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The following article presents recent results of controllability problemof dynamical systems in infinite-dimensional space.Generally
speaking, we describe selected controllability problems of fractional order systems, including approximate controllability of
fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces, controllability of nonlinear
neutral fractional impulsive differential inclusions in Banach space, controllability for a class of fractional neutral integrodifferential
equations with unbounded delay, controllability of neutral fractional functional equations with impulses and infinite delay, and
controllability for a class of fractional order neutral evolution control systems.

1. Introduction

Controllability plays a very important role in various areas
of engineering and science. In particular in control systems
many fundamental problems of control theory, such as
optimal control, stabilizability, or pole placement can be
solved with assumption that the system is controllable [1, 2].
Controllability in general means that there exists a control
function which steers the solution of the system from its
initial state to a final state using a set of admissible controls,
where the initial and final states may vary over the entire
space. A standard approach is to transform the controllability
problem into a fixed point problem for an appropriate
operator in a functional space.There aremany papers devoted
to the controllability problem, in which authors used the
theory of fractional calculus [3–13] and a fixed point approach
[14–23].

The subject of fractional calculus and its applications has
gained a lot of importance during the past four decades. This
was mainly because it has become a powerful tool in mod-
eling several complex phenomena in numerous seemingly
diverse and widespread fields such as engineering, chemistry,
mechanics, aerodynamics, and physics [24–32].

For infinite-dimensional systems two basic concepts
of controllability can be distinguished: approximate and
exact controllability, as in infinite-dimensional spaces there

exist linear subspaces which are not closed. Approximate
controllability enables steering the system to an arbitrarily
small neighbourhood of final state. The second one, that is,
exact controllability, means that system can be steered to
arbitrary final state. From these definitions it is obvious that
approximate controllability is essentially weaker notion than
exact controllability. In the case of finite-dimensional systems
notions of approximate and exact controllability coincide.

Many control systems arising from realistic models can
be described as partial fractional differential or integrodif-
ferential inclusions [33–36]. In [37] authors present a new
approach to obtain the existence of mild solutions and
controllability results. For this purpose they avoid hypotheses
of compactness on the semigroup generated by the linear
part and any conditions on the multivalued nonlinearity
expressed in terms of measures of noncompactness. Author
of [38] focuses on fractional evolution equations and inclu-
sions. Moreover author presents their applications to control
theory. The existence of solutions for fractional semilinear
differential or integrodifferential equations has been studied
by many authors [39–43].

The impulsive differential systems can be used to model
processes which are subject to sudden changes and which
cannot be described by classical differential systems [44].The
controllability problem for impulsive differential and inte-
grodifferential systems in Banach spaces has been discussed
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in [45]. Papers [46, 47] are devoted to the controllability of
fractional evolution systems. The problem of controllability
and optimal controls for functional differential systems has
been extensively studied in many papers [48–50].

1.1. Motivation. Controllability is one of the properties of
dynamical systems that is continuously studied by control
theory scientists. In case of infinite-dimensional systems
there aremany articles tackling this problem, in particular for
approximate controllability, exact controllability, and relative
controllability. This field can be divided based on the nature
of controllability, but also on the basis of main equations
describing a systemof interest aswell as the space inwhich the
mathematical model is described. Additionally researchers
frequently use different fixed point theorems for finding
controllability conditions. That introduces high intricacy of
problems which one can encounter during an analysis of
a particular problem. The main purpose of this work is to
perform a survey on the main types of equations describing
dynamical systems based on a definition of a fractional order
derivative. Additionally, as a result this work performs a
systematization of knowledge in the field of controllability
fractional systems, which by itself becomes amajor discipline
in the realm of control theory. This work shows schematics
present in the analysis of controllability problems as well as
points out which fixed point theorems are particularly useful.

2. Basic Notations

Let us introduce the following necessary notations.

(i) (𝑋, ‖ ⋅ ‖) is a Banach space.
(ii) (𝐻, ‖ ⋅ ‖) is a Hilbert space.
(iii) 𝐽 is a bounded and closed interval.
(iv) 𝑥 : 𝐽 → 𝐻 is a measurable function and Bochner

integrable [51].
(v) 𝐶(𝐽,𝐻) is the Hilbert space of all continuous func-

tions from 𝐽 into 𝐻 with the norm ‖𝑥‖∞ =
sup{‖𝑥(𝑡)‖ : 𝑡 ∈ 𝐽}.

(vi) 𝐿(𝐻) denotes the Hilbert space of bounded linear
operators from𝐻 to𝐻.

(vii) 𝑈 is a Hilbert space.
(viii) 𝐿1(𝐽,𝐻) denotes the Hilbert space of measurable

functions 𝑥 : 𝐽 → 𝐻 which are Bochner integrable
normed by ‖𝑥‖𝐿1 = ∫

𝐽
‖𝑥(𝑡)‖𝑑𝑡 for all 𝑥 ∈ 𝐿1(𝐽,𝐻).

(ix) 𝐿2(𝐽, 𝑈) is a space of all stronglymeasurable functions𝑢 : 𝐽 → 𝑈.
(x) 𝐵𝑟(𝑥,𝐻) is the closed ball with centre at 𝑥 and radius𝑟 > 0 in𝐻.
(xi) P(𝐻) denotes the class of all nonempty subsets of𝐻.
(xii) P𝑏𝑑,𝑐𝑙(𝐻), P𝑐𝑝,𝑐V(𝐻), P𝑏𝑑,𝑐𝑙,𝑐V(𝐻), and P𝑐𝑑(𝐻)

denote, respectively, the families of all nonempty
bounded-closed, compact-convex, bounded-closed-
convex, and compact-acyclic [52] subsets of𝐻.

(xiii) 𝐹 is completely continuous.

(xiv) 𝐺 : 𝐽 → P𝑏𝑑,𝑐𝑙,𝑐V(𝐻) is measurable multivalued map.
(xv) 𝑡 󳨃→ 𝐷(𝑥, 𝐺(𝑡)) is a measurable function on 𝐽.
(xvi) 𝐵 is a bounded linear operator from 𝑈 to𝐻.
(xvii) 𝑀𝐵 = |𝐵|.
(xviii) If 𝑇 is a uniformly bounded and analytic semigroup

with infinitesimal generator 𝐴 such that 0 ∈ 𝜌(𝐴)
then it is possible to define the fractional power(−𝐴)𝛼, for 0 < 𝛼 ⩽ 1, as a closed linear operator
on its domain 𝐷((−𝐴)𝛼). Furthermore, the subspace𝐷((−𝐴)𝛼) is dense in𝑋 and the expression

‖𝑥‖𝛼 fl 󵄩󵄩󵄩󵄩(−𝐴)𝛼 𝑥󵄩󵄩󵄩󵄩 , 𝑥 ∈ 𝐷 ((−𝐴)𝛼) (1)

defines a norm on 𝐷((−𝐴)𝛼). Hereafter we represent
by 𝑋𝛼 the space 𝐷((−𝐴)𝛼) endowed with the norm‖ ⋅ ‖𝛼.

(xix) 𝑀 is constant number such that |𝑇(𝑡)| ⩽ 𝑀.
(xx) 𝑐𝐷𝛼

𝑡 𝜉(𝑡) = ∫𝑡
0
𝑔𝑛−𝛼(𝑡 − 𝑠) represents the Caputo

derivative of order 𝛼 > 0 defined by

𝑐𝐷𝛼
𝑡 𝜉 (𝑡) = ∫𝑡

0
𝑔𝑛−𝛼 (𝑡 − 𝑠) 𝑑𝑛𝑑𝑠𝑛 𝜉 (𝑡 − 𝑠) 𝑑𝑠, (2)

where 𝑛 is the smallest integer greater than or equal
to 𝛼, Γ(⋅) is the gamma function, and 𝑔𝛽(𝑡) fl
𝑡𝛽−1/Γ(𝛽), 𝑡 > 0, 𝛽 ≥ 0.

(xxi) R𝛼(𝑡) and 𝑆𝛼(𝑡) are the operator families defined by

R𝛼 (𝑡) fl {{{
12𝜋𝑖 ∫Γ𝑟,𝜃 𝑒

𝜆𝑡𝐺𝛼 (𝜆) 𝑑𝜆 for 𝑡 > 0,
𝐼 for 𝑡 = 0,

𝑆𝛼 (𝑡) 𝑥 fl ∫𝑡

0
𝑔𝛼−1 (𝑡 − 𝑠)R𝛼 (𝑠) 𝑑𝑠

for 𝛼 ∈ (1, 2) and each 𝑡 ≥ 0.

(3)

(xxii) 0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑏 are fixed points.
(xxiii) 𝑥(𝑡−𝑘 ) and 𝑥(𝑡+𝑘 ) represent the right and left limits of𝑥(𝑡) at 𝑡 = 𝑡𝑘, respectively.
(xxiv) Γ𝑏𝜏 , Γ𝑡𝑘𝑡𝑘−1 , and 𝑅(𝑎, Γ𝑡𝑘𝑡𝑘−1) are the operators defined by

Γ𝑏𝜏 = ∫𝑏

𝜏
𝑆𝛼 (𝑏 − 𝑠) 𝐵𝐵∗𝑆∗𝛼 (𝑏 − 𝑠) 𝑑𝑠,

0 ≤ 𝜏 ≤ 𝑏,
Γ𝑡𝑘𝑡𝑘−1 = ∫𝑡𝑘

𝑡𝑘−1

𝑆𝛼 (𝑡𝑘 − 𝑠) 𝐵𝐵∗𝑆∗𝛼 (𝑡𝑘 − 𝑠) 𝑑𝑠,
𝑘 = 1, 2, . . . , 𝑚,𝑚 + 1,

𝑅 (𝑎, Γ𝑡𝑘𝑡𝑘−1) = (𝑎𝐼 + Γ𝑡𝑘𝑡𝑘−1)−1
for 𝑎 > 0, 𝑘 = 1, 2, . . . , 𝑚,𝑚 + 1,

(4)

where 𝐵∗ denotes the adjoint of 𝐵.
Below we present definition of phase space.
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Definition 1 (see [53]). Suppose that ℎ : (−∞, 0] → (0,∞) is
a continuous functionwith 𝑙 = ∫0

−∞
ℎ(𝑡)𝑑𝑡 < ∞. For all 𝑎 > 0,

one defines

B = {𝜓 : [−𝑎, 0] 󳨀→ 𝑋 such that 𝜓 (𝑡)
is bounded and measurable} (5)

and equips the space B with the norm ‖𝜓‖[−𝑎,0] =
sup𝑠∈[−𝑎,0]‖𝜓(𝑠)‖, ∀𝜓 ∈ B. Let us define the phase space

Bℎ = {𝜓 : (−∞, 0] 󳨀→ 𝑋 such that, for any 𝑐
> 0, 𝜓󵄨󵄨󵄨󵄨[−𝑐,0] ∈ B, ∫0

−∞
ℎ (𝑠) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩[𝑠,0] 𝑑𝑠 < ∞} .

(6)

If Bℎ is endowed with the norm ‖𝜓‖Bℎ =
∫0
−∞

ℎ(𝑠)‖𝜓‖[𝑠,0]𝑑𝑠, ∀𝜓 ∈ B, then it is clear that (Bℎ, ‖ ⋅ ‖Bℎ)
is a Banach space.

Now we consider the space

B𝑏 = {𝜓 : (−∞, 𝑏] 󳨀→ 𝑋 such that 𝑥𝑘
∈ 𝐶 (𝐽𝑘, 𝑋) and there exist 𝑥 (𝑡+𝑘 ) , 𝑥 (𝑡−𝑘 )with 𝑥 (𝑡𝑘)
= 𝑥 (𝑡−𝑘 ) , 𝑥0 = 𝜙 ∈ Bℎ, 𝑘 = 0, 1, . . . , 𝑚} ,

(7)

where 𝑥𝑘 is the restriction of 𝑥 to 𝐽𝑘 = (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 0, 1,. . . , 𝑚. Set | ⋅ |𝑏 be a seminorm inB𝑏 defined by

‖𝑥‖𝑏 = 󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩Bℎ + sup {|𝑥 (𝑠)| : 𝑠 ∈ [0, 𝑏]} , 𝑥 ∈ B𝑏. (8)

Definition 2 (see [54]). Let (X, 𝑑) be a metric space and 𝐹 :
X → X. One will say that operator 𝐹 is a contraction if there
exists some 𝑘 ∈ (0, 1) such that

⋀
𝑥,𝑦∈X

𝑑 (𝐹 (𝑥) , 𝐹 (𝑦)) ≤ 𝑘𝑑 (𝑥, 𝑦) . (9)

Theorem 3 (Krasnoselskii’s fixed point theorem). Let Ω be a
bounded, closed, and convex subset of𝑋. Let𝐹1, 𝐹2 : Ω → 𝑋 be
two mappings such that 𝐹1𝑥+𝐹2𝑦 ∈ Ω for every pair 𝑥, 𝑦 ∈ Ω.
If 𝐹1 is a contraction and 𝐹2 is completely continuous, then the
operator equation 𝐹1𝑥 + 𝐹2𝑥 = 𝑥 has a solution onΩ.

Then, the Banach fixed point theorem has the following
form.

Theorem 4 ((Banach fixed point theorem) [54]). Let 𝐹 be a
contraction on𝑋. Then, there exists a unique 𝑥0 ∈ 𝑋 such that

𝐹 (𝑥0) = 𝑥0. (10)

3. Selected Problems of Controllability of
Fractional Order Systems

In this section, we describe recent results of controllabil-
ity problem of semilinear systems in infinite-dimensional
spaces. The dynamical systems are expressed by different
types of semilinear fractional order equations.

3.1. Approximate Controllability of Fractional Impulsive Partial
Neutral Integrodifferential Inclusions with Infinite Delay in
Hilbert Spaces. The authors of paper [55] derived a new set
of sufficient conditions for the approximate controllability
of fractional impulsive evolution system under the assump-
tion that the corresponding linear system is approximately
controllable. To do this they considered the approximate
controllability of a class of fractional impulsive partial neutral
integrodifferential inclusions with infinite delay in Hilbert
spaces of the form

𝑐𝐷𝛼𝑁(𝑥𝑡) ∈ 𝐴𝑁 (𝑥𝑡) + ∫𝑡

0
𝑄 (𝑡 − 𝑠)𝑁 (𝑥𝑠) 𝑑𝑠 + 𝐵𝑢 (𝑠) + 𝐹(𝑡, 𝑥𝑡, ∫𝑡

0
ℎ (𝑡, 𝑥, 𝑥𝑠) 𝑑𝑠) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘, Δ𝑥 (𝑡𝑘) = 𝐼𝑘 (𝑥𝑡𝑘) , 𝑘 = 1, . . . , 𝑚, 𝑥0 ∈ 𝜑 ∈ Bℎ, 𝑥󸀠 (0) = 0,
(11)

where

(i) 𝑥(⋅) takes values in the Hilbert space𝐻;

(ii) 𝜑 is an initial condition;

(iii) 𝛼 ∈ (1, 2);
(iv) 𝐴, (Q(𝑡))𝑡≥0, are closed linear operators defined on a

common domain which is dense in (𝐻, ‖ ⋅ ‖);
(v) 𝑢 ∈ 𝐿2(𝐽, 𝑈) is admissible control functions;

(vi) the function 𝑥𝑡 : (−∞, 0] → 𝐻 defined by 𝑥𝑡(𝜃) =𝑥(𝑡 + 𝜃), 𝜃 ∈ (−∞, 0] belongs to some abstract phase
spaceBℎ;

(vii) 𝐹 : 𝐽×Bℎ ×𝐻 → 𝑃(𝐻) is a bounded, closed, convex-
valued, multivalued map;

(viii) 𝑃(𝐻) is the family of all nonempty subsets of𝐻;

(ix) 𝐺 : 𝐽×Bℎ → 𝐻,𝑁(𝜓) = 𝜓(0)+𝐺(𝑡, 𝜓), 𝜓 ∈ Bℎ, and𝐼𝑘 : Bℎ → 𝐻 (𝑘 = 1, . . . , 𝑚) are functions subject to
some additional conditions which will be given later.
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In order to obtain theorem about existing of solutions and
a new set of sufficient conditions for the approximate control-
lability of system (11) we recall few important definitions and
present necessary conditions.

Definition 5. The set

Bℎ (𝑏, 𝑥0) = {𝑥𝑏 (𝑥0; 𝑢) (0) : 𝑢 (⋅) ∈ 𝐿2 (𝐽, 𝑈)} (12)

is called the reachable set of system (11) at terminal time 𝑏. Its
closure in𝐻 is denoted byBℎ(𝑏, 𝑥0).
Definition 6. System (11) is said to be approximately control-
lable on the interval [0, 𝑏] ifBℎ(𝑏, 𝑥0) = 𝐻.

Condition 1. The operator families R𝛼(𝑡) and 𝑆𝛼(𝑡) are
compact for all 𝑡 > 0, and there exist constants𝑀 and 𝛿 such
that ‖R𝛼(𝑡)‖𝐿(𝐻) ≤ 𝑀𝑒𝛿𝑡 and ‖𝑆𝛼(𝑡)‖𝐿(𝐻) ≤ 𝑀𝑒𝛿𝑡 for every𝑡 ∈ 𝐽.
Condition 2. The function 𝐺 : 𝐽 × Bℎ → 𝐻 is continuous
and there exists a 𝐿 > 0 such that󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝜓1) − 𝐺 (𝑡, 𝜓2)󵄩󵄩󵄩󵄩 ≤ 𝐿 [󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝜓1 − 𝜓2󵄩󵄩󵄩󵄩Bℎ] ,

𝑡1, 𝑡2 ∈ 𝐽, 𝜓1, 𝜓2 ∈ Bℎ,
󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝜓)󵄩󵄩󵄩󵄩 ≤ 𝐿 (󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩Bℎ + 1) ,

𝑡 ∈ 𝐽, 𝜓 ∈ Bℎ.
(13)

Condition 3. (i) For each (𝑡, 𝑠) ∈ Λ the function ℎ(𝑡, 𝑠, ⋅) :
Bℎ → 𝐻 is continuous and for each 𝑥 ∈ Bℎ, the functionℎ(⋅, ⋅, 𝑥) : Λ → 𝐻 is strongly measurable.

(ii) There exists a continuous function 𝑝 : Λ → [0,∞),
such that 󵄩󵄩󵄩󵄩ℎ (𝑡, 𝑠, 𝜓)󵄩󵄩󵄩󵄩 ≤ 𝑝 (𝑡, 𝑠) Θ0 (󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩Bℎ) (14)

for a.e. 𝑡, 𝑠 ∈ 𝐽 and 𝜓 ∈ Bℎ, where Θ0 : [0,∞) → (0,∞) is a
continuous nondecreasing function.

Condition 4. The multivalued map 𝐹 : 𝐽 × Bℎ × 𝐻 →𝑃𝑏𝑑,𝑐𝑙,𝑐V(𝐻); for each 𝑡 ∈ 𝐽, the function 𝐹(𝑡, ⋅, ⋅) : Bℎ × 𝐻 →𝑃𝑏𝑑,𝑐𝑙,𝑐V(𝐻) is upper semicontinuous and for each (𝜓, 𝑦) ∈
Bℎ × 𝐻, the function 𝐹(⋅, 𝜓, 𝑦) is measurable; for each fixed(𝜓, 𝑦) ∈ Bℎ × 𝐻, the set

𝑆𝐹,𝜓 = {𝑓 ∈ 𝐿1 (𝐽,𝐻) : 𝑓 (𝑡)
∈ 𝐹(𝑡, 𝜓, ∫𝑡

0
ℎ (𝑡, 𝑠, 𝜓) 𝑑𝑠) for a.e. 𝑡 ∈ 𝐽}

(15)

is nonempty.

Condition 5. There exists a continuous function 𝑚 : 𝐽 →[0,∞) and a continuous nondecreasing function Θ :[0,∞) → (0,∞) such that󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝜓, 𝑦)󵄩󵄩󵄩󵄩 = sup {󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 : 𝑓 ∈ 𝐹 (𝑡, 𝜓, 𝑦)}
≤ 𝑚 (𝑡)Θ (󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩Bℎ + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩) , (16)

for a.e. 𝑡 ∈ 𝐽 and each 𝜓 ∈ 𝐵 and 𝑦 ∈ 𝐻 with

∫∞

1

1𝑠 + Θ (𝑠) + Θ0 (𝑠)𝑑𝑠 = ∞. (17)

Condition 6. The functions 𝐼𝑘 : Bℎ → 𝐻 are continuous and
there exist constants 𝑐𝑘 such that

lim sup
‖𝜓‖Bℎ→∞

󵄩󵄩󵄩󵄩𝐼𝑘 (𝜓)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩Bℎ = 𝑐𝑘 (18)

for every 𝜓 ∈ Bℎ, 𝑘 = 1, . . . , 𝑚.

Lemma 7 (see [56]). Let 𝐽 be a compact interval and 𝐻 be a
Hilbert space. Let 𝐹 be a multivalued map satisfying Condition
4 and let 𝑃 be a linear continuous operator from 𝐿1(𝐽,𝐻) to𝐶(𝐽,𝐻). Then the operator

𝑃 ∘ 𝑆𝐹 : 𝐶 (𝐽,𝐻) 󳨀→ 𝑃𝑐𝑝,𝑐V (𝐻) ,
𝑥 󳨀→ (𝑃 ∘ 𝑆𝐹) (𝑥) fl 𝑃 (𝑆𝐹, 𝑥) (19)

is a closed graph in 𝐶(𝐽,𝐻) × 𝐶(𝐽,𝐻).
Theorem 8 (see [55]). Suppose that Conditions 1–6 are satis-
fied and that, for all 𝑎 > 0, system (11) has at least one mild
solution on 𝐽, provided that

max
1≤𝑘≤𝑚

{𝑀2 [1 + 𝐾𝑏 (𝑀𝑐𝑘 +𝑀𝐿)] +𝑀3𝐾𝑏𝑀𝐿} < 1, (20)

where 𝑀2 = 𝑀𝑁∗(1 + (1/𝑎)𝑀2
∗𝑁2

∗𝑀2
1𝑏), 𝑀3 = (1 + (1/𝑎)𝑀𝑀∗𝑁∗𝑀2

1𝑏)𝑁∗, 𝑀∗ = 𝑀max{1, 𝑒𝛿𝑏}, 𝑁∗ = max{1,𝑒−𝛿𝑏}, and𝑀1 = ‖𝐵‖.
Now we present the main result of paper [55] on the

approximate controllability of system (11).

Theorem 9 (see [55]). Assume that assumptions ofTheorem 8
hold and, in addition, there exists a positive constant 𝐶̃ such
that

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝜓, 𝑦)󵄩󵄩󵄩󵄩 = sup {󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 : 𝑓 ∈ 𝐹 (𝑡, 𝜓, 𝑦)} ≤ 𝐶̃,
(𝑡, 𝜓, 𝑦) ∈ 𝐽 ×Bℎ × 𝐻 (21)

and the linear system corresponding to system (11) is approx-
imately controllable on 𝐽. Then system (11) is approximately
controllable on 𝐽.

The proofs of the Theorems 8 and 9 presented in [55] are
obtained with nonlinear alternative of Leray-Schauder type
for multivalued maps [57].

3.2. Controllability of Nonlinear Neutral Fractional Impulsive
Differential Inclusions in Banach Space. Controllability of
nonlinear neutral fractional impulsive differential inclusions
in Banach space was investigated in paper [53]:
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𝑐𝐷𝛼
𝑡 [𝑥 (𝑡) − 𝑔 (𝑡, 𝑥𝑡)] ∈ 𝐴𝑥 (𝑡) + 𝐹 (𝑡, 𝑥𝑡) + (𝐵𝑢) (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . . , 𝑚, Δ𝑥|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚, 𝑥0 = 𝜙 ∈ Bℎ, 𝑡 ∈ 𝐽0 = (−∞, 0] , (22)

where

(i) 𝛼 ∈ (0, 1);
(ii) 𝑥(⋅) ∈ 𝑋;

(iii) 𝐴 is the infinitesimal generator of an analytic semi-
group of the bounded linear operator {𝑇(𝑡), 𝑡 ⩾ 0} in𝑋;

(iv) 𝐹 : 𝐽 × Bℎ → P(𝑋) is a bounded, closed, convex-
valued multivalued map;

(v) 𝑔 : 𝐽 ×Bℎ → 𝑋 are given functions;

(vi) 𝐼𝑘 ∈ 𝐶(𝑋,𝑋) (𝑘 = 1, 2, . . . , 𝑚) are bound functions.

The author of [53] used the following fixed point theorem.

Theorem 10 (see [58]). Let 𝑋 be a Banach space. Φ1 : 𝑋 →
P𝑐𝑙,𝑐V,𝑏𝑑(𝑋) and Φ2 : 𝑋 → P𝑐𝑝,𝑐V(𝑋) are two multivalued
operators satisfying the following.

(a) Φ1 is a contraction.

(b) Φ2 is completely continuous.

Then either

(i) the operator inclusion 𝜆𝑥 ∈ Φ1𝑥 + Φ2𝑥 has a solution
for 𝜆 = 1, or

(ii) the set 𝐺 = {𝑥 ∈ 𝑋 : 𝜆𝑥 ∈ Φ1𝑥 + Φ2𝑥, 𝜆 > 1} is
unbounded.

Definition 11. A function 𝑥 : (−∞, 𝑏] → 𝑋 is called a mild
solution of system (22) if the following holds: 𝑥0 = 𝜙 ∈ Bℎ on(−∞, 0], Δ𝑥|𝑡=𝑡𝑘 = 𝐼𝑘(𝑥(𝑡−𝑘 )), 𝑘 = 1, 2, . . . , 𝑚; the restriction
of 𝑥(⋅) to the interval [0, 𝑏) − {𝑡1, 𝑡2, . . . , 𝑡𝑚} is continuous and
the integral equation

𝑥 (𝑡) = 𝑆𝛼 (𝑡) [𝜙 (0) − 𝑔 (0, 𝜙)] + 𝑔 (𝑡, 𝑥𝑡)
+ ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝐴𝑇𝛼 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑇𝛼 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

+ ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑇𝛼 (𝑡 − 𝑠) (𝐵𝑢) (𝑠) 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝑆𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡−𝑘 )) ,
𝑡 ∈ 𝐽, 𝑥0 = 𝜙 ∈ Bℎ, 𝑡 ∈ 𝐽0

(23)

is satisfied, where

𝑓 ∈ 𝑆𝐹,𝑥
= {𝑓 ∈ 𝐿1 (𝐽, 𝑋) : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑥𝑡) , for a.e. 𝑡 ∈ 𝐽} ,

𝑆𝛼 (𝑡) = ∫∞

0
𝜉𝛼 (𝜃) 𝑇 (𝑡𝛼𝜃) 𝑑𝜃,

𝑇𝛼 (𝑡) = 𝛼∫∞

0
𝜃𝜉𝛼 (𝜃) 𝑇 (𝑡𝛼𝜃) 𝑑𝜃,

𝜉𝛼 (𝜃) = 1𝛼𝜃−1−1/𝛼𝜛𝛼 (𝜃−1/𝛼) ⩾ 0,
𝜛𝛼 (𝜃) = 1𝜋

∞∑
𝑛=1

(−1)𝑛−1 𝜃−𝑛𝛼−1 Γ (𝑛𝛼 + 1)𝑛 sin (𝑛𝜋𝛼) ,
𝜃 ∈ (0,∞) ,

(24)

where 𝜉𝛼 is probability density function defined on (0,∞);
that is, 𝜉𝛼(𝜃) ⩾ 0, 𝜃 ∈ (0,∞), and ∫∞

0
𝜉𝛼(𝜃)𝑑𝜃 = 1.

The properties of the operators 𝑆𝛼(𝑡) and 𝑇𝛼(𝑡) can be
found in [53].

In order to study the exact controllability of system (22),
the following definition and conditions were made [53].

Definition 12 (see [53]). System (22) is said to be exactly
controllable on the interval 𝐽 if for every continuous initial
function, 𝜙 ∈ Bℎ, 𝑥1 ∈ 𝑋, there exists a control 𝑢 ∈ 𝐿2(𝐽, 𝑈)
such that the mild solution 𝑥(𝑡) of (22) satisfies 𝑥(𝑏) = 𝑥1.
Condition 7. 𝐴 is the infinitesimal generator of an analytic
semigroup of bounded linear operators 𝑇(𝑡) and 0 ∈ 𝜌(𝐴);
for 𝑡 ⩾ 0, there exist constants𝑀 such that |𝑇(𝑡)| ⩽ 𝑀.

Condition 8. The linear operator 𝑊 : 𝐿2(𝐽, 𝑈) → 𝑋 defined
by

𝑊𝑢 = ∫𝑏

0
(𝑏 − 𝑠)𝛼−1 𝑇 (𝑏 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 (25)

has an induced inverse operator 𝑊−1, which takes values in𝐿2(𝐽, 𝑈)/ker𝑊 and there exist positive constants𝑀2 and𝑀3

such that |𝐵| ⩽ 𝑀2 and |𝑊−1| ⩽ 𝑀3.

Condition 9. There exist constants 0 ⩽ 𝛽 < 1, 𝑐0, 𝑐1, 𝑐2, 𝐿𝑔
such that 𝑔 is𝑋𝛽-valued and (−𝐴)𝛽𝑔 is continuous, and

(i) ‖(−𝐴)𝛽𝑔(𝑡, 𝑥)‖ ⩽ 𝑐1‖𝑥‖Bℎ + 𝑐2, (𝑡, 𝑥) ∈ 𝐽 ×Bℎ;
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(ii) ‖(−𝐴)𝛽𝑔(𝑡, 𝑥1) − (−𝐴)𝛽𝑔(𝑡, 𝑥2)‖ ⩽ 𝐿𝑔‖𝑥1 − 𝑥2‖Bℎ ,(𝑡, 𝑥𝑖) ∈ 𝐽 ×Bℎ, 𝑖 = 1, 2, with
𝐶0 = 𝐿𝑔𝑙 [󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝛽󵄩󵄩󵄩󵄩󵄩 + 𝑐1−𝛽Γ (1 + 𝛽) 𝑏𝛼𝛽

𝛽Γ (1 + 𝛼𝛽) ] < 1. (26)

Condition 10. There exists a constant 𝑑𝑘 such that ‖𝐼𝑘(𝑥)‖ ⩽𝑑𝑘, 𝑘 = 1, 2, . . . , 𝑚 for each 𝑥 ∈ 𝑋.

Condition 11. There exist an integrable function 𝑝 : 𝐽 →[0,∞) and a nondecreasing function 𝜓 : 𝑅+ → (0,∞) such
that ‖𝐹(𝑡, 𝑥)‖ = sup{|𝑓| : 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑥)} ⩽ 𝑝(𝑡)𝜓(‖𝑥‖Bℎ) for
almost all 𝑡 ∈ 𝐽 and all 𝑥 ∈ Bℎ.

Condition 12. There exists a positive constant 𝑟 such that

𝑟
𝐹1 + 𝐹2𝑟 + 𝐹3𝜓 (𝑙𝑟 + 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩Bℎ + 𝑙𝑀 󵄨󵄨󵄨󵄨𝜙 (0)󵄨󵄨󵄨󵄨) > 1, (27)

where

𝐹1 = 𝐾1 + 𝑀𝑀2𝑀3𝑏𝛼Γ (1 + 𝛼) ⋅ {󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 + 𝑀 󵄨󵄨󵄨󵄨𝜙 (0)󵄨󵄨󵄨󵄨 + 𝐾1} ,
𝐹2 = 𝐾2 + 𝑀𝑀2𝑀3𝑏𝛼Γ (1 + 𝛼) ⋅ 𝐾2,
𝐹3 = [1 + 𝑀𝑀2𝑀3𝑏𝛼Γ (1 + 𝛼) ] 𝑏𝛼𝑀Γ (1 + 𝛼) sup𝑠∈𝐽 𝑝 (𝑠) ,
𝐾1 = 𝑀[󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝛽󵄩󵄩󵄩󵄩󵄩 (𝑐1 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩Bℎ + 𝑐2)]

+ [󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝛽󵄩󵄩󵄩󵄩󵄩 + 𝑐1−𝛽Γ (1 + 𝛽)
Γ (1 + 𝛼𝛽) ⋅ 𝑏𝛼𝛽𝛽 ]

⋅ (𝑐1 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩Bℎ + 𝑐1𝑙𝑀 󵄨󵄨󵄨󵄨𝜙 (0)󵄨󵄨󵄨󵄨 + 𝑐2) +𝑀 𝑚∑
𝑘=1

𝑑𝑘,

𝐾2 = 󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝛽󵄩󵄩󵄩󵄩󵄩 𝑐1𝑙 + 𝑐1−𝛽Γ (1 + 𝛽)
Γ (1 + 𝛼𝛽) ⋅ 𝑏𝛼𝛽𝛽 𝑐1𝑙.

(28)

Next theorem includes the condition for exact controlla-
bility of system (22) on the interval 𝐽.
Theorem 13 (see [53]). If the Conditions 7–12 hold, then sys-
tem (22) is controllable on the interval 𝐽.

Based on a fixed point theorem (Theorem 10), sufficient
conditions for the exact controllability of the fractional
impulsive neutral functional differential inclusions have been
obtained.

3.3. Approximate Controllability of Nonlocal Neutral Frac-
tional Integrodifferential Equations with Finite Delay. In
paper [59], authors obtain a set of sufficient conditions to
prove the approximate controllability for a class of nonlocal
neutral fractional integrodifferential equations, with time
varying delays, considered in a Hilbert space.

They consider the following equation:
𝑐𝐷𝛼 [𝑥 (𝑡) + ℎ (𝑡, 𝑥 (𝑡 − 𝑘 (𝑡)))]

= −𝐴𝑥 (𝑡) + 𝐼1−𝛼𝑡 𝑓 (𝑡, 𝑥 (𝑡 − 𝜐 (𝑡))) + 𝐵𝑢 (𝑡) ,
𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑥 (𝑡) = 𝜙 (𝑡) + 𝑔 (𝑥) (𝑡) , 𝑡 ∈ [−𝑎, 0] ,

(29)

where

(i) 𝑎 > 0;
(ii) 𝛼 ∈ (0, 1);
(iii) 𝑘, 𝜐 : [0, +∞) → (0, 𝑎], and (𝑎 > 0) are continuous

functions;
(iv) 𝑓 : [0, +∞) × 𝑋 → 𝑋, ℎ : [0, +∞) × 𝑋 → 𝑋𝛼, and𝑔 : C → 𝐶([𝑎, 0], 𝑋) are continuous and nonlinear

functions; here 0 < 𝑞 ≤ 1,C fl 𝐶([𝑎, 𝑏], 𝑋).
Let 𝑥(𝑏, 𝜙, 𝑢) be the state value of (29) at terminal time 𝑏
corresponding to the initial value and the control function𝑢. Define the set 𝑅(𝑏, 𝜙) = {𝑥(𝑏, 𝜙, 𝑢) : 𝑢 ∈ 𝐿2(𝐽, 𝑈)}, which is
called reachable set of the system (29) at time 𝑏, and its closure
in𝑋 is denoted by 𝑅(𝑏, 𝜙).
Definition 14 (see [59]). The dynamical system (29) is called
approximately controllable on 𝐽 if 𝑅(𝑏, 𝜙) = 𝑋; that is, for
given 𝜀 > 0, however small, it is possible to steer from the
point to within a distance 𝜀 from all points in the state space𝑋 at time 𝑏.

Now, we introduce some conditions which will be used in
presented results.

Condition 13.

𝜀𝑅 (𝜀, Γ𝑏0) 󳨀→ 0 as

𝜀 󳨀→ 0+ in strong operator topology. (30)

Condition 14. The function ℎ : 𝐽 × 𝑋 → 𝑋𝑞 satisfies that, for
each 𝑥 → 𝑋, the function ℎ(⋅, 𝑥) is stronglymeasurable in𝑋𝛼

over the interval 𝐽 and there exists a positive constant 𝐿ℎ such
that for each 𝑡 ∈ 𝐽

󵄩󵄩󵄩󵄩ℎ (𝑡, 𝑥) − ℎ (𝑡, 𝑦)󵄩󵄩󵄩󵄩𝛼 ≤ 𝐿ℎ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑋,
‖ℎ (𝑡, 𝑥)‖𝛼 ≤ 𝐿ℎ (1 + ‖𝑥‖) , ∀𝑥 ∈ 𝑋. (31)

Condition 15. The function 𝑓 : 𝐽 × 𝑋 → 𝑋 satisfies the
following.

(i) For any 𝑡 ∈ 𝐽, the function 𝑓(𝑡, ⋅) : 𝑋 → 𝑋 is
continuous, and for all 𝑥 ∈ 𝑋, the function 𝑓(⋅, 𝑥) is
strongly measurable.

(ii) For each 𝑟 > 0, there exist 𝑎𝑟(⋅) ∈ 𝐿1([0, 𝑡], 𝑅+) and𝑡 ∈ 𝐽, such that

sup {󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)󵄩󵄩󵄩󵄩 : ‖𝑥‖ ≤ 𝑟} ≤ 𝑎𝑟 (𝑡) , for a.e. 𝑡 ∈ 𝐽,
lim
𝑟→∞

inf 1𝑟 ∫𝑡

0
𝑎𝑟 (𝑠) 𝑑𝑠 = 𝜎 < +∞. (32)
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Condition 16. 𝑔 : C → 𝐶([−𝑎, 0], 𝑋) is a continuous function
and there exists a positive constant 𝐿𝑔 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩𝐶([−𝑎,0],𝑋) ≤ 𝐿𝑔 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩C ,
∀𝑥, 𝑦 ∈ C,

󵄩󵄩󵄩󵄩𝑔 (𝑥)󵄩󵄩󵄩󵄩𝐶([−𝑎,0],𝑋) ≤ 𝐿𝑔 (1 + ‖𝑥‖C) , ∀𝑥 ∈ C.
(33)

For any 𝜀 > 0 and 𝑧 ∈ 𝑋, we define a control 𝑢𝜀(𝑡, 𝑥) as

𝑢𝜀 (𝑡, 𝑥) = 𝐵∗𝑉∗ (𝑏 − 𝑡) 𝑅 (𝜀, Γ𝑏0) {𝑧 − 𝑈 (𝑏) [𝜙 (0)
+ 𝑔 (𝑥) (0) + ℎ (0, 𝜙 (−𝑘 (0)) + 𝑔 (𝑥) (−𝑘 (0)))]
+ ℎ (𝑏, 𝑥 (𝑏 − 𝑘 (𝑏))) − ∫𝑏

0
(𝑏 − 𝑠)𝑞−1 𝐴𝑉 (𝑏 − 𝑠)

× ℎ (𝑠, 𝑥 (𝑠 − 𝑘 (𝑠))) 𝑑𝑠
− ∫𝑏

0
𝑈 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠 − 𝜐 (𝑠))) 𝑑𝑠} ,

𝑉 (𝑡) = 𝑞∫∞

0
𝜗𝜓𝑞 (𝜗) 𝑇 (𝑡𝑞𝜗) 𝑑𝜗,

(34)

where 𝜓𝑞(𝜗) satisfies the condition of a probability density
function defined on (0,∞); that is, 𝜓𝑞(𝜗) ≥ 0, ∫∞

0
𝜓𝑞(𝜗)𝑑𝜗 =

1, and ∫∞
0

𝜗𝜓𝑞(𝜗) = 1/Γ(1 + 𝑞); 𝐵∗ and𝑉∗ denote the adjoint
of 𝐵 and 𝑉, respectively.

For the sake of convenience, we introduce the following
denotations:

𝐾 = 1𝜀 𝑀𝑏𝑞Γ (𝑞 + 1) ‖𝐵‖ sup
0≤𝑡≤𝑏

󵄩󵄩󵄩󵄩𝐵∗𝑉∗ (𝑏 − 𝑡)󵄩󵄩󵄩󵄩 ,

𝑁𝛼 = 𝑞𝑀𝛼Γ (1 + 𝛼)Γ (1 + 𝑞𝛼) ,

𝑙 = 1𝜀 ‖𝐵‖ sup
0≤𝑡≤𝑏

󵄩󵄩󵄩󵄩𝐵∗𝑉∗ (𝑏 − 𝑡)󵄩󵄩󵄩󵄩 [‖𝑧‖ +𝑀{󵄩󵄩󵄩󵄩𝜙 (0)󵄩󵄩󵄩󵄩
+ 𝐿𝑔 (1 + ‖𝑥‖C)
+ 𝐶𝛼𝐿ℎ (1 + 󵄩󵄩󵄩󵄩𝜙 (−𝑘 (0))󵄩󵄩󵄩󵄩 + 𝐿𝑔 (1 + ‖𝑥‖C))}
+ 𝐶𝛼𝐿ℎ (1 + ‖𝑥 (𝑏 − 𝑘 (𝑏))‖) + 𝑁𝛼

𝑏𝑞𝛼𝑞𝛼 𝐿ℎ (1

+ ‖𝑥‖C) + 𝑀∫𝑏

0
𝑎𝑟 (𝑠) 𝑑𝑠] ,

(35)

where𝑀 ≥ 1, 𝐶𝛼 > 0,𝑀1−𝛼 > 0, 𝛼 > 0, and𝑀𝛼 > 0.

Theorem 15 (see [59]). Assume that the Conditions 14–16
hold. System (29) corresponding to the control 𝑢𝜀(𝑡, 𝑥) has a
mild solution for each 𝜀 > 0 provided that

(𝐾 + 1)
⋅ [𝑀(𝐿𝑔 + 𝜎) + 𝐿ℎ (𝐶𝛼 (𝑀𝐿𝑔 + 1) + 𝑁𝛼

𝑏𝑞𝛼𝑞𝛼 )]
< 1.

(36)

Theorem 16 (see [59]). Suppose that the Conditions 13, 14, 15,
and 16 hold. Besides, one assumes additionally that the func-
tions 𝑓 : 𝐽 × 𝑋 → 𝑋, ℎ : 𝐽 × 𝑋 → 𝑋𝑞, and 𝑔 : 𝐶([𝑎, 𝑏], 𝑋) →𝐶([𝑎, 0], 𝑋) are bounded and𝑀𝐿𝑔+𝐿ℎ(𝑀𝐿𝑔+1)𝐶𝛼 < 1.Then
the nonlocal neutral fractional integrodifferential equations
with finite delay (29) are approximately controllable on 𝐽.

Theorem 16 is proved by Krasnoselskii’s fixed point
theorem.

3.4. Exact Controllability of Fractional Neutral Integrodiffer-
ential Systems with State-Dependent Delay in Banach Spaces.
In paper [60] the authors execute Banach contraction fixed
point theorem combined with resolvent operator to analyze
the exact controllability results for fractional neutral inte-
grodifferential systems with state-dependent delay in Banach
spaces. Motivation to do it implies from their papers [61–63].
In article [60] they study the controllability of mild solutions
for a fractional neutral integrodifferential system with state-
dependent delay of the model

𝐷𝛼
𝑡 [𝑥 (𝑡) + 𝐺(𝑡, 𝑥󰜚(𝑡,𝑥𝑡), ∫

𝑡

0
𝑒1 (𝑡, 𝑠, 𝑥󰜚(𝑠,𝑥𝑠)) 𝑑𝑠)]

= 𝐴𝑥 (𝑡) + ∫𝑡

0
𝐵 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠

+ 𝐹(𝑡, 𝑥󰜚(𝑡,𝑥𝑡), ∫
𝑡

0
𝑒2 (𝑡, 𝑠, 𝑥󰜚(𝑠,𝑥𝑠)) 𝑑𝑠) + 𝐶𝑢 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑇] , 𝑥0 = 𝜍 (𝑡) ∈ Bℎ, 𝑥󸀠 (0) = 0, 𝑡 ∈ (−∞, 0] ,

(37)

where

(i) 𝑥(⋅) is unknown and needs values in the Banach space𝑋 having norm ‖ ⋅ ‖;
(ii) 𝛼 ∈ (1, 2);
(iii) 𝐴 and (𝐵(𝑡))𝑡≥0 are closed linear operators described

on a regular domain which is dense in (𝑋, ‖ ⋅ ‖);
(iv) 𝐶 is a bounded linear operator from 𝑈 to𝑋;
(v) 𝐺, : 𝐽 × Bℎ × 𝑋 → 𝑋, 𝑒𝑖 : D × Bℎ → 𝑋, 𝑖 = 1, 2;

D = {(𝑡, 𝑠) ∈ 𝐽 × 𝐽 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}, and 󰜚 : 𝐽 ×Bℎ →(−∞,𝑇] are apposite functions.
If 𝑥 : (−∞,𝑇] → 𝑋, 𝑇 > 0, is continuous on 𝐽 and 𝑥0 ∈ Bℎ,
then for every 𝑡 ∈ 𝐽 the accompanying conditions hold.

(1) 𝑥𝑡 isBℎ.
(2) ‖𝑥(𝑡)‖𝑋 ≤ 𝐻‖𝑥𝑡‖Bℎ .



8 Mathematical Problems in Engineering

(3) ‖𝑥𝑡‖Bℎ ≤ D1(𝑡) sup{‖𝑥(𝑠)‖𝑋 : 0 ≤ 𝑠 ≤ 𝑡} +
D2(𝑡)‖𝑥0‖Bℎ , where 𝐻 > 0 is a constant and D1(⋅) :[0, +∞) → [0, +∞) is continuous,D2(⋅) : [0, +∞) →[0, +∞) is locally bounded, and D1 and D2 are
independent of 𝑥(⋅).

(4) The function 𝑡 → 𝜍𝑡 is well described and continuous
from the set

𝑅 (󰜚−) = {󰜚 (𝑠, 𝜍) : (𝑠, 𝜍) ∈ [0, 𝑇] ×Bℎ} , (38)

into Bℎ and there is a continuous and bounded
function 𝐽𝜍 : 𝑅(󰜚−) → (0,∞) to ensure that ‖𝜍𝑡‖Bℎ ≤𝐽𝜍(𝑡)‖𝜍‖Bℎ for every 𝑡 ∈ 𝑅(󰜚−).

Recognize the space

B𝑇 = {𝑥 : (−∞,𝑇]
󳨀→ 𝑋 : 𝑥|𝐽 is continuous and 𝑥0 ∈ Bℎ} , (39)

where 𝑥|𝐽 is the constraint of 𝑥 to the real compact interval on𝐽. The function ‖ ⋅ ‖B𝑇 to be a seminorm in B𝑇 is described
by

‖𝑥‖B𝑇 = ‖𝜍‖Bℎ + sup {‖𝑥 (𝑠)‖𝑋 : 𝑠 ∈ [0, 𝑇]} ,
𝑥 ∈ B𝑇. (40)

Definition 17. Let 𝑥𝑇(𝜍; 𝑢) be the state value of model (37) at
terminal time𝑇 corresponding to the control 𝑢 and the initial
value 𝜍 ∈ Bℎ. Present the set R(𝑇, 𝜍) = {𝑥𝑇(𝜍; 𝑢)(0) : 𝑢(⋅) ∈𝐿2(𝐽, 𝑈)}, which is known as the reachable set of model (37)
at terminal time 𝑇.
Definition 18. Model (37) is said to be exactly controllable on
J if R(𝑇; 𝜍) = 𝑋.

Now, according to the article [60]wewill present the exact
controllability results for the structure (37) under Banach
fixed point theorem. First of all, we present the mild solution
for model (37).

Definition 19 ([64], Definition 3.4). A function 𝑥 :(−∞,𝑇] → 𝑋 is called a mild solution of (37) on [0, 𝑇], if𝑥0 = 𝜍; 𝑥|[0,𝑇] ∈ 𝐶([0, 𝑇] : 𝑋); the function

𝑠 󳨀→ 𝐴𝑆𝛼 (𝑡 − 𝑠) 𝐺(𝑠, 𝑥󰜚(𝑠,𝑥𝑠), ∫
𝑠

0
𝑒1 (𝑠, 𝜏, 𝑥󰜚(𝜏,𝑥𝜏)) 𝑑𝜏) ,

𝑠 󳨀→ ∫𝑠

0
𝐵 (𝑠 − 𝜏) 𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐺 (𝜏, 𝑥󰜚(𝜏,𝑥𝜏), ∫
𝜏

0
𝑒1 (𝜏, 𝜀, 𝑥󰜚(𝜀,𝑥𝜏)) 𝑑𝜀) 𝑑𝜏

(41)

is integrable on [0, 𝑡) for all 𝑡 ∈ (0, 𝑇] and for 𝑡 ∈ [0, 𝑇];
𝑥 (𝑡) = 𝑅𝛼 (𝑡) [𝜍 (0) + 𝐺 (0, 𝜍 (0) , 0)]

− 𝐺(𝑡, 𝑥󰜚(𝑡,𝑥𝑡), ∫
𝑡

0
𝑒1 (𝑡, 𝑠, 𝑥󰜚(𝑠,𝑥𝑠)) 𝑑𝑠) − ∫𝑡

0
𝐴𝑆𝛼 (𝑡

− 𝑠) 𝐺(𝑠, 𝑥󰜚(𝑠,𝑥𝑠), ∫
𝑠

0
𝑒1 (𝑠, 𝜏, 𝑥󰜚(𝜏,𝑥𝜏)) 𝑑𝜏) 𝑑𝑠

− ∫𝑡

0
∫𝑠

0
𝐵 (𝑠 − 𝜏) 𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐺 (𝜏, 𝑥󰜚(𝜏,𝑥𝜏), ∫
𝜏

0
𝑒1 (𝜏, 𝜀, 𝑥󰜚(𝜀,𝑥𝜀)) 𝑑𝜀) 𝑑𝜏 𝑑𝑠

+ ∫𝑡

0
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹 (𝑠, 𝑥󰜚(𝑠,𝑥𝑠), ∫
𝑠

0
𝑒2 (𝑠, 𝜏, 𝑥󰜚(𝜏,𝑥𝜏)) 𝑑𝜏) 𝑑𝑠

+ ∫𝑡

0
𝑆𝛼 (𝑡 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠.

(42)

Presently, we itemizing the subsequent conditions.

Condition 17. The operator families 𝑅𝛼(𝑡) and 𝑆𝛼(𝑡) are
compact for all 𝑡 > 0, and there exists a constant 𝑀 in a way
that ‖𝑅𝛼(𝑡)‖L(𝑋) ≤ 𝑀 and ‖𝑆𝛼(𝑡)‖L(X) ≤ 𝑀 for every 𝑡 ∈ 𝐽
and

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗 𝑆𝛼 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑋 ≤ 𝑀𝑡𝛼(1−𝜗)−1, 0 < 𝑡 ≤ 𝑇, (43)

where L(𝑋) symbolizes the Banach space of all bounded
linear operators from 𝑋 into 𝑋 endowed with the uniform
operator topology, having its norm recognized as ‖ ⋅ ‖L(𝑋).

Condition 18. The subsequent conditions are fulfilled.

(a) 𝐵(⋅)𝑥 ∈ 𝐶(𝐽, 𝑋) for every 𝑥 ∈ [𝐷((−𝐴)1−𝜗)].
(b) There is a function 𝜇(⋅) ∈ 𝐿1(𝐽,R+), to ensure that

󵄩󵄩󵄩󵄩𝐵 (𝑠) 𝑆𝛼 (𝑡)󵄩󵄩󵄩󵄩L([𝐷((−𝐴)𝜗)],𝑋) ≤ 𝑀𝜇 (𝑠) 𝑡𝛼𝜗−1,
0 ≤ 𝑠 < 𝑡 ≤ 𝑇. (44)

Condition 19. The function𝐹 : 𝐽×Bℎ×𝑋 → 𝑋 is continuous
and one can find positive constants 𝐿F, 𝐿̃F, and 𝐿∗F > 0 in
ways that, for all 𝑡 ∈ 𝐽 and 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝜓1, 𝑥) − 𝐹 (𝑡, 𝜓2, 𝑦)󵄩󵄩󵄩󵄩𝑋
≤ 𝐿F

󵄩󵄩󵄩󵄩𝜓1 − 𝜓2󵄩󵄩󵄩󵄩Bℎ + 𝐿̃𝐹 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑋 ,
𝐿∗F = max

𝑡∈𝐽
‖𝐹 (𝑡, 0, 0)‖𝑋 .

(45)
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Condition 20. 𝑒𝑖 : D × Bℎ → 𝑋 is continuous and one can
find constants𝐿𝑒𝑖 > 0 and𝐿∗𝑒𝑖 > 0 to ensure that, for all (𝑡, 𝑠) ∈
D and (𝜍, 𝜓) ∈ B2

ℎ, 𝑖 = 1, 2;
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡, 𝑠, 𝜍) − 𝑒𝑖 (𝑡, 𝑠, 𝜓)󵄩󵄩󵄩󵄩𝑋 ≤ 𝐿𝑒𝑖 󵄩󵄩󵄩󵄩𝜍 − 𝜓󵄩󵄩󵄩󵄩Bℎ ,

𝐿∗𝑒𝑖 = max
𝑡∈𝐽

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡, 𝑠, 0)󵄩󵄩󵄩󵄩𝑋 ,
𝑖 = 1, 2.

(46)

Condition 21. The function 𝐺(⋅) is (−𝐴)𝜗-values; 𝐺 : 𝐽 ×
Bℎ×X → [𝐷((−𝐴)−𝜗)] is continuous and there exist positive
constants 𝐿𝐺, 𝐿̃𝐺 > 0 and 𝐿∗𝐺 > 0 such that, for all (𝑡, 𝜍𝑗) ∈𝐽 ×Bℎ, 𝑗 = 1, 2; 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗 𝐺 (𝑡, 𝜍1, 𝑥) − (−𝐴)𝜗 𝐺 (𝑡, 𝜍2, 𝑦)󵄩󵄩󵄩󵄩󵄩𝑋
≤ 𝐿𝐺 󵄩󵄩󵄩󵄩𝜍1 − 𝜍2󵄩󵄩󵄩󵄩Bℎ + 𝐿̃𝐺 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑋 ,

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗 𝐺 (𝑡, 𝜍, 0)󵄩󵄩󵄩󵄩󵄩𝑋 ≤ 𝐿𝐺 ‖𝜍‖Bℎ + 𝐿∗𝐺,
(47)

where

𝐿∗𝐺 = max
𝑡∈𝐽

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗 𝐺 (𝑡, 0, 0)󵄩󵄩󵄩󵄩󵄩𝑋 . (48)

Condition 22. The following inequalities hold.

(i) Let

(1𝛾𝑀2𝑀2
C𝑇) 󵄩󵄩󵄩󵄩𝑥𝑇󵄩󵄩󵄩󵄩 + (1 + 1𝛾𝑀2𝑀2

C𝑇)
⋅ [𝑀𝑀0𝐿𝐺 ‖𝜍‖Bℎ +𝑀𝑀0𝐿∗𝐺 + (𝐿∗𝐺 + 𝐿̃𝐺𝑇𝐿∗𝑒1)
⋅ {𝑀0 + 𝑀𝑇𝛼𝜗𝛼𝜗 (1 + ∫𝑇

0
𝜇 (𝜏) 𝑑𝜏)} +𝑀𝑇(𝐿∗F

+ 𝐿̃F𝑇𝐿∗𝑒2) + (D∗
1 𝑟 + 𝑐𝑛) [𝑀𝑇(𝐿F + 𝐿̃F𝑇𝐿𝑒2)

+ {𝑀0 + 𝑀𝑇𝛼𝜗𝛼𝜗 (1 + ∫𝑇

0
𝜇 (𝜏) 𝑑𝜏)}

⋅ (𝐿𝐺 + 𝐿̃𝐺𝑇𝐿𝑒1)]] ≤ 𝑟,

(49)

for some 𝑟, 𝛾 > 0.
(ii) Let

Λ = (1 + 1𝛾𝑀2𝑀2
C𝑇)D

∗
1 [𝑀𝑇(𝐿F + 𝐿̃F𝑇𝐿𝑒2)

+ {𝑀0 + 𝑀𝑇𝛼𝜗𝛼𝜗 (1 + ∫𝑇

0
𝜇 (𝜏) 𝑑𝜏)}

⋅ (𝐿𝐺 + 𝐿̃𝐺𝑇𝐿e1)] < 1
(50)

be such that 0 ≤ Λ < 1.

Theorem 20 (see [60]). Assume that the Conditions 17–22
hold. Then, control system (37) is exactly controllable on 𝐽.

Proof of theTheorem 20 is based on contractionmapping
principle [60].

3.5. Controllability for a Class of Fractional Neutral Inte-
grodifferential Equations with Unbounded Delay. The paper
[65] focuses on establishing the sufficient conditions for
the exact controllability for a class of fractional neutral
integrodifferential equations with infinite delay in Banach
spaces formulated as follows:

𝑐𝐷𝛼
𝑡 (𝑥 (𝑡) + 𝑓 (𝑡, 𝑥𝑡))
= 𝐴𝑥 (𝑡) + ∫𝑡

0
𝐺 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 + (𝐵𝑢) (𝑡)

+ 𝑔 (𝑡, 𝑥𝑡) ,
𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑥0 = 𝜙 ∈ Bℎ, 𝑥󸀠 (0) = 𝑥1,

(51)

where

(i) 𝛼 ∈ (1, 2);
(ii) 𝐴,𝐺(𝑡), for 𝑡 ⩾ 0, are closed linear operators defined

on a common domain D = 𝐷(𝐴) which is dense in𝑋;
(iii) 𝑓, 𝑔 : [0, 𝑏] ×Bℎ → 𝑋 are appropriate functions.

Some necessary notations for the above-mentioned system
were presented in Basic Notations Section.The other ones are
as follows.

(i) [𝐷(𝐴)] is the domain of 𝐴 endowed with the graph
norm.

(ii) (𝑍, ‖ ⋅ ‖𝑍) and (𝑊, ‖ ⋅ ‖𝑊) are Banach spaces.
(iii) L(𝑍,𝑊) stands for the Banach space of bounded

linear operators from 𝑍 into 𝑊 endowed with the
uniform operator topology. When 𝑍 = 𝑊 then we
will writeL(𝑍).

(iv) 𝐾̂ denotes the Laplace transform of𝐾 for appropriate
functions𝐾 : [0,∞) → 𝑍.

(v) ‖𝑥‖𝑍,𝑏 = sup{‖𝑥(𝑠)‖𝑍 : 𝑠 ∈ [0, 𝑏]} for a bounded
function 𝑥 : [0, 𝑎] → 𝑍 and 𝑏 ∈ [0, 𝑎]; shortly we
will write ‖𝑥‖𝑏 when no confusion about the space 𝑍
arises.

In [65] the contraction mapping principle is used to
formulate and prove conditions for exact controllability for
the system (51). To obtain the exact controllability result the
following lemmas and conditions were made [65].

Lemma 21. One can assume there exists 𝑀 > 0 such that‖𝑅𝛼(𝑡)‖ ⩽ 𝑀 and ‖𝑆𝛼(𝑡)‖ ⩽ 𝑀 for all 𝑡 ∈ [0, 𝑏].
Additionally, 𝑀𝑏 = sup𝑠∈[0,𝑏]𝑀(𝑠) and 𝐾𝑏 = sup𝑠∈[0,𝑏]𝐾(𝑠)
are the constants. Moreover 𝑁(−𝐴)𝜗𝑓, 𝑁𝑓, 𝑁𝑔 represent the
supreme of the functions (−𝐴)𝜗𝑓,𝑓 and𝑔 on [0, 𝑏]×𝐵𝑟[0,Bℎ],
respectively.
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Lemma 22 (see [66]). There exists a constant 𝐶 such that
󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗󵄩󵄩󵄩󵄩󵄩 ⩽ 𝐶 for 0 ⩽ 𝜗 ⩽ 1. (52)

Condition 23. The given conditions hold.

(i) 𝐺(⋅)𝑥 ∈ 𝐶(𝐼, 𝑋) for every 𝑥 ∈ [𝐷((−𝐴)1−𝜗)].
(ii) There is function 𝜇(⋅) ∈ 𝐿1(𝐼;R+), such that‖𝐺(𝑠)𝑆𝛼(𝑡)‖L([𝐷((−𝐴)𝜗)],𝑋) ⩽ 𝑀𝜇(𝑠)𝑡𝛼𝜗−1, 0 ⩽ 𝑠 < 𝑡 ⩽ 𝑏.

Condition 24. The function 𝑓(⋅) is (−𝐴)𝜗-valued, 𝑓 : 𝐼 ×
Bℎ → [𝐷((−𝐴)−𝜗)], the function 𝑔(⋅) is defined on 𝑔 :𝐼 × Bℎ → 𝑋, and there exist positive constants 𝐿𝑓 and 𝐿𝑔
such that for all (𝑡𝑖, 𝜓𝑗) ∈ 𝐼 × Bℎ the following inequalities
are satisfied

󵄩󵄩󵄩󵄩󵄩(−𝐴)𝜗 𝑓 (𝑡1, 𝜓1) − (−𝐴)𝜗 𝑓 (𝑡2, 𝜓2)󵄩󵄩󵄩󵄩󵄩
⩽ 𝐿𝑓 (󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝜓1 − 𝜓2󵄩󵄩󵄩󵄩Bℎ) ,󵄩󵄩󵄩󵄩𝑔 (𝑡1, 𝜓1) − 𝑔 (𝑡2, 𝜓2)󵄩󵄩󵄩󵄩
⩽ 𝐿𝑔 (󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝜓1 − 𝜓2󵄩󵄩󵄩󵄩Bℎ) .

(53)

Condition 25. The linear fractional control system defined as

𝑐𝐷𝛼
𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + (𝐵𝑢) (𝑡) , (54)

𝑥 (0) = 𝑥0,
𝑥󸀠 (0) = 0 (55)

is exactly controllable.

In the next theorem we present conditions for exact
controllability for the system (51).

Theorem 23 (see [65]). If Conditions 23–25 and

(1 + 1𝛾𝑀2𝑀2
𝐵𝑏)𝐾𝑏 ⋅ [𝑀(𝐻󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩Bℎ + 𝑁𝑓) + 𝑁𝑓

+ 𝑁(−𝐴)𝜗𝑓𝑀𝑏𝛼𝜗𝛼𝜗 + 𝑁(−𝐴)𝜗𝑓𝑀𝑏𝛼𝜗𝛼𝜗 ∫𝑏

0
𝜇 (𝜉) 𝑑𝜉

+ 𝑁𝑔𝑀𝑏] < 𝑟,
(1 + 1𝛾𝑀2𝑀2

𝐵)𝐾𝑏

⋅ (𝐿𝑓 (󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝜗󵄩󵄩󵄩󵄩󵄩 + 𝑀𝑏𝛼𝜗𝛼𝜗 + 𝑀𝑏𝛼𝜗𝛼𝜗 ∫𝑏

0
𝜇 (𝜉) 𝑑𝜉)

+𝑀𝐿𝑔𝑏) < 1

(56)

are satisfied, then control system (51) is exactly controllable on𝐼.

Theorem 23 is proved in [65] by using the contraction
mapping.

Additionally, the authors of paper [65] study the exact
controllability of the fractional neutral integrodifferential
system with nonlocal condition of the following form:
𝑐𝐷𝛼

𝑡 (𝑥 (𝑡) + 𝑓 (𝑡, 𝑥𝑡))
= 𝐴𝑥 (𝑡) + ∫𝑡

0
𝐺 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 + (𝐵𝑢) (𝑡) + 𝑔 (𝑡, 𝑥𝑡) ,

𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑥0 = 𝜑 + 𝑞 (𝑥𝑡1 , 𝑥𝑡2 , . . . , 𝑥𝑡𝑛) ∈ Bℎ, 𝑥󸀠 (0) = 𝑥1,
(57)

where 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑛 ⩽ 𝑏; 𝑞 : B𝑛
ℎ → Bℎ is given

function such that the next condition holds.

Condition 26. The function 𝑞 : B𝑛
ℎ → Bℎ is continuous and

there exist positive constants 𝐿 𝑖(𝑞) such that
󵄩󵄩󵄩󵄩𝑞 (𝜓1, 𝜓2, . . . , 𝜓𝑛) − 𝑞 (𝜑1, 𝜑2, . . . , 𝜑𝑛)󵄩󵄩󵄩󵄩

⩽ 𝑛∑
𝑖=1

𝐿 𝑖 (𝑞) 󵄩󵄩󵄩󵄩𝜓𝑖 − 𝜑𝑖󵄩󵄩󵄩󵄩Bℎ
(58)

for every 𝜓𝑖, 𝜑𝑖 ∈ 𝐵𝑟[0,Bℎ] and assume 𝑁𝑞 = sup{‖𝑞(𝜓𝑡1 ,𝜓𝑡2 , . . . , 𝜓𝑡𝑛)‖ : 𝜓𝑖 ∈ 𝐵𝑟[0,Bℎ]}.
The next theorem includes the required conditions for

system (57) to be exactly controllable.

Theorem 24 (see [65]). Assume that the conditions of Theo-
rem 23 are satisfied. Further, if Condition 26 is satisfied, then
fractional system (57) is exactly controllable on 𝐼 provided that

(1 + 1𝛾𝑀2𝑀2
𝐵𝑏)((𝑀𝑏 + 𝐾𝑏𝑀𝐻) 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩Bℎ + (𝑀𝑏

+ 𝐾𝑏𝑀)𝑁𝑞 + 𝐾𝑏 (𝑀 + 1)𝑁𝑓 + 𝐾𝑏𝑁(−𝐴)𝜗𝑓𝑀
⋅ 𝑏𝛼𝜗𝛼𝜗 (1 + ∫𝑏

0
𝜇 (𝜉) 𝑑 (𝜉)) + 𝐾𝑏𝑁𝑔𝑀𝑏) < 𝑟,

Λ = max{𝑀𝑏(𝑀𝑏

𝑛∑
𝑖=1

𝐿 𝑖 (𝑞) + 𝐾𝑏𝜃) ,

𝐾𝑏(𝑀𝑏

𝑛∑
𝑖=1

𝐿 𝑖 (𝑞) + 𝐾𝑏𝜃)} < 1,

(59)

where

𝜃 = (1 + 1𝛾𝑀2𝑀2
𝐵𝑏)(𝑀 𝑛∑

𝑖=1

𝐿 𝑖 (𝑞)

+ 𝐿𝑓 (󵄩󵄩󵄩󵄩󵄩(−𝐴)−𝜗󵄩󵄩󵄩󵄩󵄩 + 𝑀𝑏𝛼𝜗𝛼𝜗 + 𝑀𝑏𝛼𝜗𝛼𝜗 ∫𝑏

0
𝜇 (𝜉) 𝑑 (𝜉))

+𝑀𝐿𝑔𝑏) .

(60)

As before, the proof of Theorem 24 is led by contraction
mapping.
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3.6. Controllability of Neutral Fractional Functional Equations
with Impulses and Infinite Delay. Authors of [67] investigate

the exact controllability of a class of fractional order neutral
integrodifferential equations with impulses and infinite delay
in the following form:

𝑐𝐷𝛼
𝑡 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)] = 𝐴 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)] + 𝐽1−𝛼𝑡 [𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥𝑡, 𝐻𝑥 (𝑡))] ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘, Δ𝑥 (𝑡𝑘) = 𝐼𝑘 (𝑥 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚, 𝑥0 = 𝜙 ∈ Bℎ, (61)

where
(i) 0 < 𝛼 < 1;
(ii) 𝑔 : 𝐽 ×Bℎ × 𝑋 → 𝑋 are given functions;

(iii) 𝐻𝑥(𝑡) = ∫𝑡
0
𝐺(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠, where 𝐺 ∈ 𝐶(𝐷, 𝑅+) is

the set of all positive continuous functions on 𝐷 ={(𝑡, 𝑠) ∈ 𝑅2 : 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑏};
(iv) 𝑥𝑏(𝜙; 𝑢) is the state value.
To formulate a set of sufficient conditions for exact

controllability of system (61) next conditions are necessary
[67].

Condition 27. There exists a constant𝑀 > 0 such that󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)󵄩󵄩󵄩󵄩𝐿(𝑋) ⩽ 𝑀, ∀𝑡 ∈ [0, 𝑏] . (62)

Condition 28. The function 𝑔 : 𝐽 × Bℎ → 𝑋 is continuous,
and there exists a constant 𝐿𝑔 > 0 such that󵄩󵄩󵄩󵄩𝑔 (𝑡1, 𝜓1) − 𝑔 (𝑡2, 𝜓2)󵄩󵄩󵄩󵄩𝑋

⩽ 𝐿𝑔 (󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝜓1 − 𝜓2󵄩󵄩󵄩󵄩Bℎ) ,
𝑡𝑖 ∈ 𝐽, 𝜓𝑖 ∈ Bℎ, 𝑖 = 1, 2.

(63)

Condition 29. There exist constants 𝜇1 > 0 and 𝜇2 > 0 such
that󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝜑, 𝑥) − 𝑓 (𝑡, 𝜓, 𝑦)󵄩󵄩󵄩󵄩𝑋

⩽ 𝜇1 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩Bℎ + 𝜇2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑋 ,
𝑡 ∈ 𝐽, 𝜑, 𝜓 ∈ Bℎ, 𝑥, 𝑦 ∈ 𝑋.

(64)

Condition 30. 𝐼𝑘 ∈ 𝐶(𝑋,𝑋), and there exist constants 𝜌 > 0
such that󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥) − 𝐼𝑘 (𝑦)󵄩󵄩󵄩󵄩𝑋 ⩽ 𝜌 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩𝑋 ,

𝑥, 𝑦 ∈ 𝑋, for each 𝑘 = 1, . . . , 𝑚. (65)

Conditions for exact controllability of the fractional
impulsive system (61) on 𝐽 are the content of the next
theorem.

Theorem 25 (see [67]). If the Conditions 25 and 27–30 are
satisfied and there exists 𝛾 > 0, then fractional impulsive
system (61) is exactly controllable on 𝐽 provided that

𝐿̂ = (1 + 1𝛾𝑀2
𝐵𝑀2) [𝑚𝑀𝜌 + 𝑚𝑀𝐿𝑔𝐶1 (2 + 𝜌)

+ 𝐿𝑔𝐶1 +𝑀𝑏 (𝜇1𝐶1 + 𝜇2𝐻)] < 1,
(66)

where 𝐶1 = sup0<𝜏<𝑏𝐶1(𝜏) and 𝐻 = sup𝑡∈[0,𝑏] ∫𝑡0 𝐺(𝑡, 𝑠)𝑑𝑠 <∞.

Moreover, in paper [67], the approximate controllability
of system (61) was discussed too and the results are presented
below.

Theorem 26 (see [67]). Assume that Conditions 27–30 hold
and that the family {𝑆𝛼(𝑡) : 𝑡 > 0} is compact. In addition,
assume that the function𝑓 is uniformly bounded and the linear
system (54) associated with the system (61) is approximately
controllable; then the nonlinear fractional control system with
infinite delay (61) is approximately controllable on [0, 𝑏].

Theorems 25 and 26 are proved in [67] by contraction
mapping theorem.

3.7. Controllability for a Class of Fractional Order Neutral
Evolution Control Systems. In [68], authors study the exact
controllability of fractional control systems with states and
controls in Hilbert spaces. Their investigations were started
from fractional nonlinear neutral functional differential
equation described as follows:

𝐶𝐷𝛼
𝑡 [𝑥 (𝑡) − ℎ (𝑡, 𝑥𝑡)] = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑥0 (𝜗) = 𝜙𝜗, 𝜗 ∈ [−𝑟, 0] . (67)

Some necessary notations for the above-mentioned sys-
tem were presented in Basic Notations Section. The other
ones are as follows.

(i) 𝑓, ℎ : [0,∞) × 𝐶 → 𝐻 are given functions satisfying
certain assumptions.

(ii) 𝜙 ∈ 𝐶.
(iii) 𝑥𝑡(𝜗) = 𝑥(𝑡 + 𝜗), for 𝜗 ∈ [−𝑟, 0].
Next conditions [68] are necessary to present conditions

for exact controllability for the nonlinear fractional control
system (67) by using the contraction mapping principle.

Condition 31. For each 𝑡 ∈ [0, 𝑏], the function 𝑓(𝑡, ⋅) : 𝐶 →𝐻 is continuous and for each 𝑥 ∈ 𝐶, the function 𝑓(⋅, 𝑥) :[0, 𝑏] → 𝐻 is strongly measurable.

Condition 32. There exists a constant 𝛼1 ∈ [0, 𝛼] and 𝑚 ∈𝐿1/𝛼1([0, 𝑏], 𝑅+) such that |𝑓(𝑡, 𝑥)| ⩽ 𝑚(𝑡) for all 𝑥 ∈ 𝐶 and
almost all 𝑡 ∈ [0, 𝑏].
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Condition 33. The function ℎ : [0, 𝑏] × 𝐶 → 𝐻 is continuous
and there exists a constant 𝛽 ∈ (0, 1) and 𝐻,𝐻1 > 0 such
that ℎ ∈ 𝐷(𝐴𝛽) and for any 𝑥, 𝑦 ∈ 𝐶, the function 𝐴𝛽ℎ(⋅, 𝑥)
is strongly measurable and 𝐴𝛽ℎ(𝑡, 𝑥) satisfies the Lipschitz
condition

󵄨󵄨󵄨󵄨󵄨𝐴𝛽ℎ (𝑡, 𝑥) − 𝐴𝛽ℎ (𝑡, 𝑦)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝐻 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 (68)

and the inequality
󵄨󵄨󵄨󵄨󵄨𝐴𝛽ℎ (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝐻1 (‖𝑥‖ + 1) . (69)

Condition 34. There exists a constant 𝛼2 ∈ [0, 𝛼] and 𝜌 ∈𝐿1/𝛼2([0, 𝑏], 𝑅+) such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)󵄨󵄨󵄨󵄨 ⩽ 𝜌 (𝑡) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 (70)

for any 𝑥, 𝑦 ∈ 𝐶([−𝑟, 𝑏],𝐻).
Then, the following theorem is true.

Theorem 27 (see [68]). If Conditions 25 and 31–34 are satis-
fied, then control system (67) is exactly controllable on 𝐽
provided that

[(𝑁 + 1) 󵄨󵄨󵄨󵄨󵄨𝐴−𝛽󵄨󵄨󵄨󵄨󵄨 𝐻 + Γ (1 + 𝛽)𝐶1−𝛽𝐻𝑏𝛼𝛽
𝛽Γ (1 + 𝛼𝛽)

+ 𝛼𝑁𝑁2𝑏(1+𝑎󸀠)(1−𝛼2)Γ (1 + 𝛼) (1 + 𝑎󸀠)1−𝛼2 ](𝑁2𝑀2
𝐵𝑁2𝛼𝑏(1+𝑎󸀠)(1−𝛼2)𝛾Γ (1 + 𝛼) (1 + 𝑎󸀠)1−𝛼2

+ 1) < 1,

(71)

where

𝑁 = sup
𝑡∈[0,∞)

|𝑇 (𝑡)| ≥ 1,
󵄨󵄨󵄨󵄨𝐴𝜂𝑇 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐶𝜂𝑡𝜂 , 𝐶𝜂 > 0, 𝜂 ∈ (0, 1] , 0 < 𝑡 ≤ 𝑏,

𝑁1 = ‖𝑚‖𝐿1/𝛼1∈[0,𝑏] ,
𝑁2 = 󵄩󵄩󵄩󵄩𝜌󵄩󵄩󵄩󵄩𝐿1/𝛼2∈[0,𝑏] ,
𝑎󸀠 = 𝛼 − 11 − 𝛼2 ∈ (−1, 0) .

(72)

𝑇(𝑡) is an analytic semigroup.

Moreover, the authors of [68] investigated the exact
controllability of system (67) with nonlocal condition defined
in the following way:

𝑥0 (𝜗) + (𝑔 (𝑥𝑡1 , . . . , 𝑥𝑡𝑛)) (𝜗) = 𝜙 (𝜗) , 𝜗 ∈ [−𝑟, 0] , (73)

where 𝑔 : 𝐶𝑛 → 𝐶 are given functions.
Additionally the authors assumed that function 𝑔 satisfies

the below-presented conditions.

Condition 35. There exists a constant 𝐿 > 0 such that
󵄩󵄩󵄩󵄩󵄩𝑔 (𝑥𝑡1 , . . . , 𝑥𝑡𝑛) − 𝑔 (𝑦𝑡1 , . . . , 𝑦𝑡𝑛)󵄩󵄩󵄩󵄩󵄩 ⩽ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 (74)

for 𝑥, 𝑦 ∈ 𝐶([−𝑟, 𝑏],𝐻).
Condition 36.

[𝑁𝐿 + (𝑁 + 1) 󵄨󵄨󵄨󵄨󵄨𝐴−𝛽󵄨󵄨󵄨󵄨󵄨 𝐻 + Γ (1 + 𝛽)𝐶1−𝛽𝐻𝑏𝛼𝛽
𝛽Γ (1 + 𝛼𝛽)

+ 𝛼𝑁𝑁2𝑏(1+𝑎󸀠)(1−𝛼2)Γ (1 + 𝛼) (1 + 𝑎󸀠)1−𝛼2 ]

⋅ (𝑁2𝑀2
𝐵𝑁2𝛼𝑏(1+𝑎󸀠)(1−𝛼2)𝛾Γ (1 + 𝛼) (1 + 𝑎󸀠)1−𝛼2 + 1) < 1.

(75)

Necessary conditions for the controllability of nonlinear
systems are established in the following theorem.

Theorem 28 (see [68]). If the conditions of Theorem 27 and
Conditions 35 and 36 are satisfied, then fractional system (67)
with nonlocal condition (73) is exactly controllable on 𝐽.

Theorems 27 and 28 are proved by contraction mapping
theorem.

4. Conclusions

The presented paper focuses on the controllability problem
of different types of dynamical systems described with frac-
tional order equation. Precisely, the paper presents the results
for the selected works from the scope of the investigated
controllability of fractional semilinear dynamical systems.
Generally speaking, at the beginning, we prove that the
semilinear system is controllable if the associated linear
system is controllable, too. Next, we pose some conditions
for the semilinear dynamical system. The main role is the
assumption about Lipschitz continuity. After scrutinizing we
observed a research methodology, which is used to solve
the controllability problem, not only approximately but also
exactly. Below is presented the methodology resulting from
indepth analysis of the papers concerning the controllability
of nonlinear systems:

(1) Showing a mathematical model of dynamical system
(2) Formulation of the assumptions concerning dynami-

cal systems
(3) Proof of solution existence of state space equation

using the fixed point theorem or generally fixed point
technique

(4) Proposition of a control transferring the initial state
to some neighbourhood of final state

(5) Formulation theorem containing necessary condi-
tions of controllability

(6) Proof of the above-mentioned theorem
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The controllability problems for dynamical systems require
the application of various mathematical concepts and meth-
ods taken directly from differential geometry, functional
analysis, topology, and matrix analysis. It should be noticed
that there are many unsolved problems for controllabil-
ity concepts for different types of dynamical systems. The
methodology presented in this paper may well be used in a
research on controllability of stochastic dynamical systems
[69], in a search of optimal control [70, 71], for systems with
constraints on control signal [11], and for dynamical systems
with delay in state and control [12, 72].
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