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All manufacturing engineers are faced with a lot of difficulties and high expenses associated with grinding processes of AZ61. For
that reason, manufacturing engineers waste a lot of time and effort trying to reach the required surface roughness values according
to the design drawing during the turning process. In this paper, an artificial neural network (ANN) modeling is used to estimate
and optimize the surface roughness (Ra) value in cutting conditions of AZ61 magnesium alloy. A number of ANN models were
developed and evaluated to obtain the most successful one. In addition to ANN models, traditional regression analysis was also
used to build a mathematical model representing the equation required to obtain the surface roughness. Predictions from the
model were examined against experimental data and then compared to the ANN model predictions using different performance
criteria such as the mean absolute error, mean square error, and coefficient of determination.

1. Introduction

Magnesium alloys are often used in many industrial ap-
plications such as the manufacturing of several components
used in the aerospace and modern automobiles industry.
Also, magnesium block engines have been widely used in
some high-performance vehicles. In those applications, the
final surface roughness of machined components is playing
a major factor in the acceptance of those parts.

Many researchers have investigated the optimization of
cutting parameters for the prediction of surface roughness as
a key performance measure. Asiltürk used ANN (artificial
neural network) and MRM (multiregression models) to
predict the surface roughness of steel AISI 1040. .ey de-
veloped their own models and used ANN to optimize the

cutting parameters formulating the surface roughness as
objective function. .ey used cutting speed, feed rate, depth
of cut, and nose radius as optimized parameters. Surface
roughness is characterized by the mean (Ra) and total (Rt)
values of the recorded roughness at different locations on the
produced surface. .ey conducted many experiments, each
with a different set of the cutting parameters, and the
corresponding Ra and Rt values were reported. Obtained
results were then used to train an ANN model. Mean
squared error of approximately 0.003% was achieved which
outperforms error rates reported in the early literature and
are claimed to be suitable for robust prediction of the surface
roughness in industrial settings [1].

Another approach can be found in the work of Mokhtariet
Homami et al. [2], and they employed a design of experiment
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(DOE) technique based on a full factorial design to determine
the number of experiment and the corresponding parameters.
.ey represented their results in a statistical analysis, and they
used ANN to model the system. Optimization was done using
genetic algorithm (GA). .e conclusion of their work was that
the main factors affecting the flank wear and the produced
surface roughness are the feed rate, nose radius, and approach
angle, while the cutting speed had themajor effect on flankwear.
Optimized values of the cutting conditions were attained and
showed a significant reduction in the surface roughness values.

Jafarian et al. [3] used GA and particle swarm optimi-
zation (PSO) techniques to determine optimal cutting pa-
rameters in turning operations with a multiobjective
optimization aiming to minimize surface roughness and
cutting forces and maximize tool life. .ey discussed their
results claiming that training ANN using GA gave superior
results than those reported in the literature with high ac-
curacy and gives the flexibility of analyzing the effect of each
parameter separately on the output.

.e PSO technique was also utilized in the work of Karpat
and Özel [4], and they used the Pareto optimal frontier to
select optimized parameters to maximize material removal
rate (MRR) without affecting the induced stresses or the final
surface finish of the produced components. .ey obtained
good results making use of dynamic-neighborhood PSO ap-
proach in solving complex turning optimization problems.

A different approach was utilized in the work of Natarajan
et al. [5] to test the reliability of ANN in the prediction of
surface roughness values when machining Brass C26000
material in dry cutting condition on a CNC turning machine.
Surface roughness has been measured and compared to the
experimental data and concluded that ANN can be imple-
mented reliably and accurately to predict surface roughness in
turning operations of Brass C26000 material.

.e applicability of radial base function (RBF) neural
networks was investigated in the work of Pontes et al. [6] to
predict surface roughness in turning processes of SAE 52100
hardened steel. Networks were trained using different sets.
.ey considered several design variables and found that
ANNmodels were capable of providing accurate estimates of
surface roughness values in an affordable way.

.e turning of Ti-6Al-4V titanium alloy was investigated
in the work of Sangwan et al. [7] to minimize surface
roughness using ANN-GA approach. A feed forward neural
network was proposed for training and testing of the neural
network model. .e predicted results were found to be in
good agreement with the obtained experimental results.

A comparison between linear regression models and
ANN approach has been studied in the work of Acayaba and
Escalona [8]. A target of saving cost, effort, and machining
time leads to the necessity of predicting surface roughness
prior to performing machining operations. .ey used ex-
perimental data to validate their claim and found that using
ANN outperforms linear modeling. Instead of using GA like
other researchers previously listed, this research employed
a simulated annealing (SA) optimization algorithm to optimize
cutting parameters for minimizing surface roughness. Results
show similar findings as reported previously with no major
significant improvement.

A more concise investigation focusing only on the three
major cutting parameters influencing the surface roughness
was presented in the work of Bajić et al. [9]. Cutting speed,
feed rate, and depth of cut are optimized using regression
analysis and ANN. Results obtained show no superiority of
one approach over the other, and both gave a good pre-
diction of the surface roughness.

A new approach that integrates artificial intelligence (AI)
with ANN and GA has been introduced by Gupta et al. [10],
and the paper illustrates the impact of using AI on the
quality and type of results obtained for the surface roughness
prediction. .ey analyzed the experimental data using
support vector regression (SVR) defining the tool wear and
power required as output parameters.

Grade-H high-strength steel had its share in the in-
vestigation for better surface quality studied by Abbas et al.
[11] in their work. .ey emphasized that the key factors for
the manufacturing of parts produced using Grade-H high-
strength steel are parts accuracy and surface roughness
MRR. Identifying the final surface roughness of produced
parts prior to machining is crucial to ensure that those parts
will not be rejected. .e rejection of these parts at any
processing stage will represent huge problems to any factory
because the processing and raw material of these parts are
very expensive. ANN was used in this work to determine the
optimized cutting parameters to ensure minimum surface
roughness during the turning operations.

As a continuation of their work, Abbas et al. [12] in-
vestigated the turning of high-strength steel focusing on
three main cutting parameters: cutting speed, feed rate, and
depth of cut..eir results included a Pareto frontier between
surface roughness and machining time of finished com-
ponents made from high-strength steel using the ANN
model that was later used to determine the optimum cutting
conditions. .is study showed the feasibility of integrating
optimization algorithms with computer-aided manufacturing
CAM systems using Matlab.

A quantitative approach to evaluate the cutting process
and its stability was demonstrated in the work of Yamane
et al. [13], and they used the turning operation as a base for
their study aiming at identifying the machining system
deviation from a perfect process. Such a deviation can be
identified by monitoring the machined surface and com-
paring it with the cutter profile. Adhesion and builtup edge
produced during machining operation can then be easily
noticed andmonitored. Excessive vibration and the accuracy
of spindle rotation can also be recorded and is a good in-
dication of system instability and related directly to the
quality of parts produced. .eir conclusion was that the
proposed method can be successfully implemented to
evaluate turning operations.

.e influence of the type of inserts used in themachining
process on the quality of the surface produced was in-
vestigated in the work of D’Addona and Raykar [14]. .ey
compared wiper inserts to conventional ones in the turning
operation of oil hardened nonshrinking steel used in the
manufacture of strain gauges and measuring instruments.
Surface roughness was a major factor in this study as it is
a very important aspect in the performance of those devices.
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.ey used analysis of variance (ANOVA) and analysis of
means (AOM) plots to evaluate their results.

Pu et al. [15] reported that magnesium alloys are
gaining a lot of intension from researchers in the literature
due to their advanced properties over conventional ma-
terials used in the automotive industry as well as medical
applications such as biodegradable implants. One of the
major factors looked at in machining of this alloy is the
surface integrity. Pu et al. [15] investigated the effect of
machining AZ31B Mg alloy under dry conditions as well as
using liquid nitrogen as a lubricant. .ey concluded that
using cryogenic machining with large nose radii improved
several material performance criteria such as surface finish
and grain size refinement.

Increasing productivity and maximizing material re-
moval rate (MMR) have been also investigated for the
machining of magnesium alloys. Using very high cutting
speeds has its drawbacks and has been analyzed by Tomac
et al. [16] in their work. .ey concluded that using speeds in
excess of 600m/min will result in buildup edge on the flank
face of the cutting tool. .ey supported their argument with
microstructure pictures of tool inserts as well as the ma-
chined surface of three different Mg-Al-Zn alloys.

Different coating materials have been used in industry to
reduce the builtup edge effect appearing on the tool flank face
during turning operations of magnesium alloys at high speeds.
Tönshoff andWinkler [17] reported the different interactions
happening between the cutting tool inserts, the coating,
and the workpiece materials in turning of AZ91 HP at
very high speeds ranging between 900 and 2400m/min.
.ey concluded that cutting tools with polycrystalline di-
amond (PCD) inserts can significantly reduce the cutting
forces and hence the frictions at the tool-workpiece interface.

.e optimization of cutting parameters is another venue
pursued by researchers to improve surface quality of machined
magnesium alloys. Wojtowicz et al. [18] studied the effect of
changing cutting parameters on the turning of AZ91 HP.
Parameters explored include cutting speed, feed rate, depth of
cut, and tool nose radius. Surface integrity and increasing
fatigue life were the major optimized parameters of the ma-
chined components, and other reported parameters include
microstructure, grain size and residual stresses improve fatigue
life. .ey also supported the argument provided by Tönshoff
and Winkler [17] regarding the superior performance of PCD
coating tool inserts at high cutting speeds and feed rates.

In this paper, an ANN model has been employed to
estimate and optimize the produced surface roughness of
AZ61material during turning operations..ismethod proves
to be more efficient and provided the manufacturing engi-
neers with a good tool to be utilized to effectively predict the
quality of the surface produced in an economical and time
saving manner. .us this eliminates the possibility of part
rejection due to manufacturing process errors that costs the
factory time and money and wasted raw material.

2. Materials and Methods

Table 1 presents the chemical composition of magnesium
alloy AZ61 which contains zinc and aluminum with 1 and 6

percent content, respectively. .e microstructure of the
composition is analyzed at the previously mentioned alu-
minum concentration, and the phase diagram shows
a magnesium-rich phase interacting with an Al12Mg17
composite. Zinc along with other traces is found to have no
effect on the alloy microstructure.

.emachining of test specimens is done using Emcomill
concept 45 CNC turning machine equipped with Sinumeric
840-D. .e diameter of the workpiece is equal to 40mm
with a length of 100mm. Tool holder specification is
SVJCL2020K16, while the insert is VCGT160404 FN-ALU.
.e cutting edge angle, nose radius, and clearance angle are
set at 35°, 0.4mm, and 5°, respectively. All experiments were
conducted in wet conditions while the cutting parameters
are controlled via CNC part program..e surface roughness
tester TESA Rugosurf 90-G is used to evaluate the produced
surface roughness. A sketch of the test specimen is shown in
Figure 1. .e test plan was implemented through 64 turning
runs. .ese runs were divided into 16 groups. Each of four
groups was subjected to one common cutting speed (125,
150, 175, and 200m/min). Each group was machined using
four levels of cutting depth (0.30, 0.60, 0.90, and 1.12mm).
Each depth was processed using feed rate having four levels
(0.05, 0.010, 0.15, and 0.20mm/rev). Full listing of all samples
and the resulting measured surface roughness are provided
in Appendix A.

Multivariable regression analysis was used to build
a mathematical model relating the process outcome (surface
roughness Ra) with the three studied input parameters
(cutting speed (V), depth of cut (d), and feed rate (fr)). 56
experiments were conducted that cover the input parameter
range described previously. Eight extra experimental runs
were carried out to be used in testing both the regression and
ANN models.

Regression was conducted using Minitab 17 software
with stepwise technique to eliminate the insignificant terms
from the model. .e model was fitted in the form given by
the following equation [19]:

Ra � βo +∑
k

i�1
βiXi +∑

k

i�1
βiiX

2
i +∑ ∑

i<j
βijXiXj

+∑∑
i<j<k

βijkXiXjXk +∑∑
i≠j

βiijX
2
i Xj + εi,

(1)

where βo is the constant term, βi represents the linear effects,
βii represents the pure quadratic effects, βij represents the
second level interaction effects, βijk the third level interaction
effects, βiij represents the effect of interaction between linear
and quadratic terms, and εi represents the error in predicting
experimental surface roughness. .e material removal rate
(MRR) was calculated using (2) for each run. Desirability
function approach was used to maximize MRR maintaining
Ra below 0.4 as a maximum limit for the surface roughness
value:

MRR � 1000 V∗fr∗d, (2)

where MRR is the volume removed per unit time
(mm3/min.), V is the cutting speed (m/min.), fr is the feed
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rate (mm/rev), and d is the depth of cut (mm). Multivariable
regression analysis was used to build a mathematical model
relating the process outcome (surface roughness Ra) with the
three studied input parameters (cutting speed (V), depth of
cut (d), and feed rate (fr)). 56 experiments were conducted
that cover the input parameters range described previously.
Eight extra experimental runs were carried out to be used in
testing both the regression and ANN models.

3. Results and Discussions

�e regression-�tted mathematical model is given by (3).
Box-Cox transformation was used to normalize the residuals
with λ� 0 (natural log) for Ra. Anderson–Darling test was
conducted to check the normality of residuals with a result
of p value � 0.885> 0.05. �e null hypothesis of such a test
is that the data are normal, and a p value < 0.05 proves
nonnormality.

Determination coe�cient (R2), mean square error
(MSE), and mean absolute error (MAE) were calculated to
be 0.975, 0.02, and 0.12, respectively. Figure 2 shows a scatter
plot for the predicted Ra versus measured Ra. It is clear from
the �gure that the relation between them is very close to
linear with calculated R2 equals 0.97.

ln Ra( ) � −2.6420 + 0.1874 d + 16.516 fr. (3)

Desirability function approach was used to estimate the
values of studied process parameters that maximize theMRR
keeping Ra at levels not exceeding a practical value of 0.4 μm.
�e optimization plot, illustrated in Figure 3, shows that an
optimum MRR of 13,928mm3/min with Ra� 0.4 μm is
obtained at cutting speed 200m/min., depth of cut 1.12mm,
and feed rate 0.09mm/rev.

ANN modeling was used to predict the surface rough-
ness of AZ61 magnesium alloy. �e three input parameters
cutting speed (V), depth of cut (d), and feed rate (fr) were

taken into account to predict the surface roughness as an
output parameter.�e data were taken from the experimental
result. �e transfer function was selected as a TanhAxon. �e
data were divided in two parts as training and test data. 80% of
data were used for training stage while the left 20% of data
were used for test stage to understand the performance of the
developed ANN model. �e best ANN model predicting
the Ra value between developed trial models was obtained
according to the values of R2 and MSE. Figure 4 gives the
experimental and ANN-predicted results. It can be seen
from the �gure that a good agreement was obtained be-
tween experimental and ANN-predicted results. It is also
seen from Figure 5 that the value of R2 is 0.9629 for ex-
perimental surface Ra and ANN-predicted surface Ra, while
R2 is 0.9931 for experimental MRR and ANN-predicted
MRR in Figure 6.

Table 1: AZ61 magnesium alloy chemical composition.

Element Aluminium Zinc Copper Silicon Iron Nickel Magnesium
% by mass 5.95 0.95 <0.03 <0.01 <0.01 <0.005 Balance

Feed = 0.05
Feed = 0.10

Feed = 0.20
For chuck clamping

For support by rotary center 

Feed = 0.15

12 12 12 12 36 

4 4 4 4 

Figure 1: Working drawing of the test workpiece.
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Figure 2: Experimental readings versus regression model
predictions.
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Predictability of both regression and ANN models were
compared using eight extra experimental cases that were not
included in the modeling phase. Table 2 illustrates the results
of this comparison. Figures 4–6 and Table 2 clearly show the
good agreement between the results. From the table, both
ANN and regression-predicted Ra and MRR values can be
acceptable when they are compared with experimental
results.

Feed rate has a direct impact on product surface
�nish. Although increasing feed rate can result in

a signi�cant increase in the material removal rate (MMR)
and increase productivity, it will also increase cutting
forces resulting in higher tool-workpiece friction asso-
ciated with poor surface �nish. Horizontal markings as
well as vertical ones in surface roughness pro�le can be
detected when examining the surface pro�le produced
using high feed rates. MRR and surface roughness are two
contradicting objectives in determining an optimized
value for the feed rate. Optimization algorithms are often
used to come up with optimized cutting parameters for
di�erent machining processes. Figure 7 represents an
optical microscopy view of machined surface, while
Figure 8 shows the surface roughness pro�le produced by
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the surface roughness tester under the following cutting
conditions: a speed of 125m/min, a depth of cut of
0.3 mm, and a feed rate of 0.20 mm/rev. Another set of
views and graph is also provided in Figures 9 and 10
for di�erent cutting conditions summarized as follows:
a cutting speed of 125m/min, a depth of cut of 0.3 mm,
and a feed rate of 0.05mm/rev. From those results, we can
conclude that reducing feed rate will produce thinner
surface roughness markings, and increasing the feed rate

is associated with the presence of distant thick surface
roughness markings.

4. Conclusions

Optimization and estimation of Ra and MRR in cutting
conditions of AZ61 magnesium alloy were realized by ANN
modeling and regression analysis. �e results of the de-
veloped ANN-predicted model and regression model were

R2
= 0.9931
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Figure 6: Comparison between ANN predicted and desired output for MRR.

Table 2: Comparison between the regression model and ANN predictions.

Machining parameters
Measured Ra (µm)

Regression model ANN
Speed Depth Feed Predicted Ra Residual Predicted Ra Residual
125 1.12 0.15 1.154 1.05 0.11 1.14 0.01
200 1.12 0.2 1.896 2.39 −0.49 2.16 −0.26
175 1.12 0.1 0.464 0.46 0.01 0.57 −0.11
150 0.6 0.15 1.1058 0.95 0.16 0.90 0.21
175 0.3 0.1 0.386 0.39 −0.01 0.39 −0.01
125 1.12 0.05 0.144 0.20 −0.06 0.19 −0.05
150 0.3 0.15 0.954 0.90 0.06 0.83 0.12
150 1.12 0.2 1.911 2.39 −0.48 2.00 −0.09

200 μm

Figure 7: Optical microscopy for machined surface with V� 125m/min, d� 0.30mm, and fr� 0.20mm/rev.
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compared with experimental results.�e results showed that
a good agreement was obtained for both developed ANN-
predicted and regression analysis results. In addition, the
compatibility between the developed ANN model and ex-
perimental results showed that ANN approach is an accurate
method to estimate surface Ra andMRR. Optical microscopy
views and the corresponding surface roughness pro�le for
di�erent sets of cutting parameters were utilized on two

machined surfaces to showcase the direct e�ect of increasing
the feed rate on surface �nish. A hypothetical analysis re-
lating the higher surface roughness values associated with
the increase in feed rate is reported.

Appendix
�e listing of all samples and the resulting measured surface
roughness are provided in Table 3.
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Figure 8: Pro�le of surface roughness graph by the surface roughness tester for machined surface with V� 125m/min, d� 0.30mm, and
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Figure 9: Optical microscopy for machined surface with V� 125m/min, d� 0.30mm, and fr� 0.05mm/rev.
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Table 3: Listing of four-level full factorial samples.

Sample ID Group Cutting speed (m/min) Depth of cut (mm) Feed (mm/rev) Surface Ra (µm) MRR (mm3/min)
1

1

125 0.30 0.05 0.185 1875
2 125 0.30 0.10 0.457 3750
3 125 0.30 0.15 0.972 5625
4 125 0.30 0.20 1.779 7500
5

2

125 0.60 0.05 0.188 3750
6 125 0.60 0.10 0.375 7500
7 125 0.60 0.15 0.998 11250
8 125 0.60 0.20 2.205 15000
9

3

125 0.90 0.05 0.168 5625
10 125 0.90 0.10 0.378 11250
11 125 0.90 0.15 1.059 16875
12 125 0.90 0.20 2.254 22500
13

4

125 1.12 0.05 0.144 7000
14 125 1.12 0.10 0.466 14000
15 125 1.12 0.15 1.154 21000
16 125 1.12 0.20 2.786 28000
17

5

150 0.30 0.05 0.156 2250
18 150 0.30 0.10 0.365 4500
19 150 0.30 0.15 0.954 6750
20 150 0.30 0.20 1.737 9000
21

6

150 0.60 0.05 0.143 4500
22 150 0.60 0.10 0.349 9000
23 150 0.60 0.15 1.1058 13500
24 150 0.60 0.20 1.866 18000
25

7

150 0.90 0.05 0.128 6750
26 150 0.90 0.10 0.413 13500
27 150 0.90 0.15 0.999 20250
28 150 0.90 0.20 1.782 27000
29

8

150 1.12 0.05 0.201 8400
30 150 1.12 0.10 0.508 16800
31 150 1.12 0.15 1.020 25200
32 150 1.12 0.20 1.911 33600
33

9

175 0.30 0.05 0.199 2625
34 175 0.30 0.10 0.386 5250
35 175 0.30 0.15 0.982 7875
36 175 0.30 0.20 2.005 10500
37

10

175 0.60 0.05 0.199 5250
38 175 0.60 0.10 0.432 10500
39 175 0.60 0.15 1.128 15750
40 175 0.60 0.20 2.054 21000
41

11

175 0.90 0.05 0.256 7875
42 175 0.90 0.10 0.486 15750
43 175 0.90 0.15 1.187 23625
44 175 0.90 0.20 2.759 31500
45

12

175 1.12 0.05 0.178 9800
46 175 1.12 0.10 0.464 19600
47 175 1.12 0.15 1.316 29400
48 175 1.12 0.20 2.214 39200
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