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This paper is concerned with the problem of designing suitable parameters for logarithmic quantizer such that the closed-loop
system is asymptotic convergent. Based on zoom strategy, we propose two methods for quantizer parameters design, under which
it ensures that the state of the closed-loop system can load in the invariant sets after some certain moments.Then we obtain that the
quantizer is unsaturated, and thus the quantization errors are bounded under the time-varying logarithm quantization strategy. On
that basis, we obtain that the closed-loop system is asymptotic convergent. A benchmark example is given to show the usefulness
of the proposed methods, and the comparison results are illustrated.

1. Introduction

With the continuous improvement of the communication
capability and reliability of the network, the data in the con-
trol system is transmitted through the network increasingly.
The network bandwidth, although it may be very large, is
always limited, so the data quantization is inevitable. At
present, zoom strategy proposed in [1, 2] is a popular method
in quantized control system.

Based on zoom strategy, literature [3] analyzes the sta-
bilization problem for linear systems with multidimensional
state and one-dimensional input. The main contribution of
that paper is the trade-off between the quantized controller
complexity and the system performance. Literature [4] pro-
poses a unified framework to describe both the network con-
ditions and the state quantization of linear systems. A model
describing the nonideal network conditions and input/output
state quantization is given by [5], and the problem of the
quantized output feedback controller is designed there to
asymptotically stabilize the closed-loop system. Hereafter,
zoom strategy is widely used in quantized feedback stabiliza-
tion problem.

As for the system affected by data quantization and time-
delay, literature [6] proves that under some conditions, the
closed-loop system can be global asymptotically stabilized

via a dynamic quantization strategy by integral mean value
theorem. Literature [7] designs an optimal dynamic quan-
tizer which is able to minimize the maximum output error
between the quantized system and unquantized systems.
Supposing that the quantizer is to be saturated, two types of
quantizer are discussed in [8] such that the state of the closed-
loop system starting from a neighborhood of the origin expo-
nentially converges to a bounded region. If the closed-loop
system is affected by data quantization and packet dropout,
we study the quantized stabilization of linear discrete-time
systems and discrete-time and continuous-time fuzzy sys-
tems, respectively, in [9] and [10]. Assuming that the system
is relating to quantization and disturbance, the related results
can be shown in [11–13]. In literature [11], the authors propose
two specific control strategies that yield the input-to-state
stability of the closed-loop system based on quantized state.
When the sampled state/output can only be obtained by
the controller, literature [12] designs the full state feedback
controller and the output feedback controller to stabilize the
system. We generalize the results of [12] to the case that the
system is also affected by packet dropout in [13]. For the stabi-
lization problem of the closed-loop system affected by quan-
tization and saturation, literature [8, 14] gets some results.

Zoom strategy is also combined with other methods to
stabilize the closed-loop system, such as sliding-mode control
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method [15], Kalman filter [16], scheduling protocol [17], and
event-triggered control [18–20]. Furthermore, it is used to
stabilize different kinds of systems, such as switched system
[21–24], multiagent system [25, 26], and interconnected
system [27]. More related works can be seen in review of
literature [28, 29].

In summary, zoom strategy is a popular method to adjust
the quantizer parameters, especially for uniform quantizer,
such that the quantized control system is stable. As we
know, logarithmic quantizer is another kind of commonly
used quantizer [30, 31]. Compared with uniform quantizer,
logarithmic quantizer has better performance near the origin.
Consider this advantage, some papers adopt logarithmic
quantization method to quantize the system state or output.
Recent results include literature [32–36]. However, most
of the existing papers assume that the parameters of the
logarithmic quantizer are given previously. Few articles study
the parameters design for logarithmic quantizer, which is the
main research of this paper.

In this paper, we will propose two design methods for the
parameters of the logarithmic quantizer. By zoom strategy, we
design the logarithmic quantizer parameters including V0, 𝛿,
and quantization density 𝜌, which determine the saturation
boundary, dead zone, and the quantization intervals of the
quantizer. Under the parameters designed, we guarantee the
unsaturation of the quantizer and the asymptotic conver-
gence of the closed-loop system.

The rest of this paper is organized as follows. We describe
the problem discussed here in Section 2. Two designmethods
for the parameters of the logarithmic quantizer are illustrated
in Sections 3 and 4, respectively. A well-known benchmark
example is adopted in Section 5 to show the effectiveness of
the design methods, and their comparison is also illustrated
there. Finally, some conclusions are given in Section 6.

Notation. R𝑛 denotes the 𝑛-dimensional Euclidean space.
R+ and N denote the set of positive real numbers and
positive integers, respectively. We denote by ‖ ⋅ ‖ the standard
Euclidean norm inR𝑛 and the corresponding inducedmatrix
norm inR𝑛×𝑛.𝜆max(𝑃) and𝜆min(𝑃) denote themaximumand
minimum eigenvalue of matrix 𝑃, respectively. 𝐴⊤ ∈ R𝑚×𝑛

denotes the transposed of matrix 𝐴 ∈ R𝑛×𝑚. The signal ⌈𝑦⌉
indicates the least integer not less than 𝑦. 0𝑛×1 denotes zero
vector with dimension 𝑛 × 1.
2. Problem Formulation

This paper considers the following linear time-invariant
discrete systems:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (1)

where 𝑥 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑚 is the control input,
and 𝐴 and 𝐵 are constant matrices with proper dimensions.
In the following, we assume that the open-loop system is
unstable; that is, ‖𝐴‖ > 1.

Assuming that the network is located at the sensor side,
thus the controller can only receive the quantized values of
the system states due to the limited bandwidth. Hence the
controller can be illustrated as

𝑢 (𝑘) = 𝐾𝑄 (𝑥 (𝑘)) , (2)

where 𝐾 is the feedback matrix to be designed and 𝑄(⋅) is a
logarithmic quantizer defined as

𝑄 (𝑥 (𝑘)) = [𝑞 (𝑥1 (𝑘)) , . . . , 𝑞 (𝑥𝑛 (𝑘))]⊤ . (3)

Suppose that the quantization level of the quantizer is equal
to 2𝑁 + 1, 𝑁 ∈ N. For any 𝑖 ∈ {1, 2, . . . , 𝑛}, if 𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1),𝑗 ∈ N ∪ {0}, where 𝑘𝑗 will be designed below, we define

𝑞 (𝑥𝑖 (𝑘)) =

{{{{{{{{{{{{{{{{{{{{{{{

V𝑗 if 𝑥𝑖 (𝑘) ∈ [ 11 + 𝛿V𝑗, +∞)
V𝑗+𝑚 if 𝑥𝑖 (𝑘) ∈ [ 11 + 𝛿V𝑗+𝑚, 11 − 𝛿V𝑗+𝑚) , 𝑚 ∈ {1, 2, . . . , 𝑁 − 1}
0 if 𝑥𝑖 (𝑘) ∈ [0, 11 + 𝛿V𝑗+𝑁−1)
−𝑞 (−𝑥𝑖 (𝑘)) if 𝑥𝑖 (𝑘) ∈ (−∞, 0] ,

(4)

with 𝛿 ∈ (0, 1) and V𝑗+1 = 𝜌V𝑗, V0 > 0, in which the
quantization density 𝜌 is given by 𝜌 = (1 − 𝛿)/(1 + 𝛿) ∈(0, 1). Obviously, 𝛿, 𝜌, and V0 are the critical parameters
of the logarithmic quantizer, which are assumed to be
undetermined.

The aim of this paper is to design the quantizer param-
eters 𝛿, 𝜌, and V0 based on zoom strategy to ensure the
unsaturation of the quantizer; that is, ‖𝑥(𝑘)‖ ≤ (1/(1 − 𝛿))V𝑗,𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N ∪ {0}. From which we can see that the

quantization errors are bounded and the system state tends to
zero when 𝑘 tends to infinity according to the definition of V𝑗.
The main innovation of this paper is that the zoom strategy,
which is always adopted to discuss the properties of the
uniform quantizer, is used here to determine the parameters
of the logarithmic quantizer.

In what follows, we will propose two methods for quan-
tizer parameters design and compare them in simulation
example.



Journal of Control Science and Engineering 3

3. First Method for Quantizer
Parameters Design

If there exist a positive-definite matrix 𝑃 and a feedback
matrix𝐾 such that

Π fl 𝑃 − (𝐴 + 𝐵𝐾)⊤ 𝑃 (𝐴 + 𝐵𝐾) > 0, (5)

that is, the systemcan be stabilized by standard state feedback,
then the asymptotic convergence of the closed-loop system
can be guaranteed by the quantizer parameters designed in
the following theorem.

Theorem 1. For any given matrices 𝐾, 𝑃, and Π defined by
(5) and the quantization level 2𝑁 + 1, we select quantizer
parameters 𝛿 and 𝜌 satisfying

𝜌 = √𝜆max (𝑃)𝜆min (𝑃)Υ√𝑛𝛿 (1 + 𝜀) < 1, (6)

where 𝜀 is an arbitrary given positive constant and Υ is defined
by Υ = 2‖𝐵𝐾𝑃(𝐴 + 𝐵𝐾)‖/𝜆min(Π). Given a constant 𝜂 ∈ N,
if 𝛿 and 𝜌 selected above satisfy the inequalities 𝛿 ≥ 𝜌𝑁 and𝜌𝜂 < ‖𝐴‖−1, then we have ‖𝑥(𝑘)‖ ≤ (1/(1 − 𝛿))V𝑗 for any 𝑘 ∈[𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N ∪ {0}, where 𝑘0 and V0 are determined by (9)
below and 𝑘𝑗+1 fl 𝑘𝑗 + 𝜏 fl 𝑘𝑗 + ⌈𝜏̃⌉ with

𝜏̃ = 𝜆min (𝑃) − 𝜆max (𝑃) (Υ√𝑛 (1 + 𝜀) 𝛿)2𝜆min (Π) (Υ√𝑛𝛿)2 𝜀 (1 + 𝜀) . (7)

Hence we have lim𝑘→∞𝑥(𝑘) = 0𝑛×1; that is, the closed-loop
system is asymptotic convergent.

Remark 2. If the bandwidth of the network is large enough
such that 𝑁 ≥ ln 𝛿/ ln 𝜌, then the condition 𝛿 ≥ 𝜌𝑁 can
always be guaranteed. Moreover, the inequality 𝜌𝜂 < ‖𝐴‖−1
must be ensured if 𝜂 is selected large enough based on 𝜌 < 1.
Comprehensively, if the bandwidth of the network and the
constant 𝜂 are set suitably, we can always find the quantizer
parameters satisfying the conditions of the above theorem.

Remark 3. Based on the relationship of 𝜌 and 𝛿, that is, 𝜌 =(1 − 𝛿)/(1 + 𝛿), we can determine their values by the equality
(6).

Proof.

Stage 1 (zooming-out). In this stage, the system is as open-
mode; that is, 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘). The aim of this stage is to
determine the value of V0 and a moment where the system
state is unsaturated.

For any given constants Ṽ0 ∈ R+, 𝜂 ∈ N, and 𝜌 defined by
(6), we set Ṽ(𝑘), ∀𝑘 ∈ N, as

Ṽ (𝑘 + 1) = 1𝜌𝜂 Ṽ (𝑘) ,
Ṽ (0) = Ṽ0.

(8)

If 𝜌 satisfies 𝜌𝜂 < ‖𝐴‖−1 < 1, then there must exist a moment𝑘0 such that

󵄩󵄩󵄩󵄩𝑥 (𝑘0)󵄩󵄩󵄩󵄩 ≤ √ 𝜆min (𝑃)𝜆max (𝑃)
Ṽ (𝑘0)1 − 𝛿 fl √ 𝜆min (𝑃)𝜆max (𝑃)

V01 − 𝛿 , (9)

and thus

𝑥 (𝑘0) ∈ 𝑅0
fl {𝑥 (𝑘) : 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) ≤ ( V01 − 𝛿)

2 𝜆min (𝑃)} . (10)

Remark 3.Thedefinition of Ṽ(𝑘),∀𝑘 ∈ N∪{0}, is to ensure that
it can be represented as Ṽ(𝑘) = 𝜌𝑚Ṽ0, where𝑚 = 𝑙𝜂, 𝑙 ∈ N∪{0}.
On the basis of that, we can ensure that Ṽ(𝑘), ∀𝑘 ∈ N ∪ {0}, is
the quantized value of the logarithmic quantizer.

Stage 2 (zooming-in). Let the zooming-out stage finish at the
moment 𝑘0 and the system is transferred to closed-mode.The
purpose of this stage is to design the quantizer parameters
and 𝑘𝑗, 𝑗 ∈ N ∪ {0}, such that ‖𝑥(𝑘)‖ ≤ (1/(1 − 𝛿))V𝑗 for
any 𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1). To this end, we first illustrate that 𝑅0 is an
invariant set.

If 𝑥(𝑘) ∈ 𝑅0, then ‖𝑥(𝑘)‖ ≤ (1/(1 − 𝛿))V0. Thus we obtain|𝑥𝑖(𝑘)| ≤ (1/(1 − 𝛿))V0 which results in that
󵄨󵄨󵄨󵄨𝑞 (𝑥𝑖 (𝑘)) − 𝑥𝑖 (𝑘)󵄨󵄨󵄨󵄨
≤ max {( 11 − 𝛿 − 1) V0, (1 − 11 + 𝛿) V0, 11 + 𝛿V𝑁−1}
= 𝛿1 − 𝛿V0,

(11)

where the last equality is obtained by 𝛿 ≥ 𝜌𝑁. Hence, we get
‖𝑒 (𝑘)‖ ≤ √𝑛 𝛿1 − 𝛿V0, (12)

with 𝑒(𝑘) fl 𝑄(𝑥(𝑘)) − 𝑥(𝑘).
Let Lyapunov function as 𝑉(𝑘) = 𝑥⊤(𝑘)𝑃𝑥(𝑘), then it is

easy to get

Δ𝑉 (𝑥 (𝑘)) = 𝑥⊤ (𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘)
= 𝑥⊤ (𝑘) [(𝐴 + 𝐵𝐾)⊤ 𝑃 (𝐴 + 𝐵𝐾) − 𝑃] 𝑥 (𝑘)
+ 2𝑒⊤ (𝑘) (𝐵𝐾)⊤ 𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

≤ −𝜆min (Π) ‖𝑥 (𝑘)‖2
+ 2 ‖𝐵𝐾𝑃 (𝐴 + 𝐵𝐾)‖ ‖𝑥 (𝑘)‖√𝑛 𝛿1 − 𝛿V0

= −𝜆min (Π) ‖𝑥 (𝑘)‖ (‖𝑥 (𝑘)‖ − Υ√𝑛 𝛿1 − 𝛿V0) .

(13)

For an arbitrary given positive constant 𝜀, if
‖𝑥 (𝑘)‖ ≥ Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀) , (14)
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then we get

Δ𝑉 (𝑥 (𝑘)) ≤ −𝜆min (Π) ‖𝑥 (𝑘)‖ Υ√𝑛 𝛿1 − 𝛿V0𝜀. (15)

Moreover, by (13) we know that the set B, defined by

B fl {𝑥 (𝑘) | 𝑥 (𝑘) ≤ Υ√𝑛 𝛿1 − 𝛿V0} , (16)

is an invariant set. Define B̃ as

B̃ fl {𝑥 (𝑘) | 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘)
≤ 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0)

2} ,
(17)

and it is obvious that B̃ ⊃ B. If𝛿 selected satisfies the following
inequality:

√𝜆max (𝑃)𝜆min (𝑃)Υ√𝑛𝛿 (1 + 𝜀) < 1, (18)

we can see that 𝑅0 ⊃ B̃ ⊃ B, and thus 𝑅0 is an invariant set.
Next, we will show that there exists a moment 𝑘1 fl 𝑘0 +𝜏

such that ‖𝑥(𝑘1)‖ ≤ (1/(1 − 𝛿))V1. Let
𝜌 = √𝜆max (𝑃)𝜆min (𝑃)Υ√𝑛𝛿 (1 + 𝜀) , (19)

and we can claim that

𝑥⊤ (𝑘1) 𝑃𝑥 (𝑘1) ≤ 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀))
2 . (20)

In fact, if (20) does not hold, we get

𝑥⊤ (𝑘1) 𝑃𝑥 (𝑘1) > 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀))
2 . (21)

Consider that the set 𝑅̃1, defined as

𝑅̃1 fl {𝑥 (𝑘) : 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘)
≤ 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀))

2} ,
(22)

is an invariant set based on 𝑅̃1 ⊃ B. Combined with (21) we
know that

𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) > 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀))
2

(23)

holds for any 𝑘 ∈ [𝑘0, 𝑘1]. Hence we get
‖𝑥 (𝑘)‖ > Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀) , (24)

for any 𝑘 ∈ [𝑘0, 𝑘1]. Similar to the analysis of (13)–(15), we get

Δ𝑉 (𝑥 (𝑘0 + 𝜏 − 𝑖))
= 𝑥⊤ (𝑘0 + 𝜏 − 𝑖 + 1) 𝑃𝑥 (𝑘0 + 𝜏 − 𝑖 + 1)
− 𝑥⊤ (𝑘0 + 𝜏 − 𝑖) 𝑃𝑥 (𝑘0 + 𝜏 − 𝑖)

≤ −𝜆min (Π) 󵄩󵄩󵄩󵄩𝑥 (𝑘0 + 𝜏 − 𝑖)󵄩󵄩󵄩󵄩 Υ√𝑛 𝛿1 − 𝛿V0𝜀
< −𝜆min (Π) (Υ√𝑛 𝛿1 − 𝛿V0)

2 𝜀 (1 + 𝜀) ,

(25)

for any 𝑖 ∈ {1, 2, . . . , 𝜏}. Hence it is obtained that

𝑥⊤ (𝑘0 + 𝜏) 𝑃𝑥 (𝑘0 + 𝜏) − 𝑥⊤ (𝑘0) 𝑃𝑥 (𝑘0)
< −𝜆min (Π) (Υ√𝑛 𝛿1 − 𝛿V0)

2 𝜀 (1 + 𝜀) 𝜏
≤ −𝜆min (Π) (Υ√𝑛 𝛿1 − 𝛿V0)

2 𝜀 (1 + 𝜀) 𝜏̃
= 𝜆max (𝑃) (Υ√𝑛 (1 + 𝜀) 𝛿)2 ( V01 − 𝛿)

2

− 𝜆min (𝑃) ( V01 − 𝛿)
2 .

(26)

However, (10) and (21) give that

𝑥⊤ (𝑘0 + 𝜏) 𝑃𝑥 (𝑘0 + 𝜏) − 𝑥⊤ (𝑘0) 𝑃𝑥 (𝑘0)
> 𝜆max (𝑃) (Υ√𝑛 (1 + 𝜀) 𝛿)2 ( V01 − 𝛿)

2

− 𝜆min (𝑃) ( V01 − 𝛿)
2 ,

(27)

which contradicts formula (26). Therefore, the claim (20)
holds; that is,

𝑥⊤ (𝑘1) 𝑃𝑥 (𝑘1) ≤ 𝜆max (𝑃) (Υ√𝑛 𝛿1 − 𝛿V0 (1 + 𝜀))
2

= 𝜆min (𝑃) ( 𝜌V01 − 𝛿)
2

= 𝜆min (𝑃) ( V11 − 𝛿)
2 .

(28)

We define the set 𝑅1 as
𝑅1 fl {𝑥 (𝑘) : 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) ≤ ( V11 − 𝛿)

2 𝜆min (𝑃)} . (29)

Similar to the analysis of 𝑅0, we know that 𝑅1 is an invariant
set. Thus it is easy to see that 𝑥(𝑘) ∈ 𝑅1, ∀𝑘 ∈ [𝑘1, 𝑘2).
Furthermore, similar analysis gives

𝑥 (𝑘) ∈ 𝑅𝑗
fl {𝑥 (𝑘) : 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) ≤ ( V𝑗1 − 𝛿)

2 𝜆min (𝑃)} , (30)
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for any 𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N ∪ {0}. So far, we know that‖𝑥(𝑘)‖ ≤ V𝑗/(1 − 𝛿), ∀𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N ∪ {0}; that is,
the quantizer is unsaturated for any 𝑘 ∈ [𝑘0, +∞). Hence, we
get lim𝑘→∞‖𝑥(𝑘)‖ = 0 and thus lim𝑘→∞𝑥(𝑘) = 0𝑛×1, which
completes the proof.

4. Second Method for Quantizer
Parameters Design

If there are matrices 𝑃 and 𝐾 such that the following ine-
quality holds

Λ fl 𝑃 − 2 (𝐴 + 𝐵𝐾)⊤ 𝑃 (𝐴 + 𝐵𝐾) > 0, (31)

then the asymptotic convergence of the closed-loop system
can also be obtained by the quantizer parameters designed in
Theorem 4.

Theorem 4. For any given matrices 𝐾, 𝑃, and Λ defined by
(31) and the quantization level 2𝑁+1, quantizer parameters 𝛿
and 𝜌 are selected satisfying

𝜌 = √𝜆max (𝑃)𝜆min (𝑃)√Γ (1 + 𝜀)√𝑛𝛿 < 1, (32)

where 𝜀 is a positive constant and Γ is defined by Γ =‖(𝐵𝐾)⊤𝑃𝐵𝐾‖/𝜆min(Λ). Given a constant 𝜂 ∈ N, if 𝛿 and 𝜌
selected above satisfy 𝛿 ≥ 𝜌𝑁 and 𝜌𝜂 < ‖𝐴‖−1, then we get‖𝑥(𝑘)‖ ≤ (1/(1−𝛿))V𝑗 for any 𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N∪{0}, where𝑘0 and V0 are determined by (9) and 𝑘𝑗+1 fl 𝑘𝑗 +𝜔 fl 𝑘𝑗 + ⌈𝜔̃⌉
with

𝜔̃ = 𝜆min (𝑃) − 𝜆max (𝑃) Γ (1 + 𝜀) 𝑛𝛿2𝜆min (Λ) Γ𝜀𝑛𝛿2 . (33)

Then we have lim𝑘→∞𝑥(𝑘) = 0𝑛×1.

Proof.

Stage 1 (zooming-out). The same as the proof of Theorem 1,
we get a moment 𝑘0 and a positive constant V0 such that

𝑥 (𝑘0) ∈ 𝑅0
fl {𝑥 (𝑘) : 𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) ≤ ( V01 − 𝛿)

2 𝜆min (𝑃)} . (34)

Note that the positive-definite matrix 𝑃 used here is defined
by (31) rather than (5); thus the definitions of the sets 𝑅0 and𝑅0 are different from each other.

Stage 2 (zooming-in). If 𝛿 and 𝜌 selected satisfy 𝛿 ≥ 𝜌𝑁 and𝑥(𝑘) ∈ 𝑅0, ∀𝑘 ∈ N, then we know that ‖𝑒(𝑘)‖ ≤ √𝑛(𝛿/(1 −𝛿))V0 holds, and thus

Δ𝑉 (𝑥 (𝑘))
≤ 𝑥⊤ (𝑘) [2 (𝐴 + 𝐵𝐾)⊤ 𝑃 (𝐴 + 𝐵𝐾) − 𝑃] 𝑥 (𝑘)
+ 𝑒⊤ (𝑘) (𝐵𝐾)⊤ 𝑃𝐵𝐾𝑒 (𝑘)

≤ −𝜆min (Λ) ‖𝑥 (𝑘)‖2
+ 󵄩󵄩󵄩󵄩󵄩(𝐵𝐾)⊤ 𝑃𝐵𝐾󵄩󵄩󵄩󵄩󵄩 (√𝑛 𝛿1 − 𝛿V0)

2 .

(35)

If

‖𝑥 (𝑘)‖ ≥ √Γ (1 + 𝜀)√𝑛 𝛿1 − 𝛿V0, (36)

then we have

Δ𝑉 (𝑥 (𝑘)) ≤ −𝜆min (Λ) Γ𝜀 (√𝑛 𝛿1 − 𝛿V0)
2 . (37)

Due to that the set B, defined by

B fl {𝑥 (𝑘) | 𝑥 (𝑘) ≤ √Γ√𝑛 𝛿1 − 𝛿V0} , (38)

is an invariant one; if we select 𝛿 small enough such that

√𝜆max (𝑃)𝜆min (𝑃)√Γ (1 + 𝜀)√𝑛𝛿 < 1, (39)

then we get 𝑅0 ⊃ B and thus 𝑅0 is an invariant set. Definition
of 𝜌 is as in (32) and 𝑘1 = 𝑘0 + 𝜔; we claim that

𝑥⊤ (𝑘1) 𝑃𝑥 (𝑘1) ≤ 𝜆max (𝑃) Γ (1 + 𝜀) 𝑛 ( 𝛿1 − 𝛿V0)
2 . (40)

In fact, if (40) does not hold, we know that

𝑥⊤ (𝑘) 𝑃𝑥 (𝑘) > 𝜆max (𝑃) Γ (1 + 𝜀) 𝑛 ( 𝛿1 − 𝛿V0)
2 , (41)

and thus

‖𝑥 (𝑘)‖ > √Γ (1 + 𝜀) 𝑛 ( 𝛿1 − 𝛿V0) (42)

holds for any 𝑘 ∈ [𝑘0, 𝑘1]. Based on (37) we get

Δ𝑉 (𝑥 (𝑘0 + 𝜔 − 𝑖)) < −𝜆min (Λ) Γ𝜀 (√𝑛 𝛿1 − 𝛿V0)
2 , (43)

for any 𝑖 ∈ {1, 2, . . . , 𝜔}. Hence, the following inequality can
be given

𝑥⊤ (𝑘0 + 𝜏) 𝑃𝑥 (𝑘0 + 𝜏) − 𝑥⊤ (𝑘0) 𝑃𝑥 (𝑘0)
< −𝜆min (Λ) Γ𝜀 (√𝑛 𝛿1 − 𝛿V0)

2 𝜔̃
= 𝜆max (𝑃) Γ (1 + 𝜀) 𝑛𝛿2 ( V01 − 𝛿)

2

− 𝜆min (𝑃) ( V01 − 𝛿)
2 .

(44)



6 Journal of Control Science and Engineering

But (34) and (41) give that

𝑥⊤ (𝑘0 + 𝜏) 𝑃𝑥 (𝑘0 + 𝜏) − 𝑥⊤ (𝑘0) 𝑃𝑥 (𝑘0)
> 𝜆max (𝑃) Γ (1 + 𝜀) 𝑛𝛿2 ( V01 − 𝛿)

2

− 𝜆min (𝑃) ( V01 − 𝛿)
2

(45)

which results in a contradiction. Thus the claim (40) holds,
combined with the definition of 𝜌 which results in

𝑥⊤ (𝑘1) 𝑃𝑥 (𝑘1) ≤ 𝜆min (𝑃) ( V11 − 𝛿)
2 . (46)

Similar to the proof ofTheorem 1, we obtain the unsaturation
of the quantizer and the asymptotic convergence of the
closed-loop system. This completes the proof.

5. Simulation

In this section, we adopt a well-known benchmark exam-
ple to illustrate the effectiveness of the main results. Let
discretization interval be 0.2; we convert the continuous-
time linearized model of the benchmark to discrete-time one
shown as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (47)

with

𝐴 fl
[[[[[
[

1.4381 0.0864 0.9830 −0.5676
−0.0972 0.4477 −0.0553 0.1009
0.1047 0.4929 0.2662 0.4775
−0.0437 0.3930 −0.1274 0.6201

]]]]]
]
,

𝐵 fl
[[[[[
[

0.0645 −0.3382
0.7823 0.0132
0.5413 −0.3478
0.4578 0.0507

]]]]]
]
.

(48)

Case 1 (𝑁 = 11).
Method I. Obviously, the above system is unstable but stabi-
lizable. Thus we can design a feedback matrix 𝐾 as

𝐾 = [0.2260 −0.7118 0.1752 −0.72042.6884 0.1380 2.1328 −1.1746] (49)

and a positive-definite 𝑃 by LMI toolbox in MATLAB such
that the inequality (5) holds. By the definition of matrix Π,
direct calculations result in Υ = 0.9070, 𝛿 = 0.1043, 𝜌 =0.8111, and 𝜏 = 13, where 𝜀 is selected as 0.5. Let 𝜂 = 3;
we obtain that 𝛿 ≥ 𝜌𝑁 and 𝜌𝜂 < ‖𝐴‖−1 hold. Let 𝑥0 =[9, 0, 10, 20]⊤ and Ṽ0 = 10; we get 𝑘0 = 6 by Figure 1, where

𝑀(𝑘) fl √ 𝜆min (𝑃)𝜆max (𝑃)
Ṽ (𝑘)1 − 𝛿 . (50)
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Figure 1: Selection of 𝑘0.
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Figure 2: Unsaturation of the quantizer when 𝑁 = 11 under
method I.

Let 𝑘𝑗+1 fl 𝑘𝑗 + 𝜏, ∀𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1), 𝑗 ∈ N ∪ {0}; we obtain
that ‖𝑥(𝑘)‖ ≤ (1/(1 − 𝛿))V𝑗 for any 𝑘 ∈ [𝑘𝑗, 𝑘𝑗+1) and
lim𝑘→∞𝑥(𝑘) = 0𝑛×1, which are represented in Figures 2 and
3, respectively.

Method II. In fact, if 𝐾 and 𝑃 are selected as the ones in
Method I, we know that the matrix Λ defined by (31) is
positive-definite. If 𝜀 = 0.5 and 𝜂 = 11, by simple calculations
we get Γ = 20.9343, 𝛿 = 0.0294, and 𝜌 = 0.9428. Obviously,
the condition 𝜌𝜂 < ‖𝐴‖−1 is satisfied but 𝛿 ≥ 𝜌𝑁 is violated.
Hence, Theorem 4 is invalid when𝑁 = 11.
Case 2 (𝑁 = 60).
Method I. If the matrices 𝐾 and 𝑃 and the variables 𝜀 and𝜂 are selected as the ones in Case 1, then the corresponding
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Figure 3: Asymptotic convergence of the system when 𝑁 = 11
under method I.
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Figure 4: Unsaturation of the quantizer when 𝑁 = 60 under
method I.

variables calculated are the same as above. Due to 𝑁 =60 > 11, the conditions on Theorem 1 are satisfied. If𝑥0 = [9, 0, 10, 20]⊤ and Ṽ0 = 10, we also get 𝑘0 =6. The unsaturation of the quantizer and the asymptotic
convergence of the closed-loop system are shown in Figures
4 and 5, respectively.

Method II. If𝐾,𝑃, 𝜀, and 𝜂 are selected as the ones inCase 1, we
get that Γ, 𝛿, and 𝜌 are the same as above. If𝑁 = 60, then the
conditions on Theorem 4 are satisfied. If 𝑥0 = [9, 0, 10, 20]⊤
and Ṽ0 = 10, then we get 𝑘0 = 6 and 𝜔 = 4. By Figures 6 and
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Figure 5: Asymptotic convergence of the system when 𝑁 = 60
under method I.
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Figure 6: Unsaturation of the quantizer when 𝑁 = 60 under
method II.

7, we know that the quantizer is unsaturated and the closed-
loop system is asymptotic convergent.

Comparison. From Case 1, we obtain that the first design
method has a wider applicability than the second one. When𝑁 is large enough, twomethods proposed here can guarantee
the unsaturation of the quantizer and the asymptotic conver-
gence of the closed-loop system according to the discussions
of Case 2. Note that the decreasing period 𝜔 of the second
method is less than the one, that is, 𝜏, of the first method.
However, the decreasing rate 𝜌 of the second method is



8 Journal of Control Science and Engineering

0 50 100 150 200 250

0

100

200

0 50 100 150 200 250

0

50

−100

−150

−100

−50

k

k

x2(k)

x1(k)

x4(k)

x3(k)

Figure 7: Asymptotic convergence of the system when 𝑁 = 60
under method II.

larger than the one of the first method. Comprehensively,
the convergence speed of the closed-loop system under the
secondmethod is slower than the one under the first method.
The reason of this is that the second method adopts the
following inequality:

𝐸𝑇𝑃𝐹 + 𝐹𝑇𝑃𝐸 ≤ 𝐸𝑇𝑃𝐸 + 𝐹𝑇𝑃𝐹, (51)

with positive-definite matrix 𝑃 and matrices 𝐸 and 𝐹 to
amplify the formula, but the first method avoids it.

6. Conclusion

This paper proposed two design methods for logarithmic
quantizer parameters. Under both methods, we ensured the
unsaturation of the quantizer and the asymptotic conver-
gence of the closed-loop system. Further research includes
designing the logarithmic quantizer parameters when the
system is affected by network-induced imperfection, like
time-delay, packet dropout, and so on.
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