulted in 9.7 gVSS (dry
weight)/L of reactor volume. Sediments from Logan Lagoons
were chosen as a reliable source of the anaerobic inoculum
utilized in previous AD studies [32]. Reactors were fed with a
mixture of microalgal biomass and sodium acetate to achieve
a final C/N ratio of 21 : 1. Microalgal biomass was obtained by
continuous centrifugation of the water from Logan Lagoons
every 10–15 days. Microalgae comprised the genera such
as Scenedesmus, Chlorella, Chlorococcum, Chlamydomonas,
Synedra, Navicula, Schroederia, and Euglena, Coelastrum
and some members of nonheterocystous cyanobacteria. The
average COD of microalgal biomass was 72 g/L, with C/N
ratio of 5/1. To increase the C/N ratio to the favorable value
for anaerobic digestion of 21 : 1, sodium acetate was chosen as
a rich, readily available carbon source. The feedstock had a
final pH of 6-7 and pH fluctuations were adjusted with a
hydrochloric acid solution. To acclimatize inoculum to the
microalgae and sodium acetate in a feedstock, low organic
loading rates (OLR) were initially applied, 0.9 gCOD/L⋅d,
which were gradually increased during the operation of the
reactor based on reactor performance and COD removal
efficiency. Final OLR was 5.4 gCOD/L⋅d. Hydraulic retention
time for the substrate was gradually decreased from 7 days to
5 days. Reactors were operated for 81 days.

2.2. Sampling, DNA Extraction, and Sequencing. Samples of
the sludge bed microbial community were taken throughout
the time course of anaerobic digestion (days 19, 57, and 75).
Duplicate sludge bed sampleswere obtained frombottomand
upper sampling ports of the UASB reactors and were stored
at −80∘C immediately after the collection. Extraction of DNA
was performed using PowerSoil DNA isolation kit (MoBio,
Carlsbad) following the manufacturer’s instructions. Result-
ing DNAwas used for the PCR amplification withmcrA gene
specific primer set and universal bacterial 16S rDNA specific
primer set (Supplemental Table 1) [33–35]. Each primer had a
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preceding adapter sequence (forward or reverse) specific for
the Illumina MiSeq platform. PCR reactions were performed
using KAPA HiFi HotStart ReadyMix (Kapa Biosystems,
Wilmington) under the following conditions: initial denatu-
ration at 95∘C for 3 minutes, followed by 25 cycles consisting
of 30 seconds at 95∘C, 30 seconds at primer annealing tem-
perature, and 30 seconds at 72∘C. Final extension lasted 5
minutes at 72∘C. Primer annealing temperature was 50∘C for
primer pair 338F and 785R and 56∘C forML primer pair. PCR
products were submitted to the Molecular Research Core
Facility at the Idaho State University (Pocatello, ID, USA)
for further purification, library preparation (Nextera kit),
and sequencing on the Illumina MiSeq platform (following
manufacturer’s instructions [36]).

2.3. Computational Analysis. Analysis of 16S rRNA gene data
was performed using a MiSeq SOP pipeline, described by
Kozich et al. [37] and implemented on MOTHUR software
[38]. Analysis included (1) quality trimming of the reads, (2)
chimera check with UCHIME algorithm, (3) extraction of
unique reads and alignment to the classification databases,
(4) actual classification using Bayesian classifier, and (5)
OTU identification. Sequences generated from PCR with
both types of primers, universal bacterial 338F and 785R and
methanogen-specific MLr-MLf, were processed in a similar
pipeline, with the only difference regarding database used for
the sequences alignment and classification. For sequences
generated with 338F and 785R primer set, SILVAV4 database
(http://www.arb-silva.de/) was used for the classification and
alignment. For sequences generated with mcrA gene specific
primer set, a database for classification and alignment was
manually created from pooling the mcrA sequences from
FunGene database (http://fungene.cme.msu.edu/). The algo-
rithm for analysis of mcrA sequences in MOTHUR software
was previously described [39]. To build a phylogenetic tree of
the classifiedmcrA sequences,MEGA 6.06 package was used,
incorporating Tamura-Nei model with maximum likelihood
analysis and 1000 bootstraps.

The internal MOTHUR command unifrac.weighted was
used to calculate the significance of separate clustering of
sequences from the samples taken at different time points
of anaerobic digestion. A statistical tool in MOTHUR,
HOMOVA, was used to calculate the level of variation among
samples depending on the duration of anaerobic digestion. In
more detail, algorithm assessed variability of OTU composi-
tion at different time points during AD, comparing level of
variation for one pair of samples at a time (e.g., difference
in variation of OTU composition between initial inoculum
and samples taken at the end of AD). Beta-diversity for
each sample amplified and sequencedwith universal bacterial
primer pair was estimated in a comparative heat map, while
looking at the relative abundance of each OTU across all
samples. Bacterial OTUs of interest were pulled from the clas-
sification table with custom Python scripts. Finally, depth of
the conducted sequencing effort (rarefaction curve) was cal-
culated using summary.single command with estimation of
Good’s coverage.
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Figure 1: Biogas production rate and changes in theOLRduringAD
of microalgae and sodium acetate in two reactors. Arrows point to
the days, when sludge samples were taken.

2.4. Data Accessibility. All metagenome sequences (both
universal bacterial and mcrA gene specific) are accessible
through the NCBI Sequence Read Archive (SRP058350).

3. Results

3.1. Anaerobic Digestion of Microalgal Biomass and Sodium
Acetate. Results on utilization of a UASB reactor (Supple-
mental Figure 1) to digest a mixed feedstock of microalgae
and sodium acetate are described in a recently published
paper by two of this paper’s authors [40] and this research
is specifically aimed at results from analysis of microbial
community that lead to the process of anaerobic digestion.
Briefly, feedstock for the anaerobic digestion was combined
with final C/N ratio of 21/1 and biogas production rate was
37 L/day during the last week of reactors operation (days
74–81, Figure 1). At organic loading rates corresponding to
the initial COD of influent 6.25 g/L that was increased to
27.2 g/L, the UASB reactors demonstrated an average COD
removal rate of 79% [40]. Utilization of microalgal biomass
and sodium acetate as a feedstock for AD in UASB yielded,
on average, 85% methane in the produced biogas [40]. The
fraction of methane gas that was produced explicitly from
microalgal biomass was calculated from the mass balance of
influent COD conversion including production of cell mass
[41]. Method and calculations are described in detail in the
paper by Soboh et al. [40] and it demonstrates an estima-
tion of 11–26% of methane being produced explicitly from
decomposition of microalgal biomass. With the satisfactory
performance of both reactors, samples of sludge bed were
taken during the operation of AD (days 19, 57, and 75) and
processed as described in Materials and Methods.

3.2. Sequencing of the DNA from Sludge Samples. A total
of 7,433,629 reads were generated during the sequencing
of all samples from the amplification of 16S rRNA and
methanogen-specific mcrA genes. Sequencing of PCR prod-
uct from amplification with 16S rRNA universal bacterial
primer set resulted in 5,721,724 reads, while sequencing after
amplification with primer set specific for the mcrA gene

http://www.arb-silva.de/
http://fungene.cme.msu.edu/
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Figure 2: Rarefaction curve of the microbial diversity throughout
the time course of anaerobic digestion of microalgae and sodium
acetate.

yielded 171,190 reads. In the 16S rRNA set, 975,677 reads
were identified as unique. Rarefaction curve for the depth of
the sequencing effort for 16S rRNA data is demonstrated in
Figure 2. For the mcrA gene set, after quality trimming and
chimera checking, 64.7% of new sequences were identified as
unique (other reads were copies of those in a unique set) and
used for further classification.

3.3. Classification of Identified OTUs in Bacterial 16S rRNA
Samples. Amplification and sequencingwith universal bacte-
rial primers (338F and 785R) resulted in identification of 640
different bacterial OTUs. To understand dynamic changes in
the microbial composition of a sludge bed during the AD of
microalgal biomass and sodium acetate, it was necessary to
identify key shared OTUs among all samples. A command
get.sharedseqs in the MOTHUR package was used. Shared
among all of the samples were 61 core taxa, and an additional
10 taxa groups were assigned as “unclassified” (Supplemen-
tary Table 2). The core 61 taxa were distributed among
11 major phyla, Firmicutes, Bacteroidetes, Proteobacteria,
Spirochaetes, Synergistetes, Armatimonadetes, Tenericutes,
Actinobacteria, OD1, Verrucomicrobia, and Thermotogae.
Dynamics of microbial composition during the course of AD
can be observed in Figure 3.

The Proteobacteria phylum had the biggest decrease
in the number of assigned sequences in comparison with
initial inoculum composition. In reactor 1 (Figure 3(a)),
Proteobacteria-assigned sequences decreased from 48% in
the initial inoculum to 23% on day 19; and in reactor 2 a
decrease was from 51% to mean 26% across the sludge bed.
The opposite was true for the sequences assigned to the
Bacteroidetes phylum, where there was a defined increase

Table 1: Calculation of significance of 16S rRNA samples separation
at different time points of anaerobic digestion.

Groups 𝑊Score 𝑊Sig
Day 19–inoculum 1 <0.0010
Day 19–day 57 1 0.017
Inoculum–day 57 1 <0.0010
Day 19–day 75 0.602815 0.018
Inoculum–day 75 0.895479 <0.0010
Day 57–day 75 0.404311 <0.0010

from 11% (10% for the reactor 2) to the 42% (32% for the
reactor 2) of the total classified sequences in 19 days of reac-
tors operation on microalgal biomass and sodium acetate.

To define major bacterial contributors in the microbial
composition during digestion of microalgae and sodium
acetate, core OTUs were classified on the order level (Fig-
ure 4). Both reactors demonstrate similar patterns of micro-
bial dynamics during AD. This patterns include an increase
in the number of sequences classified as Bacteroidales, Pseu-
domonadales, Enterobacteriales, and Synergistales during the
start-up of reactors (the 19-day period) and a decrease in
the number of sequences related to Syntrophobacterales,
Rhodocyclales, Actinomycetales, and Lactobacillales during
the same 19-day start-up period.The period after the start-up,
sampling days 57 and 75, is characterized by a specific
increase in the amount of Clostridiales in both reactors and
an increase of Pseudomonadales in reactor 2. Percentage-
wise, in reactor 1, Pseudomonadales reached the highest of
17% of the microbial population on day 19 (down and upper
fractions combined), whereas in reactor 2, the highest popu-
lation of Pseudomonadales was on day 75, 60%. ForClostridi-
ales, a complete opposite pattern is observed: the highest
population for reactor 1 was on day 75, when Clostridiales
comprised 80.7% of the microbial population, while for
reactor 2 number of Clostridiales sequences was not higher
than 54.4% on day 57.

3.4. Comparative Qualitative and Statistical Analysis of Bac-
terial Population Profiles throughout the Course of AD. To
assess the statistical relevance of changes in the bacterial
group composition between samples of 16S rRNA taken at
different time points of AD, unifrac.weighted command in
MOTHUR was used. This command compares pairwise all
the sampling groups and upper and down samples were
combined. Results of assessment of separation significance
are presented in Table 1. Since𝑊Sig has a 𝑝 value that should
be <0.05 [42], results in Table 1 demonstrate a significant
(𝑊Sig < 0.001 and𝑊Sig < 0.05) separation of OTU groups
at different stages of AD.

An additional statistical assessment was conducted to
ensure close relation of samples taken at the same time points
of AD but from different reactors. This was necessary from
the standpoint of replicating the experimental design in two
reactors. From the heat map (Supplemental Figure 2), cal-
culated with jclass algorithm in MOTHUR, one can see
that beta-diversity (internal compositional heterogeneity) of
samples taken at the same time point from two reactors is
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Figure 3: Microbial dynamics on phyla level in the UASB reactors (reactor 1 (a) and reactor 2 (b)) digesting microalgal biomass and sodium
acetate. Phyla Armatimonadetes, Tenericutes, Actinobacteria, OD1, and Verrucomicrobia each contributed less than 1% of the total shared
microbial population among all samples and were combined under the general “other” designation.
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Figure 4: Microbial dynamics on order level for UASB reactor 1 (a) and reactor 2 (b), digesting microalgal biomass and sodium acetate.

closely related to each other (bright red color, on a diagonal of
the pyramid), whereas samples are significantly different
in OTU composition when compared to samples taken at
different time points (19th day and 57th day, e.g.).

3.5. Classification of Identified OTUs in Methanogen mcrA
Gene Sequencing Data. Reads generated from amplification
with mcrA gene specific primer set were quality trimmed
and analyzed in MOTHUR software package. Classification



6 International Journal of Microbiology

Methanospirillum lacunae (AB517988)
Methanospirillum hungatei JF-1 (CP000254)

Methanocorpusculum sp. clone mcrA58 (KC618381)
Methanoculleus bourgensis MS2T (HE964772)

Methanoculleus marisnigri JR1 (CP000562)
Methanoregula formicicum SMSP (CP003167)
Methanoregula boonei (FunGene mcrA db)

Methanocella arvoryzae MRE50 (AM114193)
Methanosaeta harundinacea 6Ac (CP003117)

Uncultured archaeon methyl-CoM reductase clone 425mcr31 (FJ754032)
Methanosaeta concilii GP-6 (CP002565)

Methanosarcina mazei S-6 (CP009512)
Uncultured archaeon methyl-CoM reductase clone 3H6M13F (HE647378)

Methanosarcina horonobensis HB-1 (CP009516)
Methanoregula formicicum BRM9 (CP006933)

Methanobacterium ivanovii strain DSM (EF465107)
Methanobacterium sp. T01 (FunGene mcrA db)100

94
100

87

100

100

100

91

89

65
93

97

78

57

0.05

Figure 5: Phylogenetic tree of all identified methanogenic species in the amplified mcrA gene samples.
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Figure 6: Dynamics of the number of methanogenic reads
sequenced during the time course of microalgae and sodium acetate
AD. “Up” and “down” labels next to the day of sampling refer to the
upper or bottom part of the sampled sludge bed.

of aligned reads in a FunGene database resulted in the identi-
fication of 14 different species of methanogenic bacteria and 2
uncultured/unclassified archaeal species. A phylogenetic tree
of all identified species (all time points ofADare combined) is
depicted in Figure 5.

Clustering of the total number of reads related to the iden-
tified methanogenic species on the order level demonstrated
a single order dominated system (Table 1). General dynamics
of the number of total methanogenic reads sequenced during
the time course of AD is depicted in Figure 6. Results
presented in Figure 6 indicate an increase in the number
of methanogen-related reads during the time course of the
AD. A high number of methanogenic reads identified on

Inoculum Day 19 Day 57 Day 75
Day of sampling

Methanosarcina barkeri
str. Fusaro
Methanosarcina
acetivorans C2A
Methanosarcina mazei
Tuc01

Methanosarcina mazei
Go1
Unassigned
Methanosarcina

0

10

20

30

40

50

60

70

80

90

100
Re

lat
iv

e a
bu

nd
an

ce
 o

f s
pe

ci
es

 (%
)

Figure 7: Dynamics of relative abundance of species members of
Methanosarcinales order during the time course of microalgae and
sodium acetate AD.

the 57th day of reactors operation is in agreement with the
exponential increase in the amount of biogas being produced
after this time point (Figure 1). Assessment of the species
distribution in the identified dominant Methanosarcinales
order revealed a single-species dominant methanogenic sys-
tem (Figure 7), with Methanosarcina mazei leading to the
digestion of microalgae and sodium acetate on the last stage
of anaerobic digestion, methanogenesis.
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4. Discussion

In this study, the microbial dynamics governing anaerobic
digestion of microalgal biomass and sodium acetate were
analyzed. Use ofmetagenome sequencing revealed a dynamic
shift in bacterial community structures over the time course
of AD. Initial bacterial inoculum for start-up of the AD pro-
cess in a UASB reactor was taken from anaerobic sediments
in the Logan Lagoons (a wastewater treatment facility in
Logan, Utah). These sediments are thought to contribute to
the exceptional performance of Logan Lagoons wastewater
treatment facility for over 40 years [43]. Testing this excep-
tional productivity of sediments onADofmicroalgal biomass
(which accumulates in the lagoons and is a significant carbon
source for themicroorganisms) led to the identification of the
key microorganisms contributing to the hydrolysis of
microalgal biomass and subsequent methane production in
this study. Since microalgal biomass in Logan Lagoons has a
low natural C/N ratio (5/1) that is not sufficient for successful
anaerobic digestion (batch preliminary experiments [44]),
microalgae were mixed with sodium acetate to increase C/N
ratio to 21/1.

To better assess the composition of themicrobial commu-
nity during AD of microalgal biomass and sodium acetate,
duplicate UASB reactors were constructed, each bearing two
sampling ports located at the bottom and upper parts of the
sludge bed. Such sampling allowed examining the influence
of a direct exposure of microorganisms to the substrate at
the bottom of the reactor, contrary to the exposure of
microorganisms at the upper part of the sludge bed to the
already predigested substrate (by the microorganisms at the
bottom part of the sludge bed).

Results demonstrated a fairly close distribution of
microorganisms across the sludge bed (Supplemental Figure
2), with the only exception of the number of assigned reads
to the order of Clostridiales during the start-up of the reactor
(19 days of operation) and the order of Pseudomonadales at
day 75 of reactor operation (Figure 4). Even though bottom
and upper sampling ports of sludge bed are located 20 cm
apart, this distance can indeed differentiate between two
different stages of anaerobic digestion: initial hydrolysis and
acidogenesis/acetogenesis. A dominant system comprising
Clostridiales at day 57 and day 75 with the second dominant
order of Pseudomonadales can be observed from Figure 7.
Clostridiales are also dominant at day 19 (the bottom part),
and Pseudomonadales can be given no exceptional role.
Comparison of dynamics changes in the number of assigned
reads to those two orders reveals that amount of Clostridiales
stayed relatively the same after reactor start-up (day 19),
while amount of Pseudomonadales increased by 370% at the
bottom part of the sludge bed and by 1727% at the upper part
of sludge bed.

Such a dynamic change in the number of assigned
reads to the order of Pseudomonadales during the start-up
period of a UASB reactor suggests that supplied substrate for
AD (microalgal biomass and sodium acetate) was a trigger
of bacterial growth of members of the Pseudomonadales
order. Previous studies also report increased amount of
Pseudomonadales in AD of microalgal biomass [45].

In addition to the change in the number of Pseudomo-
nadales-assigned reads, the start-up period boosted growth
of Enterobacteriales and Bacteroidales (Figure 4). Prevalence
of Bacteroidales on the 19th day of AD correlates with the
suggestion that this is a hydrolysis phase, and Bacteroidales
generally comprise genera of bacteria with distinct saccha-
rolytic activities, such as Bacteroides that produce acetic acid
as an end product [46]. These bacteria are often found at the
initial stages of anaerobic digestion [47, 48].

For two other orders, Pseudomonadales possess mostly
nonfermenting metabolism, while Enterobacteriales are fer-
menters and can produce fatty acids and lactic acids. Genera
of Pseudomonas and Enterobacter have been detected at high
numbers in eutrophicated lakes with microalgal blooms [49–
51]. Members of Pseudomonas spp. were recently ascribed
to have distinct microalgal cell degrading abilities [52] and
ability to degrade microalgal toxins, microcystins [53–56].
A combined alga-lytic activity of two members of Pseu-
domonadales and Enterobacteriales orders, Pseudomonas
aeruginosa and Citrobacter freundii, has been reported for
cyanobacteria that were collected frommunicipal wastewater
lagoon [57]. While alga-lytic activity of Pseudomonas spp.
predominantly aimed at cyanobacteria, alga-lytic activity
of Enterobacter spp. expands also to green algae [58–60].
Since both cyanobacteria and green algae were present in
the feedstock for the described here AD in a UASB reactor
(see Materials and Methods), we can suggest that members
of Pseudomonadales and Enterobacteriales orders have an
alga-lytic activity towards microalgal biomass from Logan
Wastewater Lagoons.

Alga-lytic activity might not only be characteristic for
Pseudomonas and Enterobacter but was also observed for
other members of our bacterial community in a UASB
reactor. Reads of the Thermotogales order were identified
during the presumably acidogenic-methanogenic phase of
AD (57th day, Figure 4), where, due to the continuous flow
of microalgal biomass and sodium acetate, hydrolysis still
takes place. Thermotogales were previously reported to have
an alga-lytic activity towards green microalgae [61, 62]. This
lytic behaviormight bemanaged by the extracellular enzymes
of Thermotogales, amylases, which make it possible for the
bacterium to ferment carbohydrate polymers of microalgal
biomass to hydrogen [63, 64]. However, to make this process
happen, micoralgal biomass should be initially disrupted to
release carbohydrates. Therefore, if considering that initial
microalgal biomass disruption occurred during the initial
hydrolysis phase of AD during start-up of reactors (samples
taken on day 19) and bacteria from Proteobacteria phylum
have successfully initiated the degradation process, we would
expect secondary hydrolyzing agents, such asThermotogales,
to be active after some delay from the initial hydrolytic
phase. Also, since Thermotogales convert microalgal carbo-
hydrates into the hydrogen, hydrogen can be supplied to
methanogenic bacteria that were detected in the abundance
at the 57th day of AD (Figure 6).

Another order of bacteria detected at the initial stage
of AD (day 19) is Synergistales. Presence of these bacteria
at the hydrolytic stage of AD can be due to the metabolic
preferences of these bacteria to consume amino acids and
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Table 2: Total number of reads related to the identified methanogenic species during the course of AD of microalgae and sodium acetate.
“Up” and “down” labels next to the day of sampling refer to the upper or bottom part of the sampled sludge bed. Data is combined for both
reactors.

Inoculum Day 19, up Day 19, down Day 57, up Day 57, down Day 75, up Day 75, down
Methanobacteriales 0 0 1 15 0 7 2
Methanocellales 0 1 0 0 0 0 0
Methanomicrobiales 9 14 27 12 5 0 0
Methanosarcinales 61 1466 808 42459 44169 14166 10829

complex proteinaceous compounds [65]. Synergistales were
also previously reported to be present in similar environ-
ments as a UASB reactor, wastewater treatment lagoons, and
anaerobic sludge [3, 66]. Detection of Synergistales in the
anaerobic digestion is in agreementwith previously published
data by Delbès et al. [67], but exact role of these bacteria in
AD is not yet known.

The presence of specific alga-lytic bacterial orders in our
reactor is attributed to the fact that initial inoculum for
AD was taken from the sediments in the Logan Wastewater
Lagoons. An observed high degree of decomposition of
microalgal biomass (average COD removal rate of 79%, as
observed by Soboh et al. [40]) can be explained with a long
term adaptation of the facultative aerobic microorganisms to
the algal residues present at the bottom of the lagoons ponds
(48 years of LoganWastewater Lagoons operation) and selec-
tion of species that are able to efficiently degrade microalgal
biomass to maintain stability of the Lagoon system. Previous
studies have pointed to the specific recalcitrance ofmicroalgal
cells to AD, which is usually conducted with either acid or
temperature pretreatment of microalgal biomass [19, 21, 28,
29, 68–72]. These studies also demonstrated a methane com-
position of up to 60% in a produced biogas from fermentation
of microalgal biomass and 73% in codigestion with swine
manure. In our case, produced biogas had on average 85%
methane composition [40], whichmight be because of amore
intense decomposition of microalgal biomass by alga-lytic
bacteria identified at the 19th day of AD in a UASB reactor.

Moving deeper into the process of AD, to the microbial
community on day 57, Clostridiales order occupies the most
attention. An increase in the amount of Clostridiales at this
sampling time (Figure 4) could be due to the high content of
polysaccharides in the hydrolyzed microalgal biomass. Gen-
erally, Firmicutes are prevalent at the acetogenic/acidogenic
stages of anaerobic digestion due to their ability to ferment
sugars and amino acids into acetic and lactic acid [3, 73,
74]. Members of Clostridiales order were also reported in
abundance in other microalgae digestion experiments [45].
Previous studies on Logan Lagoons microbiome have iden-
tified a high diversity of Clostridium spp. and a dominance
of a Clostridiales order [32]. The role of Clostridiales in
the AD of microalgal biomass and sodium acetate can be
relevant to both hydrolysis and acetogenic stages, since initial
high percentage of Clostridiales in the inoculum (Figure 4)
characterizes the sediments of the Logan Lagoons as a
nurturing environment for these microorganisms. Ellis et
al. tested Clostridium saccharoperbutylacetonicum on diges-
tion of microalgal biomass from Logan Lagoons and did

not observe any success, even though this bacterium has
amylolytic activity towards starch-based polymers that are
present in microalgal cell walls [75]. Clostridium saccharoper-
butylacetonicumwas able to ferment microalgal biomass only
after acidic-basic pretreatment of microalgae with sulfuric
acid and sodium hydroxide [76]. This leads to a thought
that Clostridium spp. identified in our study might indeed be
involved in the second step ofADofmicroalgal biomass and a
pretreatment step (by other bacterial consortia) is vital for the
final conversion ofmicroalgal biomass into the set of alcohols,
such as ethanol, acetone, and butanol.

Acidogenic/acetogenic phase of AD in our study has
revealed the presence of another bacterial taxa, in addition
to theClostridiales order. Sulfate-reducing bacteria,members
of Desulfovibrionales order, were detected at the 57th day
(Figure 4). With regard to the dynamics of methanogenic
bacteria population throughout AD, as depicted in Figure 3,
and presence of Desulfovibrionales at the same time point,
a competitive interaction for substrate might take place
between two types of anaerobic microorganisms [77, 78].

Possible way to communicate this observation is that the
higher number of sulfate-reducers in the upper sampling
point at day 19th correlates with the higher thermody-
namic possibility of sodium acetate assimilation via sulfate-
reduction, rather than via methanogenesis (Table 3). The
decrease in the relative abundance of sulfate-reducers later
during the AD (Figure 4) could be due to the exhaustion
of sulfate in the bioreactor and sulfate is electron acceptor
during substrate assimilation by Desulfovibrionales (initial
sulfate might have come with the inoculum from sediments
in the lagoons and is not present in the supplied microalgal
biomass during AD) [79]. Simultaneously we observed a shift
from low number of methanogenic sequences to the high
number later during the AD (day 57th, Figure 6). Ozuolmez
and colleagues observed a similar shift from high numbers of
sulfate-reducers to higher numbers of methanogens during
a cocultivation of Methanosaeta concilii and Desulfovibrio
vulgaris on acetate [80].

With respect to the methanogenesis and its outcom-
peting of sulfate-reduction, our results demonstrate that
AD of microalgal biomass with sodium acetate was selec-
tive towards a single-species dominant methanogenic sys-
tem.Methanosarcina mazei was prominently proliferating at
the 57th day of AD (Table 2, Figure 3). Presence of Metha-
nosarcina spp. in anaerobic reactors is common due to their
high growth rates, rapid consumption of a broad spectrum
of substrates (acetate, methanol, and hydrogen), and a high
stress resistance to the fluctuations in the anaerobic digester,
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Table 3: Free Gibbs energy required for the assimilation of acetate
via sulfate-reduction and methanogenesis [31].

Acetate assimilation via sulfate reduction:
CH
3
COO− + SO

4

2− → 2HCO
3

− +HS− Δ𝐺
0
= −47.6 kJmol−1

Acetate assimilation via methanogenesis:
4CH
3
COO− → 3CH

4
+HCO

3

− Δ𝐺
0
= −31.0 kJmol−1

Methanogenesis
Methanosarcinales

Methanomicrobiales

Acidogenesis/acetogenesis
Clostridiales

Thermotogales
Desulfovibrionales

Hydrolysis
Algalytic bacteria:
Pseudomonadales
Enterobacteriales

Bacteroidales

Figure 8: Proposed set of keymicroorganisms involved in anaerobic
digestion of microalgal biomass and sodium acetate.

such as pH and OLR [78, 81–84]. A particular dominance of
Methanosarcina mazei in the UASB reactor fed with microal-
gal biomass and sodium acetate has not yet been reported by
others.

Possible explanations onwhyM.mazeiwas dominant can
be due to several factors based on the nature of the supplied
substrate (microalgal biomass and sodium acetate): (1) addi-
tion of sodium acetate as a feedstock into the reactor creates
conditions of elevated amount of acetate that can only be
consumed by species of methanogen with high growth rates
and high acetate turnover rates, such as Methanosarcina
mazei [85]; (2) slight fluctuations were observed in the pH
during the AD [40] and Methanosarcina mazei have been
previously reported to be able to withstand even higher pH
fluctuations for a short period of time, as opposed to such
species ofMethanosarcina asMethanosarcina barkeri [86].

To summarize the analysis of metagenome during anaer-
obic digestion of microalgal biomass and sodium acetate, a
general flow of microbial dynamics is proposed in Figure 8.

5. Conclusions

A demonstrated analysis of a bacterial metagenome dur-
ing anaerobic digestion of microalgal biomass and sodium

acetate has provided a valuable insight into complex micro-
bial interactions and can be used for further studies leading to
cultivation of key microorganisms of interest. For microalgal
biomass digestion, metagenome analysis was especially valu-
able to identify potential alga-lytic bacteria (members of the
orders Bacteroidales, Pseudomonadales, and Enterobacteri-
ales), and further studies will include isolation of this poorly
studied group of microorganisms. Identification of new bac-
teria influencing anaerobic digestion of previously thought
recalcitrant microalgal biomass has practical applications
for increasing yields of biogas from such an abundant and
sustainable type of substrate.
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[28] R. Wirth, G. Lakatos, G. Maróti et al., “Exploitation of algal-
bacterial associations in a two-stage biohydrogen and biogas
generation process Philippe Soucaille,” Biotechnology for Biofu-
els, vol. 8, no. 1, article no. 59, 2015.

[29] M. Wang, E. Lee, Q. Zhang, and S. J. Ergas, “Anaerobic
co-digestion of swine manure and Microalgae chlorella sp.:
experimental studies and energy analysis,” Bioenergy Research,
vol. 9, no. 4, pp. 1204–1215, 2016.

[30] C. Beltrán, D. Jeison, F. G. Fermoso, and R. Borja, “Batch
anaerobic co-digestion ofwaste activated sludge andmicroalgae
(Chlorella sorokiniana) at mesophilic temperature,” Journal of
Environmental Science and Health, Part A, vol. 51, no. 10, pp.
847–850, 2016.

[31] M. Holmer and E. Kristensen, “Coexistence of sulfate reduction
and methane production in an organic-rich sediment,” Marine
Ecology Progress Series, vol. 107, no. 1-2, pp. 177–184, 1994.

[32] J. T. Ellis, “Utilizingmunicipal and industrial wastes for the pro-
duction of bioproducts: from metagenomics to bioproducts,”
in Biological Engineering, Utah State University: All Graduate
Theses and Dissertations, 2013.

[33] J. T. Ellis, C. Tramp, R. C. Sims, and C. D. Miller, “Charac-
terization of a methanogenic community within an algal fed
anaerobic digester,” ISRN Microbiology, vol. 2012, Article ID
753892, 12 pages, 2012.

[34] D.-P. Mao, Q. Zhou, C.-Y. Chen, and Z.-X. Quan, “Coverage
evaluation of universal bacterial primers using the metage-
nomic datasets,” BMCMicrobiology, vol. 12, article 66, 2012.

[35] J. R. De Lipthay, K. Johnsen, H.-J. Albrechtsen, P. Rosenberg,
and J. Aamand, “Bacterial diversity and community structure
of a sub-surface aquifer exposed to realistic low herbicide
concentrations,” FEMS Microbiology Ecology, vol. 49, no. 1, pp.
59–69, 2004.

[36] Illumina, “Nextera XT DNA Library Prep Kit,” 2017, https://
support.illumina.com/content/dam/illumina-support/documents/
documentation/chemistry documentation/samplepreps nextera/
nextera-xt/nextera-xt-library-prep-reference-guide-15031942-
02.pdf.

[37] J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander,
and P. D. Schloss, “Development of a dual-index sequencing
strategy and curation pipeline for analyzing amplicon sequence
data on the MiSeq Illumina sequencing platform,” Applied and
Environmental Microbiology, vol. 79, no. 17, pp. 5112–5120, 2013.

[38] P. D. Schloss, S. L. Westcott, T. Ryabin et al., “Introduc-
ing mothur: open-source, platform-independent, community-
supported software for describing and comparing microbial
communities,”Applied and EnvironmentalMicrobiology, vol. 75,
no. 23, pp. 7537–7541, 2009.

[39] S. Yang, S. Liebner, M. Alawi, O. Ebenhöh, and D. Wagner,
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