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This work reported a fluorescence sensing platform for Sunset Yellow (SY) determination based on competitive host-guest
interaction between cucurbit[7]uril (CB7) and signal probe/target molecules. Luteolin/epigallocatechin gallate (EGCG) and SY
were selected as the probe and target molecules, respectively. When luteolin or EGCG entered the CB7 host, its fluorescence
significantly improved. However, upon the presence of SY in the performed luteolin⋅CB7 or EGCG⋅CB7 complex, this led to a
remarkable decrease in fluorescence.This result was due to the fact that the binding constant of CB7/SY (4.9×104M−1) was greater
than that of CB7/luteolin (3.2×103M−1) or CB7/EGCG (4.8×103M−1).The fluorescence intensities of CB7/luteolin andCB7/EGCG
complexes decreased linearly with increased SY concentration ranges of 0.5–50.0 and 2.0–50.0𝜇M. The proposed method had
detection limits of 0.12 and 0.45 𝜇M and was successfully used to determine SY samples with good recoveries ranging from 96.3%
to 103.8%. This competitive mode provided a promising fluorescence assay strategy for potential applications in food safety.

1. Introduction

Synthetic colorants, a very important class of food additives,
have been used to replace natural ones formany years because
of their remarkable advantages. However, synthetic colorants
must be controlled strictly by the laws because of their
potential risks to human health caused by the presence of
azo groups (−N=N−) and aromatic ring structures [1]. Sunset
Yellow (SY) is a widely used synthetic colorant, which not
only can improve the appearance and texture of foods but can
also maintain their natural color during process and storage
[2]. However, excess intake of SY can cause many adverse
health effects, such as allergies, migraines, eczema, anxiety,
and childhood hyperactivity, if excessively consumed [1].
Therefore, the use of SY in food products is strictly controlled.
In China, the allowable maximum limit of SY addition in
soft drinks is 0.1 g/kg (GB2760-2011). Therefore, convenient,
rapid, and reliable methods for the determination of SY is
extremely required for the assurance of food safety. Until
now, various methods such as high performance liquid chro-
matography (HPLC) [3], HPLC-mass spectrum (HPLC-MS)
[4], capillary electrophoresis [5], and chromatography [6]

have been developed for the determination of SY. However,
these methods are time-consuming because complicated
sample preparation procedures are needed and generally
require expensive instrumentation obligatorily. Therefore,
developing a simple and convenient approach for the deter-
mination of SY is highly desirable [3].

The concept of indicator-displacement assay (IDA) has
attracted considerable attention with the development of
host-guest chemistry, which exploits the potential of artifi-
cial receptors, particularly macrocyclic hosts, because of its
promising applications in molecular recognition and sensing
[7]. IDA has become a popular approach for electrochem-
ical/optical sensing by utilizing noncovalent interactions
between a receptor (the host), indicator (the guest), and an
analyte (the competitive guest) [1]. The sensing principle of
IDA relies on the competition between a test substance and
an indicator for the same binding site on the host [8–10].
When an analyte is added to a solution containing a host-
indicator complex, the analyte displaces the indicator from
the binding site. Upon displacement of the indicator, a change
in signal is observed [2]. Cucurbit[𝑛]urils (CB[𝑛]s), along
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Figure 1: Indicator-displacement assay towards SY using CB7⋅luteolin or CB7⋅EGCG as the “reporter pair.”

with crown ethers, cyclodextrins, and calixarenes, are the
fourth-generation macrocyclic hosts that have played crucial
roles in supramolecular chemistry in recent decades [11–15].
CB[𝑛] are highly symmetrical macrocyclic hosts composed
of glycoluril units linked through methylene bridges, and
they possess highly polar carbonyl portalswith a hydrophobic
cavity [16]. The popularity of CB[𝑛] is ascribed to their
novel properties in the formation of inclusion complexes
with various guest molecules with high selectivity and high
binding constant in aqueous solution [17–21]. In recent years,
fluorescence enhancement approach with IDA principle
based on CB[𝑛] host-guest complexation has been used
extensively for the determination of pesticides [22, 23], drugs
[24], and other compounds [25]. This method, by converting
CB[𝑛]-indicator complexes into optical sensors, has attracted
widespread attention because of their simplicity, rapidity,
sensitivity, and selectivity.

In the present work, a facile fluorescent approach for
SY sensing based on a competitive host-guest recogni-
tion between CB7 and signal probe/target molecules was
developed by selecting luteolin and epigallocatechin gallate
(EGCG) as signal probes. Luteolin and EGCG are two
very weakly fluorescent molecules that can form inclusion
complexes with CB7 to greatly enhance their fluorescence
emission. The design principle of the developed fluorescent
sensing platform for SY sensing is shown in Figure 1.
Luteolin/EGCG and SY were selected as the probe and target
molecules, respectively. When luteolin or EGCG entered into
the CB7 host, its fluorescence enhanced significantly. How-
ever, upon the presence of SY to the formed luteolin⋅CB7 or
EGCG⋅CB7 complex, the luteolin or EGCG probe molecules
were displaced by SY from the host of CB7, leading to a
“switch-off” fluorescence response.

2. Materials and Methods

2.1. Chemicals and Materials. SY, luteolin, and EGCG were
purchased from Shanghai Adamas Reagent Co., Ltd. (Shang-
hai, China). CB7was obtained from theNational Engineering
and Research Center for Colloid Material in Shandong
University. All other reagents were of analytical grade, and all
aqueous solutions were prepared with deionized water (DW,
18MΩ cm).

2.2. Instrument. Fluorescence titration experiments were
performed by a fluorescence spectrophotometer (Hitachi F-
4500, Tokyo, Japan) at room temperature.

2.3. Stoichiometry Determination. The stoichiometry of the
host-guest complexes was measured using the continuous
variation of Job’s method by fluorescence spectroscopy
according to a previous work [31].The total molar concentra-
tion of the guest and host aqueous mixture was kept constant
at 40 𝜇M. The fluorescence was recorded at different molar
ratios ranging from 0 to 1.

2.4. Fluorescence Titration Experiments. Fluorescence titra-
tion experiment was performed according to a previously
reported work with minor modification [31]. The luteolin or
EGCG stock solution was diluted to a final concentration of
20𝜇M. CB7 was then gradually added to the guest molecule
solution and mixed by vortexing well before the fluorescence
was recorded.Then, the required amount of SY was gradually
added to themixture of host-guest complex.The fluorescence
was recorded after being mixed well by vortexing.

2.5. Molecular Docking. The crystal structure of host mole-
cule CB7 (number 1513097) was obtained using the Crystal-
lographyOpenDatabase.The 3D structures of host (CB7) and
guest (SY) were constructed by the UCSF Chimera software.
The structures of the host and guest molecules were fully
optimized using a UCSF Chimera software. The Dock Prep
module was used to add hydrogen atoms. For the molecular
docking study, the molecular surface of the CB7 molecule
was generated using the DMS tool with a probe radius of
1.4 Å. The sphgen module was applied to generate spheres
surrounding the binding site. The Grid file was generated
by using Grid module of DOCK6. The flexible docking
methodwas utilized producing 1000 different conformational
orientations for the guest molecule. Finally, to retain the best
results, clustering analysis with root-mean-square deviation
threshold of 2.0 Å was carried out.

2.6. Sample Preparation and Analysis. For real sample anal-
ysis, three soft drinks (Xianchengduo, Mangguoduo, and
Fenda), which were bought from the local supermarket were
chosen in the experiment. A stock solution of SY (500𝜇M)
was prepared in DW and diluted to different concentrations
by DW for further use. The three soft drink samples were
filtered through 0.45𝜇m membrane filter, diluted fifty times
with DW, and mixed with known amount of SY; this solution
was used to detect SY according to the procedure described
above.
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Figure 2: Job’s continuous variation plot of the CB7/SY (a), CB7/luteolin (b), and CB7/EGCG (c) complexes.

3. Results and Discussion

3.1. Stoichiometries of CB7/SY, CB7/Luteolin, and CB7/EGCG.
Thestoichiometry for the inclusion complexation ofCB7with
SY was determined using Job’s experiments by fluorescence
spectroscopy. As shown in Figure 2(a), the plot maximum
point appears at a CB7 molar fraction of 0.5, which obviously
indicates that a 1 : 1 inclusion complex was formed between
CB7 and SY. A similar result was obtained in the case of the
inclusion complex of CB7/luteolin and CB7/EGCG (Figures
2(b) and 2(c)).

3.2. Fluorescence Titration. The fluorescence spectra of lute-
olin and EGCG in the presence of various concentrations of
CB7 were investigated. Figure 3(a) shows the fluorescence
titrations of luteolin (20𝜇M, 𝜆ex = 285 nm) upon successive
addition of CB7 (up to 50 𝜇M) in aqueous solution.The fluo-
rescence intensity of luteolin enhanced significantly upon the
complexation with CB7. This finding can be attributed to the
inclusion of luteolin into CB7 and the change in its structure
or conformation to produce the fluorescent complex. The
fluorescence titrations of EGCG (20 𝜇M, 𝜆ex = 260 nm) were
also obtained (Figure 3(c)). The addition of CB7 also caused
a remarkable enhancement of the fluorescence intensity of
EGCG. Herein, a slight hypsochromic shift was observed in

the inclusion process of CB7/luteolin and CB7/EGCG. This
blue shift suggested that luteolin and EGCG were located in
a more hydrophobic environment. The results demonstrated
that the luteolin and EGCG molecules were inserted into
the hydrophobic cavity of CB7, and resulting hydrophobic
interaction led to the hypsochromic shift and the fluorescence
enhancement. Interestingly, the addition of SY to the CB7
and luteolin mixture led to a successive reversion of the
fluorescence changes originally caused by the addition of
CB7 (Figure 3(b)) and SY to the CB7/EGCG complex, which
reverted the fluorescence of EGCG (Figure 3(d)).This finding
was attributed to the displacement of luteolin or EGCG by SY
from the CB7 host.

3.3. Mechanism of Competitive Host-Guest Interaction. To
clarify the mechanism of the competitive host-guest inter-
action, the plots of fluorescence intensity of 20𝜇M luteolin
(Figure 4(a)) and 20𝜇M EGCG (Figure 4(c)) versus CB7
concentration and the double reciprocal plots of 1/(𝐹

0
−

𝐹) versus 1/[CB7] for luteolin (Figure 4(b)) and EGCG
(Figure 4(d)) to CB7 were obtained, indicating the existence
of the 1 : 1 complex. From the plots the binding constants
(𝐾) for the 1 : 1 luteolin/CB7 and EGCG/CB7 complexes were
calculated to be 3.2 × 103 and 4.8 × 103 M−1, respectively.
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Figure 3: Fluorescence titrations of luteolin ((a) 20 𝜇M, 𝜆ex = 285 nm) and EGCG ((c) 20 𝜇M, 𝜆ex = 260 nm) upon successive addition of CB7
(up to 50 𝜇M) in aqueous solution. Fluorescence titration for the competitive displacement of luteolin ((b) 20𝜇M) and EGCG ((d) 20 𝜇M)
from CB7 (50𝜇M) by SY (up to 50 𝜇M) in aqueous solution. The combined solution was mixed by vortexing well for 5min and then tested.
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Figure 4: Fluorescence intensity of 20 𝜇M luteolin (a), 20 𝜇MEGCG (c), and 20 𝜇M SY (e) versus CB7 concentration and plots of 1/(𝐹
0
− 𝐹)

versus 1/[CB7] for luteolin (b), EGCG (d), and SY (f) (𝜆ex = 285 used for luteolin; 𝜆ex = 260 nm used for EGCG; 𝜆ex = 282 nm used for SY).

The plot of fluorescence intensity of 20𝜇M SY (Figure 4(e))
versus CB7 concentration and the double reciprocal plot
of 1/(𝐹

0
− 𝐹) versus 1/[CB7] for SY (Figure 4(f)) to CB7

were also obtained. The binding constant for the 1 : 1 SY/CB7
complex was calculated to be 4.9 × 104 M−1. The 𝐾 value
of SY/CB7 complex was more than 10 times higher than
that of luteolin/CB7 or EGCG/CB7, which demonstrated the

stronger binding of SY with CB7 than that with luteolin or
EGCG.

3.4. Molecular Docking. Molecular docking was performed
to study the CB7/SY inclusion complex in order to gain
an insight into the binding mode. The binding model of
CB7/SY was simulated using the DOCK6 program. Initially,
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(a) (b)

Figure 5: The typical conformation of the CB7/SY complex by molecular docking ((a) is the top view; (b) is the side view).

Table 1: Molecular docking scores for CB7/SY inclusion complex.

Complex Pose Grid score (kcal⋅mol−1) Grid vdw (kcal⋅mol−1) Grid es (kcal⋅mol−1) Int en (kcal⋅mol−1)

CB7/SY
1 −43.1004 −47.0535 3.9531 5.5096
2 −42.9977 −47.1133 4.1156 14.5849
3 −39.7064 −46.9512 7.2448 4.2503

vdw: van der Waals force; es: electrostatic force; Int en: intramolecular energy.

the docking scores of CB7/SY were obtained and provided
in Table 1. Generally, a more negative binding energy means
a stronger host-guest interaction. As shown in Figure 5,
the lowest energy docked conformation for 1 : 1 complex of
CB7/SY was obtained, which indicated that the naphthol part
of the SY molecule was inserted into the cavity of the CB7
host molecule, while the benzene sulfonic acid group of the
SY molecule was located at the outside of the CB7 host.
The very high van der Waals contribution (approximately
−47 kcal⋅mol−1) indicated that strong hydrophobic interac-
tions formed between the SY and the CB7 molecule.

3.5. Analytical Performance. On account of the competitive
host-guest interaction, the proposed fluorescence method
was used for quantitative detection of SY. As shown in Fig-
ure 6(a), with increasing SY concentration, the fluorescence
intensities of CB7⋅luteolin linearly decreased at the ranges of
0.5–10.0 𝜇M and 10.0–50.0𝜇M. The linear regression equa-
tions wereΔ𝐹/𝐹

0
= 0.203C (𝜇M) + 0.010 andΔ𝐹/𝐹

0
= 0.054C

(𝜇M) + 0.025 with correlation coefficients of 0.998 and
0.994, respectively. The detection limit was 0.12 𝜇M at 3𝜎. As
shown in Figure 6(b), with increasing SY concentration, the
fluorescence intensities of CB7⋅EGCG also linearly decreased
at ranges of 2.0–30.0 and 30.0–50.0 𝜇M.The linear regression
equations were Δ𝐹/𝐹

0
= 0.320C (𝜇M) + 0.007 and Δ𝐹/𝐹

0
=

0.016C (𝜇M)+ 0.018 with correlation coefficients of 0.998 and
0.996, respectively, and a detection limit of 0.45 𝜇Mat 3𝜎.The
proposed method had higher sensitivity and relatively lower
detection limit among other methods used for the detection
of SY, as shown in Table 2.

3.6. Selectivity and Analytical Application. The selectivity of
the proposed method was studied with the same concen-
tration of other colorants including Tartrazine, New Coc-
cine, Amaranth, Allura Red, and Brilliant Blue. Common
molecules such as glucose, sucrose, MgCl

2
, NaCl, and KCl

were also tested at interference concentrations 20-fold that of
the colorants.The changes in the fluorescence ratio (𝐹

0
−𝐹)/𝐹

0

of the CB7⋅luteolin complex upon addition of a particular
competitive binding analyte were displayed in Figure 6(c).
Upon interaction with the competitive binding analytes, the
fluorescence of the CB7⋅luteolin complexwas increased selec-
tively by addition of SY, while addition of other competitive
binding analytes caused nonsignificant fluorescence changes.
The proposed method was applied to the determination of
SY using standard addition methods in three soft drinks
(Xianchengduo, Mangguoduo, and Fenda). The results for
the determination of SY in these samples with the proposed
fluorescent method are listed in Table 3. The recoveries were
in the range of 96.25%–103.83% and RSDs were in the range
of 2.5%–4.2%. As can be seen, the precision and accuracy of
the proposed method were satisfactory, indicating that this
method can be extended for SY detection in soft drinks and
food samples.

4. Conclusions

This work established a convenient method for SY deter-
mination based on the competitive host-guest interaction
between CB7 and probe/target molecule. The formation of
CB7/luteolin and CB7/EGCG complexes greatly enhanced
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Figure 6: Calibration curves of fluorescence intensity of CB7⋅luteolin (a) and CB7⋅EGCG (b) versus SY concentration. (c) Relative
fluorescence intensity is calculated by (𝐹

0
− 𝐹)/𝐹

0
, where 𝐹

0
and 𝐹 are the fluorescence intensity without and with the presence of SY

(10𝜇M), Tartrazine (10 𝜇M), NewCoccine (10 𝜇M), Amaranth (10𝜇M), Allura Red (10 𝜇M), Brilliant Blue (10 𝜇M), glucose (200𝜇M), sucrose
(200 𝜇M), MgCl

2
(200𝜇M), NaCl (200 𝜇M), and KCl (200 𝜇M), respectively.

Table 2: Comparison of some methods used for determination of SY.

Methods Probe Linear range (𝜇M) Detection limit (𝜇M) Ref.
DPV — 0.1–15 0.07 [26]
DPV — 0.40–14 0.04 [27]
DPV — 1–271 0.8 [28]
DPV — 0.4–110 0.1 [29]
DPV — 1–50 0.8 [30]
Fluorescence Luteolin 0.5–50.0 0.12 This work
Fluorescence EGCG 2.0–50.0 0.45 This work

the fluorescence emission of luteolin and EGCG. However,
the presence of SY in the formed CB7/luteolin or CB7/EGCG
complex enabled the replacement of luteolin or EGCG in
the CB7 by SY because CB7/SY complex possessed a higher
binding constant than CB7/luteolin or CB7/EGCG complex,
leading to a “switch-off” fluorescence emission response. On

account of the IDA principle, this fluorescencemethod for SY
determination showed high sensitivity and good selectivity.
The method was successfully used to analyze SY in the soft
drinks. The CB7/SY inclusion complex was further studied
by molecular modeling calculations, and results indicated
that the naphthol part of the SY molecule was included into
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Table 3: Determination of SY in soft drink samples (𝑛 = 6).

Sample Added (𝜇M) Founded (𝜇M) RSD (%) Recovery (%)

Xianchengduo
0 3.72 3.8 —
2 5.51 3.1 96.33
6 9.91 2.8 101.95

Mangguoduo
0 2.35 3.9 —
2 4.48 4.2 102.98
6 8.67 3.6 103.83

Fenda
0 2.53 3.9 —
2 4.36 2.5 96.25
6 8.43 4.1 98.83

the CB7 cavity. Binding-mode analysis demonstrated that the
hydrophobic interaction contributed to the formation of the
inclusion complex.
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