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Knowing traffic congestion and its impact on travel time in advance is vital for proactive travel planning as well as advanced traffic
management. This paper proposes a streaming algorithm to estimate temporal and spatial extent of delays online which can be
deployed with roadside sensors. First, the proposed algorithm uses streaming input from individual sensors to detect a deviation
from normal traffic patterns, referred to as anomalies, which is used as an early indication of delay occurrence. Then, a group of
consecutive sensors that detect anomalies are used to temporally and spatially estimate extent of delay associated with the detected
anomalies. Performance evaluations are conducted using a real-world data set collected by roadside sensors in Bangkok, Thailand,
and the NGSIM data set collected in California, USA. Using NGSIM data, it is shown qualitatively that the proposed algorithm can
detect consecutive occurrences of shockwaves and estimate their associated delays. Then, using a data set from Thailand, it is shown
quantitatively that the proposed algorithm can detect and estimate delays associated with both recurring congestion and incident-
induced nonrecurring congestion. The proposed algorithm also outperforms the previously proposed streaming algorithm.

1. Introduction

Traffic congestion has become a major problem in big cities
around the world, causing economic, environmental, and
health issues. Existing solutions for addressing the traffic
congestion problem are to increase road capacity, to use
alternative transportation mode (e.g., mass transit systems),
to restrict usage on particular roads at particular times (e.g.,
congestion charge), and to use existing roads more efficiently
[1]. While the first three solutions require extensive building
of new infrastructure and/or studying of public opinions,
the last solution can be more promptly implemented as
it mainly involves utilizing traffic information in a more
efficient manner.

Intelligent Transport Systems (ITS) have provided effi-
cient means of gathering, processing, and disseminating
relevant traffic information by utilizing the capabilities of
sensor networks on roadside and onboard vehicles [2]. One
of the most effective and practical ways is to promptly provide

relevant traffic information in advance to enable drivers
to avoid congested routes and traffic management centers
to proactively manage traffic flow. This would enable not
only drivers to estimate their travel times, but also traffic
management centers to estimate the severity of congestion
and initiate appropriate strategies to return traffic to normal.

Even though numerous traffic estimation and prediction
methods have been proposed in the past decades, recent
literature review in [3] indicates that there are still ten chal-
lenges that need research attentions. One of these challenges
is on how to use short-term traffic estimation to reflect a
macroscopic point of view of traffic condition, which is very
essential for traffic management strategies. While most short-
term traffic estimation methods focus on estimating flow,
travel time, or traffic condition itself, few recent studies have
shifted to incorporating new information that reflects further
insights on future traffic condition. These new information
include travel time variability which reflects reliability [4] and
delay associated with anomalies which reflects severity [5-7].
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The focus of this paper is on detecting anomalies and
estimating delay on a freeway segment. Anomaly detection
and delay estimation are essential for both drivers and
traffic management centers as they reflect severity of traffic
congestion, which in turn can be used to minimize its impact
(e.g., by alerting drivers to change route or sending in a
tow truck to remove a disabled vehicle). While anomaly
detection has received more attention in the past decade [8],
delay estimation has not equally received the same attention.
As detailed in Section 2 below, the majority of previous
studies have focused on estimating and predicting travel
time under normal traffic condition [9-15], while relatively
fewer methods focus particularly on traffic delay [5-7, 10, 16].
Furthermore, the methods proposed in [5, 7] are not designed
for real-time operation, while the study in [6] focuses only on
traffic delay in work zones. One of the most recent studies in
[16] provides insight on the capabilities of existing models but
the focus is on signalized intersections.

The contributions of this paper can be summarized as
follows. First, the proposed algorithm is designed to operate
online and can be deployed with existing roadside sensors.
Second, it can detect anomalies and achieve higher detection
rates and lower false positive rates (i.e., false alarm rates) com-
pared to an existing approach in [17]. Third, the algorithm
can estimate delay by first estimating the spatial extent of
delay using a group of roadside sensors and then temporally
estimate delay using empirically derived equations. Finally,
for practical purposes, the benefit of selecting suitable input
time window size and prediction horizon is discussed.

This paper proposes an algorithm based on a new
framework which includes both anomaly detection and
delay estimation so it is a significantly enhanced version
of the algorithm in [18], which focuses only on detecting
incidents. First, the spatial and temporal estimation of delay
is incorporated (explained in detail in Section 4). Second,
it is shown that the enhanced algorithm in this paper can
be used to detect the presence of shockwaves and estimate
their associated delays (explained in Section 5). Thirdly, the
real-world data sets used to assess the proposed algorithm
in this paper are much more significant than the one used
in [18] with 44 more delay cases with additional six months
of data collection (explained in Section 5). Finally, to show
the potential of the proposed algorithm being deployed in a
different location, the well-known NGSIM data [19] is also
used in the assessment, which has not been done in [18].

The rest of this paper is organized as follows. Related work
is discussed in Section 2. Research framework is presented in
Section 3. Then, Section 4 describes the proposed algorithm
in detail. Performance evaluations using real-world data
are described in Section 5, and the results are discussed
in Section 6. Finally, Section 7 concludes this paper and
discusses future work.

2. Related Work

The majority of previous studies have focused on estimating
and predicting travel time under normal traffic conditions
[9-15]. Among them, the most widely used technologies
are probe vehicle and automatic vehicle identification (AVI).
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Probe vehicle technologies are installed in the vehicles
themselves to communicate their locations to some remote
servers where their travel times are calculated [10]. One
of the most well-known probe vehicle technologies is the
Global Positioning System (GPS). Unlike probe vehicles, AVI
technologies are designed to be installed on roadside to
identify individual vehicles in different locations [9]. Using
AVT, the travel time of each vehicle can be calculated as
the difference between the times that the vehicle passes
two consecutive locations [11]. Well-known AVTI technologies
are radio frequency identification (RFID) and license plate
recognition. Algorithms used to estimate travel times are
support vector regression models [9], a three-layer neural
network model [10], a low-pass adaptive filtering algorithm
[11], among others. Even though using travel time provides
the most accurate and convenient way to estimate and predict
delay, it requires an adequate number of sensors installed
in vehicles and/or on roadways which are not yet widely
available in many areas of developing countries.

Besides using probe vehicles and AVI to directly estimate
travel time, a group of indirect methods have also been
proposed where travel time is estimated and predicted from
traffic flow [12-15]. They use similar assumptions that there
are certain degrees of relationship between flow and delay.
Commonly employed techniques are regression, artificial
intelligence, and statistical models derived from historical
data. In particular, it is shown that travel time can be
accurately predicted up to 20 minutes in advance using
linear regression [12-14]. Even though these methods have
been shown to perform well under normal traffic conditions,
they need adequate historical data which may not always
be available on every road segment. Also, transient changes
under congested traffic condition may have an inconsistent
impact on the estimation accuracy [15].

Relatively few methods have been designed to estimate
traffic delay, that is, the additional travel time that occurs
under congested conditions. The methods in this group rely
on a primary assumption that speed does not change signif-
icantly over a section of roadway. An approach proposed in
[20] follows this assumption when incident-induced delays
can be estimated by first establishing reference incident-free
travel profiles. Based on reference profiles, one can estimate
incident-induced delays more accurately. Another work [21]
estimates incident delay by deploying both incident duration
model and reduced capacity model into the deterministic
queuing model, thereby introducing incident-induced traffic
delays of stochastic nature into an otherwise deterministic
traffic. This same principle applies to calculating traffic delays
caused by precipitation where archived weather and traffic
data are used in traffic delay estimation [22]. Another good
example is the method proposed in [5] which estimates delay
based on speed measurements. However, the method in [5]
can only work offline and requires the knowledge of the
location of an accident. The aim of the method proposed in
this paper is similar to the aim in [5], but the main difference
is that our method is designed primarily to work online, that
is, to process real-time speed inputs in a streaming manner.

In our previous works, we have proposed algorithms to
detect and classify different types of traffic anomalies [8, 23],
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to transfer the detection capability to roadside sensors at a
different location [24], and recently to infer traffic transition
at locations where local traffic data is not available [25].
The algorithm proposed in this paper focuses on anomalies
that cause delay so it uses a different approach from our
previous works in [8, 23]. More importantly, the proposed
algorithm is a significant extension of our previous work in
[18] where the capabilities to detect anomalies at individual
sensors, to detect shockwaves, and to estimate traffic delay are
shown.

3. Research Framework

In this section, we present research framework including
definitions of certain terminologies that are essential for
developing the proposed algorithm in Section 4. Firstly, it is
important to define temporal and spatial extent of delay. Delay
is defined as an additional travel time experienced by vehicles
due to circumstances that impede the movement of traffic
[27]. Spatial extent refers to an area on the road segment
where the vehicles are expected to experience delay. Temporal
extent in this paper refers to short-term estimation; that is, it
indicates the delay vehicles are expected to experience in the
near future. Short-term is defined as a time period from a few
seconds to a few hours into the future [3]. For example, for
the expressway we analyzed in this paper, short-term refers
to the period of (0, 15] minutes.

Delay occurs after traffic condition changes from nor-
mal to disruptive condition [28]. Normal condition refers
to the scenario when incoming traffic flow is well below
the freeway segment capacity. Disruptive condition can be
associated with either recurring or nonrecurring congestion.
Recurring congestion refers to the scenario when traffic flow
exceeds freeway capacity (e.g., during morning rush hours on
weekdays). Nonrecurring congestion refers to the scenarios
where the capacity of the freeway segment is reduced by
unexpected events (e.g., accidents and disabled vehicles). An
anomaly in this paper refers to a deviation from expected
traffic patterns which can occur in recurring congestion (e.g.,
speed drops due to shockwave) [25] or precede nonrecurring
congestion (e.g., speed drops due to accidents and disabled
vehicles) [8].

Figure 1 shows how the proposed algorithm can be
deployed with roadside sensors [2] on a freeway segment. A
typical roadside sensors system shown in Figure 1 consists of
sensors placed consecutively on a freeway segment. In each
sensor, there are two main units. A sensor unit is responsible
for collecting traffic data using sensing technologies such
as magnetometers, radars, lasers, and video cameras [29].
A communication unit is tasked with sending traffic data
to a data collection module using wireless communication
technologies such as GPRS, 3G, or Bluetooth depending on
the sensors’ topology and which technologies are available
locally. Then, the collected traffic data are fed to the algorithm
module where they are processed by certain algorithms for
particular applications. The proposed algorithm in this paper
is deployed in the algorithm module where it detects anoma-
lies and estimates delay. The delay information provided
by the proposed algorithm can then be used for particular

applications including advanced traveler information systems
and advanced traffic management systems.

4. The Proposed Algorithm

In this section, the proposed algorithm is presented. First,
an overview is given in Section 4.1 on how each operation
of the proposed algorithm processes the input traffic data
and interacts with one another. Then, Section 4.2 explains
two important input parameters which are used to adjust
the proposed algorithm. Section 4.3 presents the anomaly
detection operation which is used to detect the occurrence
of delay. Finally, Section 4.4 describes how the proposed
algorithm estimates delay spatially and temporally.

4.1. Overview. As shown in Figure 2, the proposed algorithm
operates online in a streaming manner and uses temporal
samples of traffic data obtained from roadside sensors as
input. For a given time step n and an input time window
size L, each operation is performed with L samples of input
Viun = Wi V15 - - - » V111 from each roadside sensor,
where v, refers to the average speed of the vehicles that
pass through sensor m at time step . The proposed algorithm
consists of two main operations, namely, anomaly detection
(block II in Figure 2) and delay estimation (blocks III and
IV in Figure 2). The aim of anomaly detection is to detect
deviations from normal traffic patterns that cause traffic
delay. Once an anomaly is detected, the algorithm activates
delay estimation operation where the aim is to estimate an
additional travel time vehicles are expected to experience on
a given road segment.

4.2. Definitions of Input Time Window Size (L) and Prediction
Horizon (P). Before we describe further how the proposed
algorithm performs anomaly detection and delay estimation,
it is important to define time window size L and prediction
horizon P, which are two important input parameters as
shown in Figure 2. The input time window size L defines the
number of temporal samples of input (in unit of time) the
proposed algorithm can use to detect anomaly and estimate
delay. The prediction horizon P defines how long into the
future (also in unit of time) the vehicles would experience
the delay estimated by proposed algorithm. In other words,
when a delay of d is estimated by the algorithm at time #, the
freeway segment is expected the experience similar delay d
during the period [#, n+ P]. Even though it is well known that
increasing P would reduce estimation accuracy, this paper
assesses the degree of change of the estimation accuracy in
respect to changes in the values of P.

4.3. Anomaly Detection. The proposed algorithm is devel-
oped based on the assumption that traffic delay is caused
by anomalies so delay can be promptly identified by first
detecting anomalies. Based on our experiments as well as
the previous findings in [30], speed, flow, and occupancy are
suitable for identifying traffic anomalies so they are selected
as inputs. As real-world data may be incomplete, inconsistent,
and noisy, the first step is to perform data cleansing as
shown in block I in Figure 2. For the proposed algorithm, an
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FIGURE 1: How the proposed algorithm can be deployed with roadside sensors on a freeway segment. The proposed algorithm is the algorithm
module which uses traffic data collected from sensors to detect anomalies and estimate delay.

exponential moving average derived from DELOS smoothing
[31] is used to interpolate missing data and remove noise.
The exponential moving average is chosen particularly to give
more weights to the latest speed samples as they are more
associated with delay occurrence.

The anomaly detection operation is derived based on
the sliding window approach in [32] but modified to assess
each input time window individually whether it is associ-
ated with normal or anomalous traffic patterns. The pro-
posed algorithm uses pattern matching, where each real-
time input pattern consisting of L samples of traffic data
Viun (Vs V15 -+ > Vmnr+1] from roadside sensors.
The input V,, , is identified as normal or anomalous by
assessing its similarity with a set of basis patterns U, , =

(U s U1 - - - s Upn141] CONsisting of normal patterns Ufr\l]

and anomalous patterns U”. An anomaly is detected if the

input pattern V,  is more similar to U2 than to UY. In
practice, V,,,, and U,, , can be speed, flow, and occupancy
measured from both normal and anomalous conditions a

priori and stored in a database.

The main challenge for anomaly detection is that anoma-
lies can cause speed, flow, and occupancy patterns to behave
differently in time, space, and shape. For example, it is
observed that a disruption occurring between a pair of
upstream and downstream roadside sensors causes speed
to drop at the upstream sensor while remain constant at
a downstream sensor. On the other hand, the same disruption

may cause flow to drop at both upstream and downstream
sensors. Furthermore, the same disruption can cause the
speed patterns to drop within seconds under a scenario where
vehicles are moving at relatively high speeds. In contrast,
it may take place in several minutes in another scenario
depending on traffic flow and drivers’ behaviors. Also, the
shape of speed drop patterns may be linear (with different
slopes), exponential, logarithmic, or even sigmoid as found
in [24]. To address these challenges, Dynamic Time Warping
is used in the proposed algorithm.

Dynamic Time Warping (DTW) is a pattern similar-
ity measurement between time series proposed in [33] to
overcome limitations of traditional Euclidean distance by
introducing warping axis to adjust the error measurement.
Figure 3 shows distance measurement between two time
series patterns V and U using DTW. It can be seen in
Figure 3(a) that at first V and U do not appear to be similar
by using Euclidean distance measurement to compare points
at the same time. However, as shown in Figures 3(b) and
3(c), DTW offers a more flexible and efficient approach where
similarity between two time series patterns can be assessed
by comparing points at different times. This is equivalent to
“wrapping” the time series before comparing them.

In practice, the DTW would operate in an algorithm
module in Figure 1 to assess similarity between an input
pattern V measured by a roadside sensor and individual
basis pattern U. Given an input time window size L, a
computer programming language is used to implement DTW
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FIGURE 2: Overview of the proposed algorithm.

FIGURE 3: An example of distance measurements between two time series using Dynamic Time Warping [26]. (a) Euclidean distance
measurement between two time series. (b) DTW attempts to warp in time axis to find the correct measurement. (c) Distance measurement

using DTW.

by constructing a L-by-L matrix where the number of rows
and columns are equivalent to the length of V' and U,
respectively. Each matrix element (i, j) corresponds to the
alignment between points v; and u;. Then, a warping path
W = w,w,,...,wg; L < K < 2L -1 is constructed
as a set of matrix elements that defines a point mapping in
order to measure the distance between V and U. Similarity

between V and U can be calculated based on these warping
paths.

Based on DTW, the proposed algorithm is flexible enough
to cope with these pattern differences and subsequently
compare V and U more efficiently. If the input pattern V is
found to be similar to the basis pattern U associated with
anomalies, the proposed algorithm declares that an anomaly
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FIGURE 4: An illustration of how the proposed algorithm finds start, intermediate, and end sensors from speed patterns measured by roadside
sensors. Start sensor is the first downstream sensor that detects an anomaly. End sensor is the first upstream sensor that an anomaly is not
detected. Intermediate sensors are used to confirm that the congested area has extended upstream from start sensor to end sensor.

is detected and proceeds to delay estimation. We note that
anomalies can also be detected by multiple sensors which can
be used in the delay estimation operation.

4.4. Delay Estimation. Delay estimation operation consists
of two consecutive steps: (1) estimation of spatial extent
of anomalies [, » and (2) estimation of temporal extent d,,
as shown in blocks III and IV in Figure 2, respectively.
The spatial extent of delay I, p is the length of the road
segment that experiences anomalies, which can be estimated
by finding a set of consecutive sensors where anomalies are
detected in Section 4.3. As shown in Figure 4, the roadside
sensors considered to be in the disruption area consist of
the start sensor, the intermediate sensors, and the end sensor.
The start sensor is the first downstream sensor where an
anomaly is detected; that is, it is the location where delay is
originated. The intermediate sensors are the sensors located
consecutively upstream from the start sensor that also detects
anomalies; that is, they signify the continuous upstream
extension of anomalies. The end sensor is the first upstream
sensor where an anomaly is not detected; that is, this is
the location where the disruption ceases to exist and traffic
upstream from this location is still under normal condition.
Then, [, p is estimated as the distance between the start and
the end sensors.

The second step, temporal estimation of delay in block
IV in Figure 2, uses [, p as input to estimate delay vehicles
are expected to experience on the road segment. Using
the definition in [27], d,,, the estimated delay at time n, is
calculated as the estimated additional travel time that exceeds
the normal travel time as shown in (1), where 7, is the
estimated travel time and 7, 5 is the normal travel time
on the same road segment. The estimated travel time 7, p
is calculated by dividing I, p with the estimated mean of
speeds measured at the start, intermediate, and end sensors

Vn,P'

The normal travel time 7,  is calculated by dividing I, p
with the normal speed v, ;. We note that v, is calculated
as the mean of measured speeds in the previous time
window (size L) just before an anomaly is detected in the
current time window (also size L). Therefore, v,  reflects the
expected speed drivers on the freeway segment would have
experienced if an anomaly had not occurred.

d _ ) _ ln,P . _ ln,P
n = Tnp ~TyN>  Typ = > 'n,N —
Vn,P Vn,N

)

The estimated mean of speeds v, p can be calculated as
follows. Based on our previous study in [24] and further
analysis of real-world data over a 6-month period, it is
observed that the occurrences of delay are associated with five
anomalous speed drop patterns, namely, linear, exponential,
logarithmic, sigmoid, and unclassified. Furthermore, it is
possible to find empirical equations that best fit each of these
five speed drop patterns (e.g., an exponential equation that
best fits the exponential speed drop patterns) [24]. A kernel
function is used for the unclassified speed drop patterns.

For a given prediction horizon P and a total of M start,
intermediate, and end sensors, these empirical equations can
be used to temporally extrapolate speeds well into the future
for each roadside sensor m, that s, [v,,, .11, Vypi2s - - > Viunepl-
Then, v, p can be obtained by first averaging temporally
extrapolated speed samples v, , p and then averaging spa-
tially across all M sensors as follows:

M P
D=1 VmnP ) 2ict Vmnsi )

> Vm,n,P - P

YnP = T

In practice, delay estimation can be operated as follows.
Once delay has been detected, speed patterns measured by
each roadside sensor are measured and transmitted to the
algorithm module in Figure 1. Using Dynamic Time Warping,
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FIGURE 5: A sketch of expressway segment where real-world data was obtained.

these speed patterns are compared with the basis speed
patterns associated with anomalies U, which have been
collected and stored a priori, to find similarity. Once the
most similar basis speed drop pattern has been found, its
corresponding empirical equation is used to calculate the
estimated mean speed v, p as shown in (2), which is then
used to calculate 7, , and eventually to estimate delay d,, in
(1). Note that the calculation in (1) is for short-term delay
[3]. Extending (1) to estimate vehicle’s hour of delay or total
delay experienced by all delayed vehicles on the road segment
can be performed by adding traffic volume as a multiplication
factor to (1).

5. Performance Evaluations

In this section, performance evaluations are conducted using
real-world data. First, Section 5.1 presents two real-world
data sets used to assess the proposed algorithm. Then,
Section 5.2 describes an existing algorithm [17] which is
used as benchmark. In Section 5.3, performance evaluation
parameters are presented.

5.1. Descriptions of Real-World Data Sets

5.1.1. Real-World Data from Roadside Camera Sensors. The
proposed algorithm is assessed using real-world data col-
lected from a series of camera sensors installed on heavily
used inbound section of Chalerm-Maha-Nakhon Expressway
in Bangkok, Thailand. These sensors were part of a project
jointly initiated by the Expressway Authority of Thailand
(EXAT) and National Electronic and Computer Technology
Center (NECTEC) aiming at real-time traffic monitoring.
It consists of a series of eleven camera sensors installed
consecutively along the 11 km expressway. Figure 5 shows the
topology of the expressway and the locations of the camera
stations, where the distance between two consecutive camera
sensors ranges from 644 to 1977 meters. Each camera sensor
is capable of detecting individual vehicles that passed the
expressway segment and produced time series of traffic data
including speed, occupancy, and flow in I-minute intervals
[34]. Each camera sensor is connected to a local EXAT oper-
ation office via wireless cellular network technologies (e.g.,
GPRS and 3G), where operators can view real-time traffic
information and make decisions on traffic management.

A road segment within the full of view of a video camera
is used as a designated area to calculate traffic data input.
Speed is measured as a distance in a vehicle’s traverse in the

cars/min

FIGURE 6: An image of a traffic delay occurrence captured at the 4th
camera Sensor.

designated area divided by the time it takes. Flow is measured
as the rate of vehicles passing a designated area at a given time
interval. Occupancy is measured as a fraction of time that a
designated area is occupied by vehicles.

The data set used in this paper was collected from this
sensor network over a one year period from January 1 to
December 31, 2010. In this paper, we chose the 3rd, 4th, 5th,
and 6th sensors as the experimental sites. An example of traf-
fic congestion viewed by a camera sensor studied in this paper
is shown in Figure 6. For evaluation purposes, anomalies
and their associated delay that took place were independently
and manually logged by a team of transportation experts.
A total of 16 nonrecurring congestion cases were recorded
which are used to test the anomaly detection capability of
the proposed algorithm. Each record was associated with the
time instances prior to the disruption occurrence and after it
had ended. Besides these 16 cases, further investigation with
another team of experts also revealed additional 44 delay
cases. Therefore, a total of 60 delay cases are used to test the
estimation operation of the proposed algorithm.

We note that the traffic data input of the proposed
algorithm is typical data that most roadside sensors, for
example, loop detectors, already produce. Therefore, we
anticipate that if the sensors are to be replaced with other
types of sensors, the performance of the system should not
change significantly. This is worth further investigation for
large scale deployment.

5.1.2. NGSIM Data. To show the potential of being deployed
at a different location, the proposed algorithm is also assessed
using NGSIM data [19]. The selected data set was collected on
the southbound US Highway 101 in Los Angeles, California,



USA, at 07:50 am-08:35 am. This data set is selected because
it was collected during the buildup of congestion and consists
of shockwaves which can potentially induce additional delay.
It should be noted that the anomaly cases and the amount
of delay caused by them were not labeled in this data set,
so the full algorithm could not be deployed for this data
set. However, the potential of the algorithm could be shown
by shockwave detection. To assess the proposed algorithm,
four virtual sensors are placed approximately 0.1 km apart to
obtain traffic data to capture the occurrence of shockwaves
and their spatial extents. Similar to conventional fixed traffic
sensors (e.g., camera sensors and loop detectors), these
virtual sensors calculate traffic data based on traffic flow and
speed that pass the sensors’ locations. An input time window
size L of 5 minutes is used where time series of 30-second
average speeds obtained from upstream and downstream
virtual sensors are used as inputs. The occurrences of shock-
waves are observed and recorded by a team of transportation
researchers [25].

5.2. Benchmark Algorithm. To assess the capability of the
proposed algorithm in respect to existing approaches, a
benchmark algorithm is used [17]. This benchmark algorithm
is selected because it has a similar objective to the proposed
algorithm in detecting anomalies that cause delay. Also, this
algorithm has already been implemented in a real-world
anomaly detection system [17]. Furthermore, composed of
a forecasting component and a detection logic component,
it is designed to assess the difference between traffic data
observed at consecutive roadside sensors.

However, the main difference between the benchmark
algorithm and the proposed algorithm lies in the detection
logic. The benchmark algorithm is designed to detect sud-
den significant changes of traffic inputs from the forecast
component values by establishing threshold values (speed
and occupancy) to filter out gradual changes in traffic inputs
caused by recurring congestion, and an anomalous signal
will only be raised when the specified threshold values have
been exceeded. On the other hand, the proposed algorithm is
designed to detect both sudden and gradual changes which
enables it to detect different types of anomalies with fewer
false alarms. This difference will become more apparent
when both algorithms are assessed with real-world data in
Section 6.

5.3. Performance Evaluation Parameters. To numerically
evaluate the proposed algorithm, we use detection rate (DR),
false positive rate (FPR), mean time to detection (MTTD),
and mean absolute percentage error (MAPE) as shown in (3),
(4), (5), and (6), respectively. DR, FPR, and MTTD are used
to assess the anomaly detection operation of the proposed
algorithm. MAPE is used to assess the accuracy of delay
estimation of a total D recorded delay cases, where the error
of the estimation d,, ; of the jth recorded delay at time 7 is
normalized by the actual delay d;; j to minimize the possibility
of some estimated delay samples from dominating the others.

Number of delays detected
DR =

(3)

Total number of delays
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FPR

_ Number of detected delays that are false positives (4)

>

Total number of detected delays

MTTD
_ Sum of time taken to detect individual delays (5)
- Total number of detected delays
1 D Z i dn, j
MAPE = — L (6)

The performance parameters are applicable for data sets
that contain labels for traffic anomalies and the amount of
delay caused by the anomalies. Therefore, these parameters
will be evaluated for the real-world data collected in Thailand,
but, due to the lack of anomaly labels, could not be applied for
the NGSIM data set.

6. Results and Discussions

In this section, the proposed algorithm is assessed using
real-world data described in Section 5.1 and compared to
the benchmark algorithm described in Section 5.2. Both
algorithms are tested as if they operate online, where each
detection operation is performed per input time window L.

6.1. Assessment Using NGSIM Data. The proposed algorithm
is assessed on its capability to detect the the presence of
shockwaves, which refers to a phenomenon where vehicles
have to temporarily slow down below normal speed, and
subsequently force the vehicles behind to slow down further.
This phenomenon is known to create shockwave fronts or
moving speed drop areas that move backward disrupting
flow and annoying drivers behind [35]. The occurrence of
shockwaves during congestion not only causes additional
delay, but also increases chances of rear-end collisions.
Identifying shockwaves during congestion also presents a
challenge as it occurs temporarily and requires an algorithm
that is fast and sensitive enough to detect them [25]. The
occurrence of shockwaves represents unexpected events so
they are considered as anomalies in this paper.

Figure 7 shows that the proposed algorithm can detect
all four occurrences (Figure 7(a)) of shockwaves while
benchmark algorithm can detect only two (Figure 7(b)).
As shown in Figure 7(b), only abrupt changes in speed
difference (second and third occurrences) can be detected
by the benchmark algorithm. This algorithm is designed
to detect consecutive differences between upstream and
downstream traffic measurements so it operates well with
consecutive changes in speed difference that are significant
enough. On the other hand, benchmark algorithm misses the
first and fourth occurrences of shockwaves in Figure 7(b) as
they are associated with relatively more gradual changes of
speed difference. Unlike benchmark algorithm, the proposed
algorithm uses DTW to assess input patterns to detect delay
occurrences so it can detect all four occurrences associated
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FIGURE 7: Detecting delay occurrences associated with shockwaves in NGSIM data using (a) the proposed algorithm and (b) benchmark
algorithm [17]. Dashed vertical lines denote the time points where the algorithms detect delay occurrences. Red squares denote the duration

where the occurrences of shockwaves are observed.

with both abrupt and gradual speed changes as shown in
Figure 7(a).

Once the occurrences of shockwaves are detected, the
proposed algorithm proceeds to estimate delay as described
in Section 4.4. Using the spatial extent estimation described
in Section 4.4, out of four sensors, three sensors are usually
found to detect speed drops associated with shockwaves at a
time. Therefore, the most downstream sensor and the most
upstream sensor are selected as the start and end sensors,
respectively, and [,, p is found to be 0.48 km.

Table 1 shows the values of v, p, v, x> T, p> and 7,, 5, in (1)
for each of the four shockwave occurrences. For comparison
purposes, delay estimation is also applied for the second and
third occurrences that are detected by benchmark algorithm
(see Figure 7). Note that, since benchmark algorithm cannot
detect the first and fourth occurrences, estimation operation
is not activated during these times and normal speed and
travel times are used instead. We further note that all four
occurrences and their associated travel times and delays can
be calculated consecutively online by the proposed algorithm.

As shown in Table 1, the four occurrences of shockwaves
detected in Figure 7 are associated with travel times (7, p in
(1)) of 56.825s, 55.54 5, 60.98 s, and 53.79 s, respectively. The
proposed algorithm is able to detect all four occurrences and
these estimated travel times would all be included in the delay
calculation. On the other hand, if the benchmark algorithm
was used instead, only the second and third occurrences and
their associated travel times would be reported resulting in
less accurate delay calculation. We note that, even though the
difference between the delays obtained from the proposed
algorithm and benchmark algorithm in this example may
be small, significant improvement can be seen when higher
degree of disruptions are assessed.

The results shown in Table 1 have many applications
in advanced traveler information systems and advanced
traffic management systems. A direct application would be
to estimate travel time of the freeway segment and report it
to motorists. The ability to detect occurrences of shockwaves
can also be used in other applications such as calculating
shockwave propagation time [25]. It can also be used to warn

motorists to adjust intervehicle spacing to avoid rear-end
collisions.

6.2. Assessment Using Real-World Data Collected in Thailand.
This section assesses the capability of the proposed algorithm
and the benchmark algorithm [17] to detect the sixteen
recorded traffic anomalies in the real-world data set described
in Section 5.1. As inputs, both algorithms use speed, flow,
and occupancy collected by roadside sensors. The assessment
follows a k-fold cross-validation technique. The real-world
data set consists of 16 anomaly cases D;,D,,...,Dis so
evaluation is performed 16 times. At an iteration i, i =
1,2,...,16, the anomaly case D; is reserved as a test set, while
the other anomaly cases are collectively used to calibrate
the proposed algorithm and benchmark algorithm. That is,
in the first iteration, D,,..., D, collectively serve as the
training set, which is then tested with D,. Then, in the second
iteration, D,, D, ..., D, are used for training, while D, is
used for testing, and so on.

Table 2 shows that the proposed algorithm achieves
higher detection rate and lower false alarm rate than the
benchmark algorithm. Particularly, compared to benchmark
algorithm, the proposed algorithm improves the detection
rate and false positive rate by approximately 10% and 7%,
respectively. Figures 8 and 9 show examples of anomalies
detected by the proposed algorithm and found to cause
traffic delay. Based on the records, these anomalies are
associated with disabled vehicles parking over the shoulder
area.

It is found that, for the benchmark algorithm, miss-
detection usually occurs under low traffic flow. This algo-
rithm always needs data from at least two sensors and the
magnitude of traffic flow measured by the roadside sensors
is not large enough to trigger the benchmark algorithm.
While medium to heavy traffic flow triggers the benchmark
algorithm, it also increases false alarms. This algorithm is
designed to directly assess the difference between upstream
and downstream sensors of the roadside sensors, which
subsequently increases its sensitivity and triggers many false
alarms.
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TaBLE 1: Estimation results on NGSIM data using the proposed algorithm and benchmark algorithm, I, , = 0.48 km. Note that if the shockwave
is not detected, the estimated travel time 7, , would be equal to normal travel time 7, 5.

Ist 2nd 3rd 4th
Proposed algorithm
Shockwaves detected Yes Yes Yes Yes
Vpp (see (1)) 30.41km/h 31.12km/h 28.34 km/h 32.13km/h
7, p (see (1)) 56.82s 55.54s 60.98s 53.79s
d,=T,p—T,N 18.41s 18.93s 23.99s 5.41s
Benchmark algorithm [17]
Shockwaves detected No Yes Yes No
v,,p (see (1)) 44.99 km/h 3112km/h 28.34km/h 35.72km/h
7, p (see (1)) 38.41s 55.54s 60.98 s 48.38s
dy=Tpp—Ton 0.00s 18.93s 23.99s 0.00s
If all 4 shockwaves are not detected
v, (see (1) 44.99 km/h 4721km/h 46.71km/h 35.72km/h
7, ~ (see (1)) 38.41s 36.60s 37.00s 48.38s

TABLE 2: Results on anomaly detection using data set collected in
Thailand.

Performance Proposed Benchmark
parameters algorithm algorithm [17]
DR (%) 94 83

FPR (%) 5 12
MTTD (seconds) 340 140

FIGURE 8: An anomaly detected at the 4th camera sensor.

Unlike the benchmark algorithm, the proposed algorithm
uses DTW to assess traffic data from each sensor individually.
This enables the proposed algorithm to recognize patterns
associated with anomalies more effectively, including under
low traffic flow. The use of DTW also reduces a number
of false alarms as it ensures that unrecognized patterns
will not trigger detection at individual sensors. In respect
to mean time to detection (MTTD), it takes longer for
the proposed algorithm to detect anomalies compared to
benchmark algorithm as it needs to wait till enough temporal
samples of traffic data have been collected in each sensor
before the detection operation can be triggered. However,
the mean time to detection is still less than 6 minutes which

FIGURE 9: Another anomaly detected at the 4th camera sensor.

should give enough time for traffic operators to response [8].
To reduce mean time to detection of the proposed algorithm,
shorter time samples of traffic data can be used. Reducing
MTTD while maintaining acceptable levels of DR and FPR
is worth further investigation.

To deploy the proposed algorithm, computation time
of the algorithm could be an added delay to the MTTD.
Even though the computation time was not systematically
measured for the performance evaluation, the computation
time was in order of seconds. For the computer’s specification
that we use, which was a personal laptop with 2.5 GHz CPU
and 4 GB of RAM, the computation time was approximately
[1,3) seconds. As the computing time (a few seconds) was
much smaller than the mean time to detection (up to 6
minutes), it is reasonable to consider the computing time
negligible.

This section further discusses the results when the pro-
posed algorithm was applied to estimate 60 delay cases
described in Section 5.1, using different input time window
sizes (L) and prediction horizons (P). For practical purposes,
it is important to select suitable input time window size
and prediction horizon to enable the proposed method to
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perform effectively. Even though the 15-minute interval is
often recommended [9] to avoid strong fluctuation, using
lower input time window sizes can provide more fine-grained
information for practitioners [25]. Therefore, in this paper,
we use L = 3, 5, and 10 minutes for input time window
size. For prediction horizons, we use P = 5, 10, and 15
minutes as this paper is focused on short-term estimation
(less than 15 minutes). Also, changes in traffic condition on
this experimental site are normally found to occur in less than
15 minutes.

The proposed algorithm is assessed on its capability to
estimate delay using MAPE. Figure 10 shows MAPE from
estimating 60 delay cases in the real-world data set with
different input time window sizes (L) and prediction horizons
(P). These results show that the estimation part of the
proposed algorithm can achieve MAPE lower than 0.1 for
this set of real-world data. This accuracy is achieved because
the estimation part consists of both spatial and temporal
estimations which enable the proposed algorithm to first
estimate the area disrupted by anomalies and then estimate
the delay itself. Furthermore, it can be seen that increasing
input time window size (L) reduces MAPE as using more
input samples enhances estimation accuracy. For the impact
of prediction horizons (P), MAPE tends to increase with
larger prediction horizons as it is more difficult to estimate
delays farther ahead into the future. However, as shown
in Figure 10, when P is increased, MAPE in fact increases
at a much smaller rate when larger values of L are used.
Therefore, it is recommended for practitioners that if the
objective is to estimate delays far ahead into the future (using
large prediction horizons), larger input time window size is
needed.

1

Based on the findings in this section, it is important
that practitioners select a suitable input time window size
according to their practical objectives. If the objective is to
provide prompt delay information, small input time window
size should be used. On the other hand, if the objective is to
provide accurately estimated delays for traffic management
purposes, larger input time window sizes should be chosen.
Furthermore, based on the proposed algorithm, a more
complex and flexible system can also be further developed.
For example, a stepwise approach can be implemented on top
of the proposed algorithm where a small input time window
size is used as a trigger to promptly discover the occurrence
of traffic delay. Then, in the next step, the input time window
size can be increased to collect more traffic data to achieve
more accurate detection and estimation of traffic delay.

For anomalies with large scale effect beyond the 11km
experimental site, we anticipate that the proposed algo-
rithm should be able to detect those anomalies if they
occur downstream and cause changes in traffic patterns to
propagate upstream into the 11km segment. To accurately
estimate delay, basis patterns associated with such large scale
anomalies need to be incorporated to distinguish them. Then,
an extrapolation technique needs to be incorporated to enable
the proposed algorithm to estimate delay beyond the 11km
expressway segment where local traffic information cannot
be directly observed [25]. This is worth further investigation.

7. Conclusions and Future Work

This paper proposes an algorithm to detect anomalies and
estimate delay using traffic data from roadside sensors. The
proposed algorithm uses traffic data from individual sensors
to detect anomalies and then uses data from consecutive
downstream and upstream sensors together to spatially and
temporally estimate delay. Performance evaluations using
real-world data show that the proposed algorithm achieves
higher detection rate and lower false positive rate when used
to detect anomalies compared to an existing benchmark
algorithm. An investigation with NGSIM data also shows that
the proposed algorithm is also able to detect the presence of
shockwaves and, subsequently, estimate delay more efficiently
than benchmark algorithm. Further results show that the
estimation error increases at a much smaller rate when
suitable input time window size and prediction horizon are
selected.

There are interesting aspects that are worth further
investigation. One interesting aspect is to reduce the pro-
cessing time while maintaining low detection and estima-
tion errors. A possible approach is to introduce a feature
extraction method that can extract hidden patterns when
smaller input time window sizes are used [8]. Alternative
approaches include studying a set of hidden representative
traffic flow features in advance by pretraining a deep-learning
model [36] and populating traffic features into a genetic
algorithm learning method to reduce dimensionality [37].
Another interesting aspect is to improve inference capability
by incorporating a spatial inference method to estimate traffic
data itself at the locations where they cannot be directly
measured [25]. Also, it would be practically interesting to
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assess the proposed algorithm with different road types and
geometries.

In addition to improvements of the algorithm, an interest-
ing aspect to investigate is the applications of the algorithm.
The solution provided in this paper is designed to be a
streaming algorithm which can be run online; therefore,
it can be naturally extended to use in various real-time
applications. For example, the detected anomaly and esti-
mated additional travel time would be useful for both traffic
operators and travelers, if the information is delivered in
a timely and convenient manner. Active communication
between roadside sensors and vehicle-to-infrastructure (V2I)
could be used to promptly transmit the information from our
solution to nearby roadside message boards to display the
information to the drivers on the roads or vehicles with V2I
communication to adapt routing and navigation.
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