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Dimensionality reduction is extremely important for understanding the intrinsic structure hidden in high-dimensional data. In
recent years, sparse representation models have been widely used in dimensionality reduction. In this paper, a novel supervised
learning method, called Sparsity Preserving Discriminant Projections (SPDP), is proposed. SPDP, which attempts to preserve
the sparse representation structure of the data and maximize the between-class separability simultaneously, can be regarded as
a combiner of manifold learning and sparse representation. Specifically, SPDP first creates a concatenated dictionary by classwise
PCA decompositions and learns the sparse representation structure of each sample under the constructed dictionary using the
least square method. Secondly, a local between-class separability function is defined to characterize the scatter of the samples
in the different submanifolds. Then, SPDP integrates the learned sparse representation information with the local between-class
relationship to construct a discriminant function. Finally, the proposed method is transformed into a generalized eigenvalue
problem. Extensive experimental results on several popular face databases demonstrate the feasibility and effectiveness of the
proposed approach.

1. Introduction

In many fields such as object recognition [1, 2], text cat-
egorization [3], and information retrieval [4], the data are
usually provided in high-dimensional form; this makes it
difficult to describe, understand, and recognize these data.
As an effective method, dimensionality reduction has been
widely used in practice to handle these problems [5–8]. Up to
now, a variety of dimensionality reduction algorithms have
been designed. Based on the data structure they utilize, these
methods fall into three categories: global structure-based
methods, local neighborhood-based methods, and sparse
representation-based methods.

Principal Component Analysis (PCA) [9], Linear Dis-
criminant Analysis (LDA) [10], and their kernelized versions
are typical global structure-based methods [11, 12]. Owing
to its simplicity and effectiveness, PCA, which aims at
maximizing the variance of the projected data, has extensive
applications in the fields of science and engineering. PCA is
a good dimensionality reduction method; however, it does

not employ the label information of the samples, leading
to inefficiency of the classification. Unlike PCA, LDA is
a supervised method that attempts to identify an optimal
projection by maximizing the between-class scatter and as
such minimizing the within-class scatter. Because the label
information is fully exploited, LDA has been proven more
efficient than PCA in classification [13]. However, LDA can
extract at best𝐾− 1 features (𝐾 is the number of categories),
which is unacceptable in many situations. Moreover, both
PCA and LDA are based on the hypothesis that samples from
each class lie on a linear subspace [14, 15]; that is, neither of
them can identify the local submanifold structure hidden in
high-dimensional data.

Recently, manifold learning methods, which are espe-
cially useful for the analysis of the data that lie on a sub-
manifold of the original space, have been proposed [16–26].
Representative manifold learning methods include Isomap
[16], Laplacian Eigenmaps (LE) [17], and Locally Linear
Embedding (LLE) [18]. All these nonlinear methods are
able to discover the optimal feature subspace by solving an

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 5269236, 12 pages
http://dx.doi.org/10.1155/2016/5269236



2 Mathematical Problems in Engineering

optimization problem based on the weight graph question;
however, none of them can overcome the “out-of-sample”
problem [19]. That is, they yield maps that are characterized
only on the training data points but how to evaluate the
maps on new test data points is still unclear. In order to
address this problem, Cai et al., respectively, developed the
linear visions of the above manifold learning methods such
as isometric projection [20], Locality Preserving Projections
(LPP) [21], and Neighborhood Preserving Embedding (NPE)
[22]. However, these methods suffer from a limitation that
they do not encode discriminant information, which is
very important for recognition tasks. Recently, Gui et al.
proposed a new supervised learning algorithm called Locality
Preserving Discriminant Projections (LPDP) to improve the
classification performance of LPP and applied it to face
recognition [26]. Experimental results show that LPDP is
more suitable for recognition tasks than LPP.

Sparse representation, as a new branch of the state-of-the-
art techniques for signal representation, has attracted con-
siderable research interests [27–38]. It attempts to preserve
the sparse representation structure of the samples in a low-
dimensional embedding subspace.The representative dimen-
sionality reduction algorithms based on sparse representation
include Sparsity Preserving Projections (SPP) [39], Sparsity
Preserving Discriminant Analysis (SPDA) [40], Discrimina-
tive Learning by Sparse Representation Projections (DLSP)
[41], Sparse Tensor Discriminant Analysis (STDA) [42], and
sparse nonnegative matrix factorization [43]. It is worthwhile
to note that a sparse model also depends on the subspace
assumption: each sample can be linearly expressed by other
samples from the same class; that is, each sample can be
sparsely recovered by samples from all classes. In general,
these sparse learning algorithms provide superior recog-
nition accuracy compared with the conditional methods.
However, all these dimensionality reduction methods based
on sparse codingmentioned above are required to solve the ℓ

1

norm minimization problem to construct the sparse weight
matrix. Therefore, they are computationally prohibitive for
large-scale problems. For example, SPP attempts to preserve
the sparse reconstructive relationship of the data [39], which
is an effective and powerful technique for dimensionality
reduction. However, the computational complexity of SPP
is excessively high and hence, it cannot be used extensively
for large-scale data processing (in fact, the time cost for
constructing the sparse weight graph is 𝑂(𝑛4), where 𝑛 indi-
cates the total number of training samples). Moreover, SPP
does not absorb the label information. Thus, the algorithm is
unsupervised.

Motivated by the above works, a novel supervised learn-
ing method, called Sparsity Preserving Discriminant Pro-
jection (SPDP), is proposed in this paper. By integrating
SPP with local discriminant information for dimensionality
reduction, SPDP can be viewed as a combiner of sparse
representation and manifold learning. Because sparse repre-
sentation can implicitly discover the local structure of the
data owing to the sparsity prior, this property can be used
to describe the local structure. However, differing from the
existing SPP, which is time-consuming in sparse reconstruc-
tion for each test sample, SPDP first creates a concatenated

dictionary using classwise PCA decompositions and learns
the sparse representation structure of each sample under the
constructed dictionary quickly with the least square method.
Then, a local between-class separability function is defined
to characterize the scatter of the samples in the different
submanifolds. Subsequently, by integrating the sparse repre-
sentation information with the local between-class relation-
ship, SPDP attempts to preserve the sparse representation
structure of the data and maximize the local between-class
separability simultaneously. Finally, the proposed method is
converted into a generalized eigenvalue problem.

It is worth emphasizing some merits of SPDP and the
main contributions of this paper:

(1) SPDP is a supervised dimensionality reduction
method that attempts to identify a discriminating
subspace where the sparse representation structure of
the data and the label information are maintained.
Meanwhile, the separability of different submanifolds
is maximized; that is, different submanifolds can be
distinguished more clearly.

(2) SPDP is able to explore the local submanifold struc-
ture hidden in high-dimensional data because the
manifold learning is employed to characterize the
local between-class separability.

(3) The time required for extracting discriminant vectors
in SPDP is significantly less than many algorithms
based on sparse representation. Therefore, the pro-
posed method can be widely applied for large-scale
problems.

(4) Label information is employed twice in SPDP. First, it
is absorbed in constructing the dictionary for sparse
representation and calculating the sparse coefficient
vector, which may contribute to a more discrimi-
nating sparse representation structure. Further, it is
utilized in computing the local between-class separa-
bility, which is more conducive for classification.

The rest of this paper is organized as follows: Section 2
briefly reviews the existing SPP algorithm. The SPDP algo-
rithm is described in detail in Section 3. The experimental
results and analysis are presented in Section 4 and the paper
ends with concluding remarks in Section 5.

2. Brief Review of Sparsity Preserving
Projections (SPP)

SPP aims to preserve the sparse reconstruction relationship of
the samples [39]. Given a set of training samples {x

𝑖
}
𝑛

𝑖=1
, where

x
𝑖
∈ R𝑚 and 𝑛 is the number of training samples, let X =

[x
1
, x
2
, . . . , x

𝑛
] ∈ R𝑚×𝑛 be the data matrix consisting of all

the training samples. SPP first seeks the sparse reconstruction
coefficient vector s

𝑖
for each sample x

𝑖
through the following

modified ℓ
1
minimization problem:

mins𝑖
s𝑖
1
,

s.t. x
𝑖
= Xs
𝑖
,

1 = 1𝑇s
𝑖
,

(1)
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where s
𝑖
= [s
𝑖1
, . . . , s

𝑖,𝑖−1
, 0, s
𝑖,𝑖+1
, . . . , s

𝑖,𝑛
]
𝑇 is an 𝑛-dimen-

sional column vector inwhich the 𝑖th element is equal to zero,
implying x

𝑖
is removed from X, and the element s

𝑖𝑗
, 𝑗 ̸= 𝑖,

denotes the contribution of x
𝑗
for reconstructing x

𝑖
.Then, the

sparse reconstructive weight matrix S is given as follows:

S = [s
1
, s
2
, . . . , s

𝑛
] , (2)

where s
𝑖
is the optimal solution of (1). The final optimal

projection vector w is obtained through the following max-
imization problem:

max
w

w𝑇XS
𝛽
X𝑇w

w𝑇XX𝑇w
, (3)

with S
𝛽
= S + S𝑇 − S𝑇S. This problem transforms to a gen-

eralized eigenvalue problem.
It follows that SPP must resolve 𝑛 time-consuming ℓ

1

norm minimization problems to obtain the sparse weight
matrix S.Thus, the computational complexity of SPP is exces-
sively high and therefore not widely applicable to large-scale
data processing. Moreover, SPP does not exploit the prior
knowledge of class information, which is valuable for class-
ification and recognition problems such as face recognition.

3. Sparsity Preserving Discriminative Learning

In this section, the proposed SPDP algorithm is described
in more detail. To reduce the disadvantage that is inevitable
for SPP to resolve 𝑛 time-consuming ℓ

1
norm minimiza-

tion problems to obtain the sparse weight matrix S, SPDP
first constructs a concatenated dictionary through classwise
PCA decompositions and learns the sparse representation
structure of each sample under the constructed dictionary
quickly using the least square method. To enhance the
discriminant performance, it defines a local between-class
separability function to characterize the scatter of the sam-
ples in the different submanifolds. Then, by integrating the
sparse representation information with the local interclass
relationship, SPDP aims to maximize the separation between
the submanifolds (or intrinsic clusters) without destroying
localities and meanwhile preserve the sparse representation
structure of the data. Hence, the proposed algorithm is
expected to preserve the intrinsic geometry structure and
have superior discriminant abilities.

3.1. Constructing the Concatenated Dictionary. For conve-
nience, we first provide some notations used in this paper.
Assume that X = {x

1
, x
2
, . . . , x

𝑛
} is a set of training samples,

where x
𝑖
∈ R𝑚. We can categorize the training samples as

X = [X
1
,X
2
, . . . ,X

𝐾
], where X

𝑖
= [x
𝑖1
, x
𝑖2
, . . . , x

𝑖𝑛𝑖
] ∈ R𝑚×𝑛𝑖

(𝑖 = 1, 2, . . . , 𝐾) consists of samples from class 𝑖. Suppose that
samples from a single class lie on a linear subspace. Thus,
each sample can be sparse linearly represented by samples
from all classes. The subspace model is a powerful tool to
capture the underlying information in real data sets [44].
For the convenience of PCA decomposition and relevant
calculations, we first center the samples from each class at
the origin, X̃

𝑖
= [x

𝑖1
− 𝜇
𝑖
, x
𝑖2
− 𝜇
𝑖
, . . . , x

𝑖𝑛𝑖
− 𝜇
𝑖
] (𝑖 =

1, 2, . . . , 𝐾), where 𝜇
𝑖
denotes the mean of class 𝑖; that is,

𝜇
𝑖
= ∑
𝑛𝑖

𝑖=1
x
𝑖
/𝑛
𝑖
. Therefore, the training sample can be recast

as X̃ = [X̃
1
, X̃
2
, . . . , X̃

𝐾
]. Afterwards, PCA decomposition

is conducted for every X̃
𝑖
(𝑖 = 1, 2, . . . , 𝐾), whose objective

function is

max
‖d‖=1

d𝑇∑
𝑖

d, (4)

where∑
𝑖
is the sample covariancematrix of X̃

𝑖
. For every class

𝑖, the first 𝑙
𝑖
principal components are selected to construct

D
𝑖
= [d
1
, d
2
, . . . , d

𝑙𝑖
] (in fact, 𝑙

𝑖
is automatically selected by

the value of the PCA ratio from the system). Thus, a sample
x from class 𝑖 can be simply represented as

x = D
𝑖
s̃
𝑖
= [D
1
,D
2
, . . . ,D

𝑖−1
,D
𝑖
,D
𝑖+1
, . . . ,D

𝐾
] s

= Ds,
(5)

with D = [D
1
,D
2
, . . . ,D

𝐾
] and s = [0𝑇, 0𝑇, . . . , 0𝑇, s̃

𝑖

𝑇
, 0𝑇,

. . . , 0𝑇]𝑇. D
𝑖
is the dictionary of class 𝑖 by the PCA decom-

position above, D is the concatenated dictionary composed
of all D

𝑖
(𝑖 = 1, 2, . . . , 𝐾), s is the sparse representation of a

sample x under the concatenated dictionary D, and s̃
𝑖
is the

coefficient vector under the dictionary D
𝑖
. In fact, s̃

𝑖
can be

quickly computed from the least square method as

s̃
𝑖
= (D
𝑖

𝑇D
𝑖
)
−1

D
𝑖

𝑇x = D
𝑖

𝑇x. (6)

The orthogonality of each principal component of PCA
decomposition of the same class is utilized in the reduction
of the above formula. The process of constructing the con-
catenated dictionary is presented in Figure 1.

According to the preceding procedure, each training
sample corresponds to a sparse representation under the
concatenated dictionary D and the sparse coefficient vector
s of any training sample from class 𝑖 can be quickly computed
from the least square method (in fact, it is the primary reason
that the proposed approach is significantly faster than SPP,
which will be explained in detail in Section 4.4) because the
computational process of s involves onlyD

𝑖
, which is column

orthogonal in view of (5) and (6).

3.2. Preserving Sparse Representation Structure. As can be
seen in Section 3.1, to some extent, the dictionaryD describes
the intrinsic geometric properties of the data and the sparse
coefficient vectors explicitly encode the discriminant infor-
mation of the training samples. Thus, it is hoped that this
valued property in the original high-dimensional space can
be preserved in the low-dimensional embedding subspace.
Therefore, the objective function is expected to look for an
optimal projection that can best preserve the sparse repre-
sentation structure:

𝐽
𝑠
(w) = minw

𝑛

∑

𝑖=1


w𝑇x
𝑖
− w𝑇Ds

𝑖



2

2
, (7)

where s
𝑖
is the sparse reconstruction vector corresponding to

x
𝑖
.
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Figure 1: The process of constructing the concatenated dictionary.

Using algebraic operations, (7) can be arranged as

𝑛

∑

𝑖=1


w𝑇x
𝑖
− w𝑇Ds

𝑖



2

2

= w𝑇(
𝑛

∑

𝑖=1

(x
𝑖
−Ds
𝑖
) (x
𝑖
−Ds
𝑖
)
𝑇

)w

= w𝑇
𝑛

∑

𝑖=1

(x
𝑖
x
𝑖

𝑇
− x
𝑖
s
𝑖

𝑇D𝑇 −Ds
𝑖
x
𝑖

𝑇
+Ds
𝑖
(Ds
𝑖
)
𝑇

)w

= w𝑇 (XX𝑇 − XS𝑇D𝑇 −DSX𝑇 +DSS𝑇D𝑇)w,

(8)

where S = [s
1
, s
2
, . . . , s

𝑛
], and therefore, (7) can be simply

recast as

𝐽
𝑠
(w)

= minw w𝑇 (XX𝑇 − XS𝑇D𝑇 −DSX𝑇 +DSS𝑇D𝑇)w.
(9)

3.3. Characterization of the Local Interclass Separability. To
effectively discover the discriminant structure embedded in
high-dimensional data and improve the classification per-
formance, in this subsection, we construct a local interclass
weight graph. Because data in the same class lie on one or
more submanifolds and data belonging to different classes
are distributed on different submanifolds, it is important for
classification problems to distinguish one submanifold from
another. Therefore, a local between-class separability func-
tion is defined in this section to characterize the separability
of the samples in different submanifolds. The aim of SPDP
is that different submanifolds can be distinguished more
clearly after being projected; hence, the local between-class
separability of different submanifolds should be maximized.
Thus, we can construct a label matrix B to describe the local
and interclass relationships of each point as follows:

B
𝑖𝑗

=

{{{

{{{

{

1 + exp(−

x
𝑖
− x
𝑗



2

2

𝜎
) , if 𝑖 ∈ 𝑁−

𝐾
(𝑗) or 𝑗 ∈ 𝑁−

𝐾
(𝑖) ;

0, otherwise,

(10)

where ‖x
𝑖
−x
𝑗
‖
2

2
denotes the geodesic distance between points

x
𝑖
and x

𝑗
, 𝜎 is a parameter which is often set to be as the

standard deviation of the samples, 𝑁−
𝐾
(𝑖) denotes the index

in the 𝐾 nearest neighbors of the sample x
𝑖
, however with

a different class label, and B is called the local between-
class weight matrix (or local interclass weight graph). As
can be seen in the above definition, if two distant points
x
𝑖
and x

𝑗
belong to different submanifolds, the scatter of

them is big and vice versa. That is, the points belonging
to different submanifolds should be located farther after
projection. Therefore, the local interclass separability can be
characterized as the following equation:

𝐽
𝑏
(w) = 1

2
∑

𝑖

∑

𝑗


y
𝑖
− y
𝑗



2

2
B
𝑖𝑗
, (11)

where y
𝑖
= w𝑇x

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the low-dimensional

representation of the original data, which can be obtained by
projecting each x

𝑖
onto the direction vector w ∈ R𝑚. With

algebraic simplifications, (11) can be rewritten as

𝐽
𝑏
=
1

2

𝑛

∑

𝑖,𝑗

B
𝑖𝑗


y
𝑖
− y
𝑗



2

2
=
1

2

⋅ w𝑇(
𝑛

∑

𝑖,𝑗

B
𝑖𝑗
(x
𝑖
− x
𝑗
)
𝑇

(x
𝑖
− x
𝑗
))w = w𝑇(1

2

⋅

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

B
𝑖𝑗
(x
𝑖
− x
𝑗
)
𝑇

(x
𝑖
− x
𝑗
))w

= w𝑇(1
2
(

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

B
𝑖𝑗
x
𝑖
x
𝑖

𝑇
− 2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

B
𝑖𝑗
x
𝑖
x
𝑗

𝑇

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

B
𝑖𝑗
x
𝑗
x
𝑗

𝑇
))w = w𝑇(

𝑛

∑

𝑖=1

D
𝑖𝑖
x
𝑖
x
𝑖

𝑇

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

B
𝑖𝑗
x
𝑖
x
𝑗

𝑇
)w = w𝑇 (X (D − B)X𝑇)w

= w𝑇XLX𝑇w,

(12)

where L is Laplacian matrix with definition L = D − B and
D is a diagonal matrix [45]; that is, D

𝑖𝑖
= ∑
𝑗
B
𝑖𝑗
. Equation

(12) characterizes the separability (or scatter) of the data set
in different submanifolds. Therefore, each manifold can be
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separated clearly, as long as the optimal projection w∗ is
adopted.

3.4. Sparsity Preserving Discriminant Projections. To achieve
improved recognition results, we explicitly integrate the
sparsity preserving constraint as indicated in (7) with the
local between-class separability as illustrated in (12). The
novel supervised algorithm SPDP, which not only preserves
the sparse representation structure but also separates each
submanifold as distant as possible, is defined as

max
w
𝐽 (w) = 𝐽𝑏 (

w)
𝐽
𝑠
(w)

=
w𝑇XLX𝑇w

w𝑇 (XX𝑇 − XS𝑇D𝑇 −DSX𝑇 +DSS𝑇D𝑇)w
,

(13)

where the denominator term 𝐽
𝑠
(w) measures the quality

of preserving the sparse representation structure and the
numerator term 𝐽

𝑏
(w) measures the separability of different

submanifolds. It is well known that the criterion of LDA
is to maximize the between-class scatter and, meanwhile,
minimize the within-class scatter. Similar to LDA, the aim
of SPDP is to maximize the ratio of the local between-class
separability to the sparse representation weight scatter.

Letting

M = XX𝑇 − XS𝑇D𝑇 −DSX𝑇 +DSS𝑇D𝑇, (14)
the objective function can be recast as the following optimiza-
tion problem:

max
w

w𝑇XLX𝑇w
w𝑇Mw

. (15)

Then, the optimal w’s are the eigenvectors corresponding
to the largest 𝑑 eigenvalues of the following generalized
eigenvalue problem:

XLX𝑇w = 𝜆Mw. (16)
It is worth noting that since the training sample size is

much smaller than the feature dimensions for those high-
dimensional data,Mmight be singular. This problem can be
tackled by projecting the training set X onto a PCA subspace
spanned by the leading eigenvectors to get X and replacing
X by X.

Based on the above discussion, the proposed SPDP is
summarized in Algorithm 1.

Algorithm 1 (Sparsity Preserving Discriminant Projections
(SPDP)). We have the following steps.

Step 1. Execute PCA decomposition for each X
𝑖
(𝑖 = 1, 2, . . . ,

𝐾) using (4) to obtain the concatenated dictionaryD.

Step 2.Calculate the coefficient vector s̃
𝑖
under the dictionary

D
𝑖
for each sample based on (6) to obtain the sparse

coefficient vector s and then calculate S.

Step 3. Calculate B and L by (10) and (12), respectively.

Step 4. Calculate the projecting vectors by the generalized
eigenvalue problem in (16).

Figure 2: Some face samples from the Yale database.

4. Experiments

In this section, the proposed SPDP algorithm is tested on
three publicly available face databases (Yale [13], ORL [46],
and CMU PIE [47]) and compared with six popular dimen-
sionality reduction methods—PCA, LDA, LPP, NPE, LPDP,
and SPP. For PCA, the only model parameter is the subspace
dimension and for LDA, the performance is directly influ-
enced by the energy of the eigenvalues kept in the PCA pre-
processing phase. For LPP and NPE, the supervised versions
are adopted. In particular, the neighbor mode in LPP and
NPE is set to be “supervised”; the weight mode in LPP is set
to be “Cosine.” The empirically determined parameter 𝛼 in
LPDP is taken to be 1 [26], 𝜀 in SPP is set to be 0.05 as indicated
in [39], and𝜎 in SPDP is set to be the standard deviation of the
samples.The nearest neighbor classifier (1−𝑁𝑁) is employed
to predict the classes of the test data. All experiments are
accomplished withMATLAB R2013a on a personal computer
with Intel(R) Core i7-4770K 3.50GHz CPU, 16.0GB main
memory, and the Windows 7 operating system.

4.1. Experiment on Yale FaceDatabase. TheYale face database
contains 165 face images of 15 individuals. There are 11
images per individual. These images were collected under
different facial expressions (normal, happy, sad, surprised,
sleepy, and wink) and configurations (left-light, center-light,
and right-light) and with or without glasses. All the images
are cropped to a size of 32 × 32 and then normalized to
have a unit norm. Some samples from this database are
presented in Figure 2. For each person, 𝑘 (𝑘 varies from 2
to 8) images are randomly selected as the training samples
and the remaining 11 − 𝑘 for the test. For each 𝑘, the results
are averaged over 50 random splits. Table 1 presents the best
recognition rate and the associated standard deviation of the
seven algorithms under the different sizes of the training
set. Figure 3(a) presents the best recognition rate versus the
variation of the size of the training set. Figure 3(b) is the
variation rules of the recognition rates of the seven algorithms
under different reduced dimensions when the size of the
training samples from each class is fixed as six. The fact that
the upper bound for the dimensionality of LDA is 𝐾 − 1
(𝐾 is the number of categories) because there are at most
𝐾 − 1 generalized nonzero eigenvalues [13] deserves to be
noted; similar situations will occur in other experiments in
this paper. Hence, one can see that the SPDP algorithm
significantly outperforms the other methods.

4.2. Experiment onORL Face Database. There are 400 images
of 40 people in the ORL face data set, where each one has 10
different pictures. The images were collected at different time
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Figure 3: Recognition rates of the seven algorithms on the Yale database: (a) the best recognition rates versus the different size of the training
set and (b) the average recognition rates versus the variation of dimensions when the size per class is fixed as six.

points, under different lighting conditions, varying facial
expressions. In our experiment, each image is cropped to a
resolution of 32×32 as shown in Figure 4.We randomly select
𝑘 (𝑘 varies from 2 to 8) pictures from each person for training;
the remainder are used for testing. We repeat these splits
50 times and report the average results. Table 2 displays the
best classification accuracy of the seven algorithms under the
different sizes of the training set; the number in parentheses
is the corresponding standard deviation. Figure 5(a) presents
the best recognition rate versus the variation of the size of the
training set. Figure 5(b) is the variation rules of the recog-
nition rates of the seven algorithms under different reduced
dimensions when the size of the training samples from each
class is fixed as five. It can be seen that SPDP and LPDP are
superior to other compared methods (their performances on
the ORL database are quite similar), especially when the size
of the training set is small.The reasonmay be that both SPDP
and LPDP consider the discriminant information and local
structure of the data.

4.3. Experiment on CMU PIE Face Database. In this sub-
section, it is verified that the proposed algorithm achieves
higher classification accuracy than the other dimensional-
ity reduction methods under varying illumination, pose,
and expression. The CMU PIE face database contains over
41,368 face images of 68 subjects that were captured by 13
synchronized cameras and 21 flashes under varying poses,
illumination, and expression. In our experiments, we choose
the five frontal poses (C05, C07, C09, C27, and C29). This
leaves 170 face images per subject; all the images are cropped
to 32 × 32. Figure 6 shows some pictures of one subject. A

Figure 4: Some face samples from the ORL database.

random subset with 𝑘(=5, 10, 15, 20) pictures per subject is
selectedwith labels to form the training set; the remainder are
used for testing. For each given 𝑘, we average the classification
accuracies over 50 random splits. Table 3 presents the best
recognition rate and the associated standard deviation in
brackets of the seven algorithms under the different size of
the training set. Figure 7(a) presents the best recognition rate
versus the variation of the size of the training set. Figure 7(b)
is the variation rules of the recognition rates of the seven
algorithms under different reduced dimensions when the
size of the training samples from each class is fixed as ten.
We can observe that the proposed SPDP outperforms the
other dimensionality reduction methods such as PCA, LDA,
LPP, NPE, LPDP, and SPP about pose, illumination, and
expression variations.

4.4. Comparison of Time Cost for Acquiring the Discriminant
Vectors of SPPwith SPDP. In this subsection, the time cost for
acquiring the discriminant vectors of SPDP is compared with
that of SPP. Tables 4, 5, and 6 list the average time costs for
acquiring the discriminant vectors of SPP and SPDP versus
the different sizes of the training set on the three face data sets.
It is demonstrated that SPDP is significantly faster than SPP
in acquiring the embedding functions in our experiments,
especially in the large-scale problems such as CMU PIE.
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Table 3: The best recognition rate and the corresponding standard deviation of the seven algorithms under the different size of the training
set on CMU PIE (𝑘 is the training sample size).

Methods 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

SPDP 0.7882 (±0.012) 0.9015 (±0.009) 0.9356 (±0.017) 0.9517 (±0.022)
LPDP 0.7653 (±0.012) 0.8759 (±0.015) 0.9127 (±0.009) 0.9405 (±0.011)
PCA 0.2817 (±0.024) 0.4260 (±0.032) 0.5345 (±0.021) 0.6028 (±0.028)
LDA 0.7250 (±0.011) 0.8625 (±0.016) 0.9175 (±0.008) 0.9337 (±0.015)
LPP 0.7253 (±0.033) 0.8659 (±0.028) 0.9005 (±0.039) 0.9342 (±0.023)
NPE 0.7148 (±0.035) 0.8601 (±0.029) 0.8905 (±0.021) 0.9231 (±0.028)
SPP 0.6391 (±0.026) 0.7720 (±0.031) 0.8285 (±0.018) 0.8607 (±0.034)
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Figure 5: Recognition rates of the seven algorithms on the ORL database: (a) the best recognition rates versus the different size of the training
set and (b) the average recognition rates versus the variation of dimensions when the size per class is fixed as five.

Figure 6: Some face samples from the CMU PIE database.

The critical factor of the above phenomenon is that the
approaches of SPP and SPDP to obtain the sparse representa-
tion structure are entirely different. In SPP, 𝑛 time-consuming
ℓ
1
norm minimization problems are required to be solved to

construct the sparseweightmatrix, whose computational cost
is𝑂(𝑛4) [48, 49], whereas SPDP can achieve this significantly
faster through only𝐾PCAdecompositions and 𝑛 least square
methods. Because 𝐾 PCA decompositions can be completed
in 𝑂(𝑚2∑𝐾

𝑖=1
𝑙
𝑖
) according to the more efficient algorithm

[50], the time cost for learning the sparse coefficient vector
of each sample, which only involves the least square method,
is 𝑂(𝑚𝑙

𝑖
) and the sparse weight matrix S can be calculated

with 𝑂(𝑚∑𝐾
𝑖=1
𝑛
𝑖
𝑙
𝑖
); the computational complexity of SPDP

to learn the sparse representation structure is 𝑂(𝑚2∑𝐾
𝑖=1
𝑙
𝑖
+

𝑚∑
𝐾

𝑖=1
𝑛
𝑖
𝑙
𝑖
). In general, 𝑛

𝑖
≪ 𝑛, 𝑙

𝑖
≪ 𝑛, and 𝐾 ≪ 𝑛; hence,

SPDP performs considerably faster than SPP as indicated in
Tables 4, 5, and 6.

4.5. Overall Observations and Discussions. Several observa-
tions and analysis can be achieved from the above experimen-
tal results.

(1) From Tables 1, 2, and 3 and Figures 3(a), 5(a), and
7(a), we can draw a conclusion that the proposed algo-
rithm consistently outperforms the other compared
methods, especially when the number of the training
data is particularly small. The reason is that SPDP
simultaneously considers both the sparse represen-
tation structure and the separability of the different
submanifolds. Further, this indicates that SPDP can
capture more inherent information that is hidden in
the data compared to the other compared methods.
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Figure 7: Recognition rates of the seven algorithms on the CMU PIE database: (a) the best recognition rates versus the different size of the
training set and (b) the average recognition rates versus the variation of dimensions when the size per class is fixed as ten.

Table 4: Time (s) for acquiring the discriminant vectors of SPP and SPDP on Yale (𝑘 is the training sample size).

Methods 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8

SPP 0.3729 0.6387 1.0335 1.5506 2.1609 2.9087 4.0471
SPDP 0.2475 0.4016 0.4835 0.5352 0.6827 0.7036 0.8263

Table 5: Time (s) for acquiring the discriminant vectors of SPP and SPDP on ORL (𝑘 is the training sample size).

Methods 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8

SPP 1.1933 2.5641 5.1679 8.4467 13.0688 19.7787 29.4638
SPDP 0.2672 0.3526 0.5128 0.5933 0.7032 0.8158 1.2875

Table 6: Time (s) for acquiring the discriminant vectors of SPP and
SPDP on CMU PIE (𝑘 is the training sample size).

Methods 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

SPP 40.9725 67.6737 104.9756 178.6327
SPDP 0.2736 0.8135 1.9037 2.7218

(2) From Figures 3(b), 5(b), and 7(b), it can be observed
that the reduction dimensions for SPDP to achieve
the best recognition rate are less than those of the
other compared algorithms.This saves a considerable
amount of time and storage space after obtaining the
optimal embedding functions.

(3) From Tables 4, 5, and 6, it is indicated that SPDP is
considerably faster than SPP in obtaining the dis-
criminant vectors. This is because the method SPDP
uses to learn the sparse representation structure

which is more effective than that of SPP as analyzed
in Section 4.4.

5. Conclusions

This paper proposed a new supervised learning method,
called Sparsity Preserving Discriminative Projections
(SPDP), by combining manifold learning and sparse repre-
sentation. Specifically, SPDP first constructs a concatenated
dictionary by means of classwise PCA decompositions and
learns the sparse representation structure of each sample
under the constructed dictionary quickly using the least
square method. Then, it defines a local between-class sepa-
rability function to characterize the separability of the
samples in different submanifolds. Subsequently, SPDP inte-
grates the sparse representation information with the local
between-class relationship. Thus, SPDP preserves the sparse
representation structure of the data and maximizes the
local between-class separability simultaneously. Finally,
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the proposed method is transformed into a generalized
eigenvalue problem. Extensive experiments on three publicly
available face data sets confirmed the promising performance
of the proposed SPDP approach.
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