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A BP (backpropagation) neural network method is employed to solve the problems existing in the synthetic characteristic curve
processing of hydroturbine at present that most studies are only concerned with data in the high efficiency and large guide vane
opening area, which can hardly meet the research requirements of transition process especially in large fluctuation situation. The
principle of the proposed method is to convert the nonlinear characteristics of turbine to torque and flow characteristics, which
can be used for real-time simulation directly based on neural network. Results show that obtained sample data can be extended
successfully to cover working areas wider under different operation conditions. Another major contribution of this paper is the
resampling technique proposed in the paper to overcome the limitation to sample period simulation. In addition, a detailed analysis
for improvements of iteration convergence of the pressure loop is proposed, leading to a better iterative convergence during the
head pressure calculation. Actual applications verify that methods proposed in this paper have better simulation results which are
closer to the field and provide a new perspective for hydroturbine synthetic characteristic curve fitting and modeling.

1. Introduction

Many hydropower plants have been built worldwide to
harness the energy of falling or running water for electricity
purpose [1, 2]. A lot of fruitful and meaningful works of
hydropower turbine in advanced control [3–6], parameter
identification [7–9], dynamics analysis [10, 11], and fault
diagnosis [12] have been done. In addition, obtaining of flow
and torque characteristics from synthetic characteristic curve
of a specific Francis turbine is the key to high-precision
nonlinear simulation and stability analysis [13], which could
serve to maintain safe, stable, and economical operation of
hydropower generating unit. Thus, it is extremely important
for hydroturbine governing system nonlinear modeling and
control [4, 8, 11, 14] to process the synthetic characteristic
curve in a reasonable way. However, synthetic characteristic
curves that provided by manufacturers nowadays are only
in the high efficiency and large guide vane opening area in
China, which is far from meeting the research requirements
of transition process, especially in large fluctuations. So it
is necessary to extend and complement the synthetic char-
acteristic curves for further research. In view of this, many

scholars have carried out a lot of studies on this problem.
For example, a radial basis function neural network method
was used in [15] for data processing of hydroturbine synthetic
characteristic curve; the discrete sample data obtained from
synthetic characteristic curve were fitted effectively. More-
over, data in unknown region could be predicted successfully
by combining the boundary constraint conditions. However,
the radial basis function neural network can be affected by
the dispersion constant easily, and there is no specificmethod
for the selection of the dispersion constant, which can only
be chosen tentatively in [13]. Discontinuity of derivative
in interpolation method for hydroturbine modeling was
solved to improve the iterative convergence of head pressure
calculation with BP neural network in [16]; irregular discrete
sample data were processed quite well with the Delaunay
triangulation algorithm in [17]. But none of the works
stated above [13–17] can solve the problem of acquiring
characteristic data in the nonhigh efficient areas. Besides,
literature review shows that many other methods, such as
the artificial experience, approximate linear interpolation,
spline interpolation, table interpolation, and shape function
interpolation, have also been applied to the characteristics
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processing of hydroturbine, but all these methods have their
own limitations. Motivated by this, a special method based
on BP neural network is proposed in the paper for Francis
turbine modeling and real-time simulation, the proposed
method consists of various steps as follows: (1) extract mul-
tisets of sample data, which can comprehensively represent
the characteristics of the turbine and meet the requirements
of the transition process, then normalize and store these
sample data in the text file in standard form; (2) extend the
characteristic curve to unknown low efficiency area, such as
small guide vane opening and small unit speed area, based
on the acquired sample data and boundary constraint; (3)
train the extended sample data with neural network and save
the obtained weight and threshold value in forms of text for
calling. In addition, a detailed analysis for improvements of
traditional simulation algorithm is given: the discrete systems
resampling technique is proposed to overcome the limitation
of sampling period contradiction existing between diver-
sion system and hydroturbine governing system; a different
mathematical method based on the neural network surface
is illustrated to improve the iterative convergence of head
pressure in simulation.

The rest of the paper is outlined as follows: in Section 2,
synthetic characteristic curve processing method of Francis
turbine and an example application are presented in detail.
Resampling technology based on characteristic line is con-
structed in Section 3. Investigations on improving conver-
gence of head pressure loop are shown in Section 4. Section 5
illustrates the simulation results along with discussions and
remark words. Conclusions are provided in Section 6.

2. Synthetic Characteristic Curve Processing
Method of Francis Turbine

Obtaining the description that expresses the relationship
between flow and torque characteristics through model
synthetic characteristic curve is the most common method
for hydroturbine nonlinear modeling. The main idea is to
store the processed discrete sample data, which comes from
model synthetic characteristic curve, in a certain way (array
of expressing surfaces, neural network, etc.) in advance;
then flow and torque characteristics can be calculated by
interpolation or neural network method according to the
change of operating condition.

It is no longer required to establish the specific expression
function when extending and fitting sample data through
neural network. Besides, sample data in unknown region
can be predicted to improve the working efficiency and
data processing accuracy of synthetic characteristic curve by
combining with the boundary constraints.

A general method for flow and torque characterization
with BP neural network is discussed here. Firstly, access
and extension steps of sample data are given from the
perspective of the model synthetic characteristic curve and
runaway characteristics curve; then forms and structures
of neural network are determined based on the analysis
and comparison; in the end, the neural network is trained
offline with the Matlab neural network toolbox for real-time
simulation modeling.

2.1. Reading, Processing, and Extension of Sample Data.
Access to sample data refers to the obtaining process of flow,
efficiency, and runaway characteristics from model synthetic
and runaway characteristics curve. Sample data processing
is the calculation for torque characteristics through obtained
flow and efficiency characteristics sample data. In most cases,
the model synthetic characteristic curve provided is only
within the high efficiency area, which is far from enough
for nonlinear real-timemodeling and simulation.Thus, prior
knowledge and known information method to expand the
sample data, namely extension, is used in the paper. Flow
chart of data process steps from (𝑎) to (𝑓) is given in Figure 1.
(a) Reading Flow Characteristics. The flow characteristic is
obtained by reading a certain number of data points at each
equal opening degree line on model synthetic characteristic
curve:

𝑎𝑖, 𝑁11𝑖, 𝑄11𝑖, 𝑖 = 1, 2, 3, . . . , 𝐹, (1)

where 𝑎𝑖, 𝑁11𝑖, 𝑄11𝑖 are vane opening, unit speed, and unit
flow, respectively. Quantity and location of the data points are
not defined strictly and can be determined according to the
accuracy requirement of the object. More points and time are
required to train the neural network when a higher accuracy
is required. All of these data points in (1) can be used as
sample data for flow characteristics.

(b) Reading Efficiency Characteristics. Conventional method
can be used directly to obtain torque characteristics, which
can also be carried out by reading the efficiency data
point. Considering that the interspacing between different
efficiency lines is generally large, which is conducive to data
reading and reflect torque characteristics more comprehen-
sively, the secondmethod is employed in this study. A certain
number of data points are read on each equal efficiency line𝜂 from model synthetic characteristic curve:

𝜂𝑗, 𝑁11𝑗, 𝑄11𝑗, 𝑗 = 1, 2, 3, . . . , 𝐸. (2)

(c) Reading Runaway Characteristics. Read a certain number
of data points on the runaway curve:

𝑁11𝑘, 𝑄11𝑘, 𝑎𝑘, 𝑘 = 1, 2, 3, . . . , 𝑅. (3)

Value of 𝑎𝑘 is selected to be identical to that of 𝑎𝑖 in flow
characteristics sample data for convenience.

(d) Processing for Sample Data of Torque Characteristic. The
numerical method can be got with proper fitting methods
such as polynomial based higher order surface fitting or
neural network fitting, through the obtained efficiency char-
acteristics sample data:

𝜂 = 𝑓𝜂 (𝑁11, 𝑄11) . (4)

Calculating 𝜂𝑖 by𝑁11𝑖, 𝑄11𝑖 of flow characteristics sample
data and then unit torque 𝑀11 can be carried out by the
following formula:

𝑀11 = 0.93706𝑄11𝑁11 𝜂, (5)
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(1) Reading the flow characteristics

(2) Reading efficiency characteristics

(3) Reading runaway characteristics

(4) Processing for sample data of torque 
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(5) Extension of the flow characteristic 
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(6) Extension of the torque characteristic 
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ai, N11i, Q11i, i = 1, 2, 3, . . . , F

𝜂j, N11j, Q11j, j = 1, 2, 3, . . . , E

N11k, Q11k, ak, k = 1, 2, 3, . . . , R

Figure 1: Flow chart of sample data reading, processing, and extension.

where𝑀11, 𝑄11, 𝑁11 and 𝜂 are the unit torque (kN⋅m), unit
flow (m3/s), unit speed (r/min) and efficiency, respectively.
Then 𝑀11𝑖, 𝑁11𝑖, and 𝑎𝑖, 𝑖 = 1, 2, 3, . . . , 𝐹 constitute the
sample data of torque characteristics.

(e) Extension of the Flow Characteristic Sample. It is worth
pointing out that flow characteristics with runaway speed
are contained in turbine model runaway characteristic itself.
Therefore, all the sample data in (3) can be added to the flow
characteristics sample data (1). In addition, when the guide
vane opening 𝑎 = 0, and turbine flow will be zero regardless
of speed, which helps to construct boundary conditions as
follows:

𝑁11𝑙, 𝑄11𝑙 = 0, 𝑎𝑙 = 0, 𝑙 = 1, 2, 3, . . . , 𝑁, (6)

where𝑁111, 𝑁112, . . . , 𝑁11𝑁 are𝑁points that distributed arbi-
trarily between zero and the maximum unit speed. Finally,
the new flow sample data can be obtained by incorporating
sample data (6) into the sample (1):

𝑎𝑖, 𝑁11𝑖, 𝑄11𝑖, 𝑖 = 1, 2, 3, . . . , 𝐹 + 𝑅 + 𝑁. (7)

(f) Extension of the Torque Characteristic Sample. Boundary
conditions of torque characteristics of hydroturbine at zero
opening are firstly added for extension. In this case, relation-
ship between torque and speed is given as follows:

𝑀11 = −𝐾𝑁211. (8)

Here, 𝐾 is normal numbers given in advance. Torque
sample data are constructed at zero opening by following
equation:

𝑀11𝑛, 𝑁11𝑛, 𝑎𝑛 = 0, 𝑛 = 1, 2, 3, . . . , 𝑃, (9)

where𝑁111, 𝑁112, . . . , 𝑁11𝑛 are𝑃 points distributed arbitrarily
between zero unit speed and the maximum possible.

What is more, when the turbine operates in the runaway
condition, output torque is zero, so 𝑁11𝑘 and 𝑀11𝑘, 𝑘 =1, 2, 3, . . . , 𝑅 corresponding to 𝑎𝑘, can be used as sample data
of torque characteristic directly. Incorporating this sample
data and (9) into the torque characteristic sample calculated
by (5), then the new extended torque sample 𝑁11𝑚, 𝑎𝑚 and𝑀11𝑚, 𝑚 = 1, 2, 3, . . . , 𝐹 + 𝑅 + 𝑃 can be obtained.

2.2. Selection of Neural Network. In spite of the sample data
extension, neither the flow nor the torque characteristics
sample data could cover all possible operating conditions of
turbines. It is natural to solve the problem by training the flow
and torque neural networks with obtained sample data above,
then estimating the flow and torque characteristics in these
unknown regions by a smooth extension with well-trained
neural networks.

Using artificial neural network to realize the nonlinear
characteristic of hydroturbine has the advantages of less
data quantity, simpler calculation, controllable precision, and
continuous derivative. Considering that this extension is
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Figure 2: The extended flow sample data.

polynomial fitting actually, available networks are mainly the
BP neural network and the RBF neural network. Compared
with RBF neural network, BP neural network has the follow-
ing advantages.(1) Structure of BP neural network is much simpler with
the same approximation accuracy. In addition, the number
of hidden layer neurons of RBF network is much higher than
that of BP network when the sample data is increased, which
makes the RBF network more complex in structure, leading
to higher computational demand;(2) There is a high degree of self-learning and adaptive
ability and can extract the data association from input and
output data automatically; moreover, learning content is
stored in the weights of network adaptively.(3) BP neural network will not have great impact on the
global training results after suffering damage to the local or
partial neurons. The system has a certain fault tolerance and
can work normally when local damage happens.

The suitable neural network structure is selected for sam-
ple data training by comparing the number of neurons, time
consuming of network training, amount of computation,
training accuracy, and the controllability of training process.

2.3. BPNeural Network Training. Thesample data are divided
into training and validation data set randomly: 80% of the
data are used to train the neural network, and the remaining
20% are used to verify the effect of neural network training. A
loop control is set up in training process, so that the sample
can be trained to find the optimal training results and final
output is saved in forms of text.

2.4. Application Examples. A Francis turbine HLA339-LJ-
450 with the rated head 176m, rated power 225MW, rated
speed 200 r/min, and rated flow 142.5m3/s, respectively, is
used as an example in this study.

There are 716 sets of sample data obtained from synthetic
characteristic curve in total, including 219 sets of flow
characteristic sample data, 479 sets of efficiency characteristic
sample data, and 18 sets of runaway characteristic sample
data. Obtained sample data is extended based on the afore-
mentioned 4 boundary conditions, and fitting surfaces of
these samples are shown in Figures 2 and 3: points in the
middle section of the diagrams are flow and its corresponded
torque characteristic sample data; points in the right rear
section of the diagrams are extended runaway flow and
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Figure 3: The extended torque sample data.

extended runaway torque characteristics sample data; points
in the right front section of the diagrams are extended flow
and its corresponded torque characteristic sample data with
zero opening. It can be seen that even the extended sample
data are failed to cover all possible operating conditions of
the turbine and further training by neural network is needed.

The available networks are BP and RBF neural network.
Only difference between the two networks is the calculating
method of neurons. Computational demands of these two
networks are in the same order with the same number
of neurons and structure. When using BP neural network
toolbox as a training tool, training time is longer; and results
of each training may have a big difference because of the
difference in initial value of each weight and the threshold.
So it is necessary to choose the better results by human
intervention. RBF network behaves better in this regard;
however, it is necessary to specify the value of a distribution
constant spread before training, which is closely related to
the accuracy of the training. Therefore, the training is a
process of repeated testing. What is more, accuracy of BP
network is better than that of RBF network structure with the
same network structure in general. This also means that RBF
network requires more neurons and a larger amount of com-
putation with the same approximation accuracy compared to
BP network. Based on a large number of experiments and
analyses above, a multilayer BP network with typical double
input, single output, and five neurons is used to perform
the nonlinear calculation for flow and torque characteristics.
Structure of BP network is shown in Figure 4.

This is a typical double input, single output double BP
network that includes five neurons.The standard log-sigmoid
function is chosen as transfer function of hidden layer
neurons here, which can be expressed as

𝑓 (𝑛) = 1
1 + 𝑒−𝑛 . (10)
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Corresponding algorithm of neural network in Figure 4
can be expressed as follows:

NNout =
5∑
𝑖=1

𝑓 (𝑁11𝑤1𝑖 + 𝑎𝑤2𝑖 + 𝑏𝑖) 𝑤𝑜𝑖 + 𝑏0. (11)

Specific steps of sample data training with BP network
structure are as follows.

Firstly, BP neural network net = newff(minmax(𝑝), [5 1],{'logsig' 'purelin'}) (where 𝑝 is the input value of training
sample data, which is a two-dimensional array that consists
of the guide vane opening and unit flow in this case) is
employed.

Secondly, the training parameters are set as follows:

net.trainParam.epochs = 1000
net.trainParam.goal = 0.00001
net.trainParam.min grad = 1.0000𝑒 − 015

Thirdly, [net,tr]=train(net,trainV.P,trainV.T,[],[]) function
is used for network training.

Finally, use network 𝑎 = sim (net, p2) for simulation.
Finally, the output weight and threshold parameter of

flow neural network and torque neural network are stored in
the data file for turbine characteristics fitting.

Relationship between flow and torque characteristics can
be obtained by network fitting and training with extended
flow and torque sample data, as shown in Figures 5 and 6.
Compared with preliminary fitting surface in Figures 2 and
3, many known condition points are added to sample data
manually according to actual situation of artificial experience
based on the aforementioned extension sample data. The
fitting error and control precision are set in training to ensure
the smooth of surface from large vane opening to a small vane
opening in transition.Working areas are coveredmorewidely
and a more comprehensive reflection of the turbine under
different operation conditions is obtained.

2.5. Result Analysis. Fitting errors of flow and torque network
are shown in Figures 7 and 8. The error can be controlled
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Figure 5: Input/output relationship of flow neural network.

within ±0.04 and ±0.02, respectively, after training, which
can reflect the real characteristics of the turbine in different
operating conditions. Many causes may lead to the errors,
such as error produced in the process of synthesis charac-
teristic curve drawing, reading and fitting error in neural
network training. For the third one, errors can be solved by
increasing the number of hidden layer neurons to improve
the approximation accuracy. In general, network’s ability of
approximation accuracy is stronger with more neurons. But
if the error is caused by the discrete characteristic of the data,
there is no advantage to increase the number of neurons.
On the contrary, it may affect the smoothness of surface
sometimes and has certain impact on the convergence of
simulation algorithm. Therefore, influence of various factors
on the nonlinear characteristics should be fully considered
to meet the requirements of hydropower units in real-time
simulation when using neural network for training.
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Figure 6: Input/output relationship of torque neural network.
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2.6. Brief Summary of Synthetic Characteristic Curve Pro-
cessing Method. Design method for synthetic characteristic
curve processing of Francis turbine can be summarized
as follows: firstly, sample data obtained from the synthetic
characteristic curve is normalized as standard format within[−1, +1] with mapminmax() function, which can help the
neural network learn and train; then, extend the sample data
mainly based on the following 4 boundary conditions [13].(1) Boundary of runaway characteristics curve: when the
unit operates in the runaway condition, its efficiency and
torque are zero, and relationship among unit flow 𝑄11, unit
speed𝑁11 vane opening, and 𝑎 can be obtained according to
Q ∼ 𝑎 and𝑁 ∼ 𝑎 curve from runaway curve.(2)When the guide vane opening and unit speed are zero,
the unit flow and unit torque are zero too;(3) When the guide vane opening is zero, unit flow of
turbine will be zero regardless of unit speed. At this time,
ployfit() function can be used for polynomial fitting to carry
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Figure 8: The error between torque neural network output and
sample expectations.

out the unit torque 𝑀11 that corresponds to different guide
vane opening 𝑎 with each fixed unit speed 𝑛. Then use
ployval() function to get the corresponding unit torque under
the fixed unit speed when the gate opening 𝑎 = 0. Unit
torque with different unit speed at 𝑎 = 0 can be got by this
way. Usually, 𝑀11 < 0 when 𝑎 = 0, and the relationship
between𝑀11 and 𝑛11 will meet the equation𝑀11 = −𝑘𝑛211
approximately, where 𝑘 is the constant coefficient, appropriate
adjustments to the evaluation results will be taken according
to this formula to make it more consistent with actual
situation.(4) When the unit speed 𝑛 = 0, function ployfit() and
ployval() can be used for polynomial fitting to evaluate the
values of unit flow and unit torque with each guide vane.

Finally, select a proper neural network to train the
extended sample data and store the obtained weight and
threshold in form of text. Solving process by neural network
of synthetic characteristic curve processing method of Fran-
cis turbine is presented as follows.

Here are the neural networks of𝑄11 and𝑀11 that need to
be fitted:

𝑄11 = 𝑓𝑄 (𝑁11, 𝑎)
𝑀11 = 𝑓𝑀 (𝑁11, 𝑎) . (12)

Concrete steps are as follows:

(1) Calculate the torque characteristics sample data𝑀11𝑗,𝑁11𝑗, 𝑄11𝑗, 𝑗 = 1, 2, 3, . . . , 𝐸, using the relationship
among unit torque, unit speed, unit flow rate, and
efficiency characteristics.

(2) Calculate the characteristic sample of zero torque
through the runaway characteristic sample data.

(3) Train neural network𝑀11 = 𝑓𝑀(𝑁11, 𝑄11) by using
torque characteristic sample data and the obtained
zero torque characteristic sample above.

(4) Calculate 𝑀11𝑖 by flow characteristic sample data𝑁11𝑖, 𝑄11𝑖, and neural network𝑀11 = 𝑓𝑀(𝑁11, 𝑄11);
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and sample data of 𝑎𝑖,𝑁11𝑖, and𝑀11𝑖 can be obtained
taking the corresponding relation among 𝑎𝑖,𝑁11𝑖, and𝑄11𝑖 into account.

(5) Train neural network 𝑄11 = 𝑓𝑄(𝑁11, 𝑎) using flow
characteristic sample data 𝑎𝑖,𝑁11𝑖, and 𝑄11𝑖.

(6) Train neural network 𝑀11 = 𝑓𝑀(𝑁11, 𝑎) using flow
characteristic sample data 𝑎𝑖,𝑁11𝑖, and 𝑄11𝑖.

Specific details of flow, efficiency, runaway characteristics
obtaining, and torque calculation method have been dis-
cussed in detail in Section 2.1 already.

3. Resampling Technology Based on
Characteristic Line

One of the biggest challenges is the different sampling peri-
ods between diversion system and hydroturbine governing
system in real-time simulation. In order to achieve the
purpose that sampling period of the diversion system can
be set arbitrarily in the modeling of hydropower station, a
resampling technology of the discrete system is proposed in
this paper to realize the unification of sampling period of the
water diversion system and turbine model.

Principle of resampling is to convert original 𝑧 transfer
function into transfer function of continuous system, and
then the continuous transfer function is discretized again
by the new sampling period. In order to keep frequency
characteristics after transformation the same as that of the
system before transformation, Tustin method is employed.
Assuming sampling period of original 𝑧 transfer function
is 𝑇𝑠𝑜 and resampling period is 𝑇𝑠𝑛, discrete system can
be transformed into a continuous system by the mapping
relationship between 𝑠 domain and 𝑧 domain:

𝑧 = 1 + 𝑠𝑇𝑠𝑜/21 − 𝑠𝑇𝑠𝑜/2 . (13)

Replacing the variable 𝑇𝑠𝑜 with 𝑇𝑠𝑛, then (13) can be
rewritten as

𝑠 = 2
𝑇𝑠𝑛
𝑧 − 1
𝑧 + 1 . (14)

Substituting (14) into (13), then

𝑧 = (𝑇𝑠𝑛 + 𝑇𝑠𝑜) 𝑧 + 𝑇𝑠𝑛 − 𝑇𝑠𝑜(𝑇𝑠𝑛 − 𝑇𝑠𝑜) 𝑧 + 𝑇𝑠𝑛 + 𝑇𝑠𝑜 . (15)

Assuming that 𝑎 = 𝑇𝑠𝑛 + 𝑇𝑠𝑜, 𝑏 = 𝑇𝑠𝑛 − 𝑇𝑠𝑜, then (15) can
be written as

𝑧 = 𝑎𝑧 + 𝑏𝑏𝑧 + 𝑎 . (16)

And 𝑧 transfer function between head and flow in pipe
can be expressed as

𝐺 (𝑧) = 𝐻𝐴 (𝑧)𝑄 (𝑧) =
−1 + 𝑧−2

(𝐹 + 𝐶𝑎 − (𝐹 − 𝐶𝑎) 𝑧−2) , (17)

where 𝐹 is the added feedback coefficients of head to the flow

𝐶𝑎 = 1
(2ℎ𝑤) =

1
2
𝑇𝑤𝑇𝑟 =

𝐿
𝑎𝑇𝑤 =

𝑇𝑠o𝑇𝑤 , (18)

where 𝑇𝑠𝑜 = 𝐿/𝑎, 𝑇𝑟 = 2𝐿/𝑎, 𝑇𝑤 = ℎ𝑤𝑇𝑟 = 𝐿𝑄𝑟/(𝑔𝐴𝐻𝑟), 𝐿,𝑎, and 𝑇𝑤 are the pipeline length, water hammer wave
velocity, and water inertia time constant, respectively.

Substituting (16) into (17), then

𝐻𝐴𝑄 = (𝑏2 − 𝑎2) 𝑧2 + (𝑎2 − 𝑏2)
(𝑐𝑎2 − 𝑑𝑏2) 𝑧2 + 4𝐶𝑎𝑎𝑏𝑧 + (𝑐𝑏2 − 𝑑𝑎2) . (19)

Setting 𝑐 = 𝐹+𝐶𝑎, 𝑑 = 𝐹−𝐶𝑎, intermediate variables are
defined as follows for convenience:

𝐴 = 𝑏2 − 𝑎2 = (𝑇𝑠𝑛 − 𝑇𝑠𝑜)2 − (𝑇𝑠𝑛 + 𝑇𝑠𝑜)2
= −4𝑇𝑠𝑛𝑇𝑠𝑜

𝐵 = 𝑎2 − 𝑏2 = − (𝑏2 − 𝑎2) = 4𝑇𝑠𝑛𝑇𝑠𝑜
𝐶 = (𝑐𝑎2 − 𝑏𝑑2)
= 4𝐹𝑇𝑠𝑛𝑇𝑠𝑜 + 2𝐶𝑎 (𝑇𝑠𝑛2 + 𝑇𝑠𝑜2)

𝐷 = 4𝐶𝑎𝑎𝑏 = 4𝐶𝑎 (𝑇𝑠𝑛2 − 𝑇𝑠𝑜2)
𝐸 = −4𝐹𝑇𝑠𝑛𝑇𝑠𝑜 + 2𝐶𝑎 (𝑇𝑠𝑛2 + 𝑇𝑠𝑜2) ,

then 𝐻𝐴𝑄 = 𝐴𝑧2 + 𝐵
𝐶𝑧2 + 𝐷𝑧 + 𝐸 =

(𝐴/𝐶) 𝑧2 + 𝐵/𝐶
𝑧2 + (𝐷/𝐶) 𝑧 + 𝐸/𝐶.

(20)

Set 𝐿 = 100m, 𝑎 = 1000m/s, 𝑇𝑠𝑛 = 0.01 s, 𝐹 = 0.01, 𝑇𝑠𝑜 =
0.1 s and 𝑇𝑤 = 2 s, respectively.𝑧 transfer function of head to the flow before resampling
can be expressed as follows according to (17):

𝐻𝐴 (𝑧)𝑄 (𝑧) =
−16.67𝑧2 + 16.67
𝑧2 + 0.6667 . (21)

𝑧 transfer function of head to the flow after resampling
can be expressed as follows according to (20):

𝐻𝐴 (𝑧)𝑄 (𝑧) =
−3.81𝑧2 + 3.81

𝑧2 − 1.886𝑧 + 0.9238 . (22)

Simulation results for (21) and (22) are shown in Figure 9.
It can be seen from the simulation results in Figure 8 that

the water head changes in the pressure pipe are basically the
same before and after resampling, which is consistent with
actual situation of hydropower plant. Therefore, sampling
period contradictions between water diversion pipeline and
unit set can be effectively solved by resampling method.
Moreover, sampling period of the diversion system can
be set arbitrarily and feasibility of real-time simulation of
hydroturbine is increased.

4. Study on Convergence of Pressure Loop

A large number of simulation experiments have shown that
nonconvergence phenomenon is particularly common in



8 International Journal of Rotating Machinery

−1

−0.5

0h

0.5

1

10 20 30 40 50 600
t (s)

−1

−0.5

0h

0.5

1

10 20 30 40 50 600
t (s)

Figure 9: Head curves of the diversion system when 𝑇𝑠𝑜 = 0.1 s and 𝑇𝑠𝑛 = 0.01 s.

head pressure iteration when the guide vane is fully closed.
Therefore, it is necessary to increase convergence of pressure
iteration loop to make the results of real-time simulation
more accurate and reliable. To solve this problem, sample data
of the specific hydroturbine in Section 2.1 are analyzed and
processed in this paper firstly; then the BP neural network
is used to train and modify these sample data to ensure the
smoothness of surface space and continuity of derivative;
pressure iteration loop would have better convergence and
nonlinear equation can be solved with less iterations by com-
bining with an improved water pressure algorithm proposed
in the article. Traditional water pressure algorithm is shown
as follows:

𝑁11 = 𝑁𝐷1√𝐻𝐴 =
𝑁𝐷1

√(1 + ℎ𝐴)𝐻𝑟
,

𝑄11 = 𝑓𝑄 (𝑁11, 𝑎) .
(23)

Relative value of the unit flow can be expressed as follows:

𝑞𝐴 (ℎ𝐴) = 𝑄11 (ℎ𝐴)𝐷
2
1
√(1 + ℎ𝐴)𝐻𝑟
𝑄𝑟 . (24)

Substituting (23) into (19), assume that

𝐶𝐿 = −(𝐷𝐶)ℎ𝐴 (𝑘 − 1) − (
𝐸
𝐶) ℎ𝐴 (𝑘 − 2)

+ (𝐵𝐶 + 𝐾𝑒) 𝑞𝐴 (𝑘 − 2) .
(25)

Then,

ℎ𝐴 = 𝐶𝐿 + (𝐴𝐶) 𝑞𝐴 (ℎ𝐴) . (26)

Define 𝜑 as follows:
𝜑 (ℎ𝐴) = (𝐴𝐶) 𝑞𝐴 (ℎ𝐴) + 𝐶𝐿 − ℎ𝐴 = 0. (27)

A common method to solve (27) is as follows: start with
an estimated value 𝜉 to ℎ𝐴 firstly; then calculate value of

𝜑(𝜉) = 𝜉 − 𝐷ℎ(𝜉), if 𝜑(𝜉) is less than or equal to the standard
error set in advance and then iterative end; else 𝜉 = 𝛼𝜑(𝜉) +(1 − 𝛼)𝜉.𝐷ℎ is defined as follows:

𝐷ℎ (𝜉) = 𝐶𝐿 + (𝐴𝐶) 𝑞𝐴 (𝜉) . (28)

To increase algorithm convergence of pressure iteration,
an improved method is explored in the paper, and numerical
process is as follows.

Equation (24) can be simplified as follows:

ℎ𝐴 = ( 𝑞𝐴 (ℎ𝐴) 𝑄𝑟𝑄11 (ℎ𝐴)𝐷21√𝐻𝑟)
2

− 1. (29)

Substituting (29) into (26),

( 𝑞𝐴 (ℎ𝐴) 𝑄𝑟𝑄11 (ℎ𝐴)𝐷21√𝐻𝑟)
2

− 1 = 𝐶𝐿 + (𝐴𝐶) 𝑞𝐴 (ℎ𝐴) . (30)

Setting 𝑞𝑟 = 𝐷41𝐻𝑟/𝑄2𝑟,
𝑞𝐴 (ℎ𝐴)2 − 𝑄211𝑞𝑟 (𝐴𝐶) 𝑞𝐴 (ℎ𝐴) − 𝑄211𝑞𝑟 (𝐶𝐿 + 1) = 0. (31)

A reasonable solution of (31) should satisfy 𝑞𝐴(ℎ𝐴) ≥ 0.
Since 𝐴/𝐶 ≤ 0 and 𝑄211𝑞𝑟 ≥ 0 are always valid, the only
solution is

𝑞𝐴 (ℎ𝐴)

= 𝑄
2
11𝑞𝑟 (𝐴/𝐶) + √𝑄411𝑞2𝑟 (𝐴/𝐶)2 + 4𝑄211𝑞𝑟 (𝐶𝐿 + 1)

2 .
(32)

Taking (32) into (26), relative value of pressure can be
carried out.

In summary, steps for enhancing pressure loop iteration
are as follows: start with an estimated value 𝜉 to ℎ𝐴 in
advance; then relative value of flow rate 𝑞𝐴 can be obtained
by combining with flow and torque neural network training
surface; then substitute 𝑞𝐴 back into (26) to calculate relative
increment value water head pressure Δℎ𝐴, if Δℎ𝐴 is less than
or equal to the standard error, iterative end; else, 𝜉 = 𝛼𝜑(𝜉) +(1 − 𝛼)𝜉. Details can be seen in Figure 10.
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Figure 10: Iterative and calculation flowchart of pressure loop.

5. Results and Analysis

Taking the turbine unit in Section 2.4, for example, hydro-
turbine governing system suffers 4%, −8%, and 4% frequency
disturbance under no-load condition at 10 s, 40 s, and 70 s,
respectively. The response of the relay, pressure, frequency is
presented in Figure 11(a). It can be seen that elasticwater ham-
mer wave can attenuate to a steady state quickly; sampling
period and the calculation step of the diversion system can
be unified perfectly. Relay, pressure, and frequency response
process is shown in Figure 11(b) where the system suffers

a 100% load shedding at 10 s. Load rejection and no-load
frequency perturbation experiments have been performed
at the MHT hydroturbine plant. Model presented above has
been used to simulate these transients. Comparisons between
measured and computed data are given in Figure 11.Thewater
pressure shows a characteristic of elastic water hammer and
has good convergence; head pressure can be controlled to
steady state precisely with faster convergence rate. It is worth
pointing out that the head pressure has a certain difference
with initial value after load shedding because of the energy
loss that is caused by a variety of factors, such as friction
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(b) Full load rejection experiments under rated head

Figure 11: Simulation results of two typical operating conditions.

resistance in the pipeline. Head pressure can recover to orig-
inal value by modifying the head pressure loss. Simulations
and experiments show that synthetic characteristic curve of
hydroturbine has been extended successfully and problems
existing in real-time simulation are solved effectively by the
method proposed in this paper.

6. Summary

Based on analyzing and comparing of advantages and disad-
vantages of various methods on hydroturbine characteristic
curves processing, the BP neural network is applied to the
synthetic characteristic curve processing of Francis turbine,
and research ideas and methods are introduced in detail.
Weights and thresholds of the neural network are obtained
with the application examples, and possible causes of errors
are analyzed.The obtainedweights and thresholds are used as
the constant coefficients for polynomial fitting to ensure the
nonlinear model be more representative of actual situation.
This kind of modeling method can provide not only high
precision data for transition process but also better investi-
gation on the real situation of hydraulic unit. Furthermore,
this paper performs a detailed analysis and derivation of the
improvement of real-time simulation algorithm, including
the resampling of the simulation algorithm and iteration
convergence of the pressure loop; contradictions of the
sampling period between water diversion pipeline and unit
set as nonconvergence of the pressure loop are effectively
solved finally. Actual engineering applications validate the
feasibility of the proposed new method. Further study on
the dynamic characteristics of the transition process will be
performed in future.
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