Hindawi

Mobile Information Systems

Volume 2017, Article ID 9642958, 11 pages
https://doi.org/10.1155/2017/9642958

Research Article

Hindawi

An Adaptive and Integrated Low-Power Framework for

Multicore Mobile Computing

Jongmoo Choi,' Bumjong Jung,' Yongjae Choi,' and Seiil Son*

' Department of Software, Dankook University, Yongin, Republic of Korea
’Korea Communications Agency, Daejeon, Republic of Korea

Correspondence should be addressed to Jongmoo Choi; choijm@dankook.ac.kr
Received 20 January 2017; Accepted 15 March 2017; Published 12 June 2017
Academic Editor: Karl Andersson

Copyright © 2017 Jongmoo Choi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Employing multicore in mobile computing such as smartphone and IoT (Internet of Things) device is a double-edged sword. It
provides ample computing capabilities required in recent intelligent mobile services including voice recognition, image processing,
big data analysis, and deep learning. However, it requires a great deal of power consumption, which causes creating a thermal hot
spot and putting pressure on the energy resource in a mobile device. In this paper, we propose a novel framework that integrates two
well-known low-power techniques, DPM (Dynamic Power Management) and DVES (Dynamic Voltage and Frequency Scaling) for
energy efficiency in multicore mobile systems. The key feature of the proposed framework is adaptability. By monitoring the online
resource usage such as CPU utilization and power consumption, the framework can orchestrate diverse DPM and DVES policies
according to workload characteristics. Real implementation based experiments using three mobile devices have shown that it can
reduce the power consumption ranging from 22% to 79%, while affecting negligibly the performance of workloads.

1. Introduction

Intelligent services are actively introduced into mobile com-
puting environments [1, 2]. For instance, modern black box
devices support not only the traditional recording service but
also ADAS (Advanced Driver Assistance Systems) such as
blind spot monitoring, pedestrian detection, and automatic
emergency braking. Smartphones provide voice recognition
and image processing for better HCI (Human Computer
Interface) and big data processing and deep learning for
context-aware services with the consideration of user person-
ality.

To support such intelligent services efficiently, mobile
computing devices are equipped with multiple cores. Smart-
phones have the heterogeneous multicore architecture, called
big.LITTLE, which consists of performance-optimized big
cores and energy-optimized little cores with a single ISA
(Instruction Set Architecture) [3]. Recently released embed-
ded boards for IoT (Internet of Things) such as Raspberry Pi,
Odroid, Edison, Jetson, and Artik also provide multiple cores
[4-6].

However, employing multicore in mobile devices triggers
a new issue. As the number of cores increases, the power
consumption used by cores becomes a significant portion
in mobile devices. The increased power consumption puts
pressure on the energy resource in a mobile device due to
the limitation in battery capacity [7]. In addition, it causes
the high internal temperature in a mobile device [8], having
a potential to result in the thermal runaway [9].

To address the multicore power consumption issue, two
well-known techniques are devised [7, 10]. One is DPM
(Dynamic Power Management), also known as offlining,
which turns off individual cores in order to reduce the per-
core power consumption [11]. The other technique is DVFS
(Dynamic Voltage and Frequency Scaling), which decreases
the frequency and voltage of a core. [12].

One interesting observation is that most mobile applica-
tions have limited parallelism [13-15]. For instance, Seo et al.
analyze how the multiple cores are utilized in mobile devices
using TLP (Thread Level Parallelism) and observe that TLP
of most mobile applications is ranging from 1.4 to 3.9 [15]. It
implies that the required active cores for the applications are

https://doi.org/10.1155/2017/9642958

less than 3.9 on average, disclosing the opportunity of DPM
and DVFS.

In this paper, we propose a new low-power framework for
multicore mobile devices. It supports both DPM and DVES
in an integrated manner. Also, it keeps track of the CPU load
of applications and turns on/oft cores or changes frequency
adaptively so that it can reduce the power consumption while
trying to minimize its impact on performance.

The framework consists of three components, namely,
online resource usage monitor, lower-power controller,
and policy manager. The online resource monitor gathers
resource usage statistics such as CPU utilization and power
measurement. The lower-power controller materializes the
DPM and DVES techniques using the Linux CPU hotplug and
governor mechanism, respectively [16, 17].

Finally, the policy manager provides a rule regarding
how to integrate DPM and DVEFS techniques based on their
overhead and effect on the power consumption. Also, it
applies the integrated solution appropriately according to the
resource usage characteristics of applications. In addition, it
supports user interfaces so that a user can configure his/her
own control parameters.

We have implemented the framework in the Linux kernel
version 3.10 and have evaluated its effectiveness using three
mobile devices. Experimental results show that the workload-
aware adaptability of the framework can reduce the power
consumption ranging from 22% to 79%, while not affecting
the performance of workloads greatly. Also, we observe that
the power reduction depends on the features of a mobile
device, especially in the big. LITTLE architecture.

The rest of this paper is organized as follows. In Sec-
tion 2, we explain previous studies related to this work.
Then, our proposed framework is discussed in Section 3.
Section 4 presents real implementation based experimental
results. Finally, we summarize conclusion and future work in
Section 5.

2. Related Work

As the energy efficiency becomes a critical issue, a lot of
studies have been conducted for analyzing and enhancing
the power consumption in mobile computing systems. In
this section, we classify these studies into the following
four categories: power consumption analysis, workload anal-
ysis, DPM/DVES techniques, and system/application-level
approach.

2.1. Power Consumption Analysis. Understanding of where
and how power is consumed in mobile devices is a key
requirement for efficient power management. Carroll and
Heiser present a detailed analysis of power consumption
in mobile phones using Google Nexus One, HTC Dream,
and OpenMoko Neo Freerunner [18]. They provide not
only the overall system power but also the breakdown of
power consumed by the main hardware components. Their
analysis shows that wireless communication and display are
the heaviest power consumers. Also, CPU is identified as a
heavy consumer especially for the CPU intensive workloads
and in the suspended state.

Mobile Information Systems

As the number of cores increases, the power consumption
used by cores also increases sharply. Several studies demon-
strate that the power consumption increases with the number
of active cores and as the voltage and frequency increase [6-
8]. Tawara et al. also present how the power consumption
affects the internal temperature using thermography [8]. Zhu
and Shen observe that even though the power consumption
increases with the number of cores, the first activated core
incurs much higher power cost than each additional core
does in the same processor due to the shared resources [6].

2.2. Workload Analysis. Even though employing multicore in
mobile devices increases the power consumption, it also gives
an opportunity to reduce the application execution time,
eventually leading to energy saving. To explore the opportu-
nity, several studies have examined how much parallelism is
there in mobile applications [13-15].

Gao et al. analyze how the multiple cores are utilized
in mobile devices using TLP (Thread Level Parallelism)
[13]. They report that TLP of the most mobile applications
including browser, map, music, and games is less than 2 on
average, meaning that the number of active cores used by the
majority of applications is below 2. Similar behavior is also
observed by Zhang et al. [14]. Seo et al. investigate TLP using
various mobile benchmark applications in mobile devices and
observe that applications have TLP ranging from 1.4 to 3.9
[15]. These studies uncover the necessity to turn off cores or to
adjust voltage and frequency adaptively according to different
program execution phases.

2.3. DPM/DVFS Techniques. DPM and DVEFS are two well-
known techniques for dynamic energy-aware CPU manage-
ments. For DPM, Linux provides the CPU hotplug mecha-
nism that allows cores to be added to or removed from a
running kernel [16]. For DVES, Linux supports the governor
mechanism that permits user to adjust the CPU frequency
[17]. There are several governors such as ondemand, pow-
ersave, and performance, which will be discussed further in
Section 3.

Carroll and Heiser explore how to use DPM and DVES
to reduce power consumption [7, 19]. They propose a frame-
work, called medusa, an offline-aware frequency governor,
which integrates core offlining with frequency scaling. In
addition, they find that modern smartphones have quite
different characteristics, implying that policies that work well
on one processor can lead to poor results on another. Tawara
et al. design a framework, called idle reduction, which turns
on/oft cores or changes the CPU frequency dynamically
according to the intensity of workloads [8].

These two works are closely related to our work in that
they integrate DPM and DVES and apply them adaptively
based on workload characteristics. However, our proposed
framework differs from them in the following three aspects:
(1) we consider not only the homogeneous but also hetero-
geneous multicore devices, (2) we carefully separate policy
and mechanism to support flexibility, and (3) we provide a
configuration file with various control parameters so that a
user can easily configure his/her preferred policy.

Mobile Information Systems

Online resource usage monitor

Policy manager L Framework
N J
4 N\
Low-power controller
[CPU hotplug] [Governor]
e /) -

Odroid XU3 Raspberry Pi 2

Mobile

. [computing

= devices
Pine 64 -

FIGURE 1: Structure of the proposed low-power framework.

Zhu et al. observe that the wakeup delay of the sleeping
cores takes hundreds of microseconds, which is at least
100 times slower than the frequency change delay [20]. To
hide this latency, they devise an anticipatory CPU wakeup
for maintaining high performance. Song et al. propose a
framework that applies low-power techniques based on user-
perceived response time analysis [21].

Wambhoft et al. design a library that assigns heterogeneous
and even boosted frequencies for accelerating performance
[22]. Chiesi et al. present a power-aware scheduling algorithm
on heterogeneous architectures to reduce the peak power
[23].

DPM and DVES are also studied in the real-time research
area [10, 24, 25]. Bambagini et al. present a survey paper
that discusses various energy-aware scheduling algorithms
for real-time mobile systems [24]. Li and Broekaert design
a DVES based low-power scheduler that exploits slack times
with an intratask intrusive approach [25]. Chen et al. devise
a technique that models the idle intervals of individual cores
to optimize the DVFES and DPM for real-time tasks [10].

2.4. System/Application-Level Approach. Roy et al. propose a
new operating system, called cinder, for mobile phones and
energy-constrained computing devices [26]. It supports two
new abstractions, reserves and taps, which store and distribute
energy for applications. Snowdon et al. design a framework;
they refer to it as Koala, which provides a model, a generalized
energy-delay policy, and a single parameter for tuning the
system to an overall energy-management objective [27].

Shen et al. present a new operating system facility, called
power containers, that controls the power and energy usage
of individual fine-grained requests in multicore systems [28].
Zhu and Shen observe the energy disproportionality in
multicore devices, where the first running CPU incurs much
higher power cost than each additional core does [6]. Kwon
et al. propose a framework that predicts the computational
resource consumption on mobile devices using program
analysis and machine learning [29].

Thiagarajan et al. design an infrastructure for measuring
energy used by a mobile browser to render web pages such
as email, e-commerce, and social networking sites [30].

Using the infrastructure, they observe that downloading and
parsing CCS (Cascade Style Sheets) and JavaScript consume
a large portion of energy and recommend how to design web
pages for enhancing energy efficiency. Bui et al. propose tech-
niques, namely, adaptive content painting and application-
assisted scheduling, to improve the energy efficiency of web
page loading [31].

3. Adaptive and Integrated
Low-Power Framework

In this section, we first explain the overall structure of our
framework and principle used to design the framework.
Then, we discuss the details of each component in sequence.

3.1. Overall Structure. Figure 1 displays the overall structure
of the adaptive and integrated low-power framework pro-
posed in this paper. It consists of three components, called
online resource usage monitor, policy manager, and low-
power controller.

When we design our framework, we use the design
principle that separates policy and mechanism to support
diverse policies flexibly. The policy manager takes charge of
the policy decision, while the low-power controller provides
mechanisms for DPM and DVFS. The online resource mon-
itor is used for supporting adaptability based on resource
usage patterns including the CPU utilization and power
consumption.

Currently, the framework works on three multicore-
based mobile computing devices, namely, Odroid XU3 [32],
Raspberry Pi2 [33], and Pine 64 [34]. Note that the framework
can be installed any Linux-based devices since it utilizes the
standard Linux interfaces only.

3.2. Low-Power Controller. Thelow-power controller compo-
nent provides mechanisms for DPM and DVEFS. Specifically, it
makes use of the CPU hotplug mechanism [16] for DPM and
the governor mechanism [17] for DVES as shown in Figure 1.

The CPU hotplug is a mechanism that turns on and off
an individual core dynamically. It was originally designed to

4 Mobile Information Systems

- -[/sys/devices/system/cpu/cpu_number/online]
User 1
space i

| [/sys/devices/system/cpu/cpu_number/cpufreq/scaling_governor]——1

I I
______ e

| |

! |[_Online][Active | ||[Performance | [Powersave | . :

| Present | [Possible | | |[Ondemand | [Conservative |
T T
CPU hotplug : I Governor
Kernel |
space ! cpufreq module
v v
[CPU-specific drivers]
________________________________ R
i
A4
Hardware [Multiple cores]

FIGURE 2: Internals of the low-power controller.

allow a failing core to be removed from a running system, but
now it is popularly used for energy management.

Figure 2 shows the internal behavior of the low-power
controller. The CPU hotplug mechanism supports a file,
/sys/devices/system/cpu/cpu_number/online file, into user
space using the sysfs file system that is a pseudo file system
exporting various kernel information in Linux. A user can
turn on or off a core by writing 1 or 0 to the file.

While turning on or off a core, the core goes through
various states such as possible, present, active, and online
[35]. At each state, the mechanism invokes various functions
provided by CPU-specific drivers such as cpu_up(), cpu_
online(), cpu_down(), and cpu_down_prepare(). Finally, the
on/off request is applied into the designated core at hardware
level.

The most time consuming job in the CPU hotplug
mechanism is the context management. To turn off a core, it
needs to save the context of a process that runs on the core and
migrates the context to another core to continue its execution.
Also, to turn on a core, it has to prepare a new scheduling
queue for the core to be active. Hence, the latency for a core
on/off is much higher than that for changing frequency of a
core. We need to consider this difference for our integrated
low-power management.

For DVES, the low-power controller makes use of the
governor mechanism. It allows changing the frequency of
a core dynamically. It supports a file, /sys/devices/system/
cpu/cpu_number/cpufreq/scaling_governor, into user space
as shown in Figure 2.

Linux employs several default governors, namely, perfor-
mance, powersave, ondemand, conservative, and userspace
[17]. The distinctions of these governors are illustrated in
Figure 3. In the performance governor, a core always runs at
the maximum frequency. On the contrary, in the powersave
governor, a core runs at the minimum frequency.

In the ondemand governor, a core runs initially at
the minimum frequency. When a CPU load increases, the
frequency becomes the maximum frequency immediately to
minimize the effect of DVES on the application execution

time. When the load decreases, the frequency goes down
gradually into the minimum frequency. In the conservative
governor, a core runs initially at the minimum frequency
like the ondemand governor. But, when the load becomes
intensive, the frequency increases gradually. Finally, the
userspace governor allows any frequency to be set by a user.

Commercial smartphones extend these governors, devis-
ing their own specific governors. For instance, Android uses a
governor, called interactive governor, which behaves similar
to the ondemand governor but responds more quickly [15].

Each governor is based on a subsystem, called cpufreq,
which provides interfaces to explicitly set frequency on cores.
This subsystem eventually makes use of the CPU-specific
drivers that actually implement CPU on/oft and frequency
change functionality for various vendors including ARM,
Intel, and AMD.

The low-power controller integrates the CPU hotplug and
governor mechanisms and provides virtual interfaces such
as increase_computing() and decrease_computing(). These
interfaces invoke the mechanisms appropriately based on the
decision dictated by the policy manager, which will be further
discussed in Section 3.4.

3.3. Online Resource Usage Monitor. The online resource
usage monitor gives information about how much resources
are used by the current workload so that our framework can
apply the low-power mechanisms adaptively. It makes use of
the Linux proc file system, measuring various resource usage
statistics such as CPU utilization, memory footprint, power
consumption, and process activities. In addition, it reports
the measured statistics via a web page using Node.js.

Figure 4 presents the CPU utilization statistics measured
by the monitor on the Odroid XU3 device. This device has the
big.LITTLE architecture, consisting of four little cores (ARM
Cortex-A7) and four big cores (ARM Cortex-A15). The figure
shows that the first little core (CPUO) runs at the frequency
of 1.4 GHz whose utilization for user, system, and idle state is
6.79%, 3.61%, and 88.72%, respectively.

To measure the power consumption, the monitor
makes use of the power measurement functionality

Mobile Information Systems

Max freq

Min freq

(a) Performance

Max freq

BN

BRG]
R

Min freq

I%:
T,

(c) Ondemand

Max freq

Min freq |

ENEDEDERENE
AR SN

<—>
T,

I
I
I
|
I
I
t
)
t
I
|
! o

|
|
|
I
I
I
¢
T
I
I
I

(b) Powersave

ENENE]
I

I

I

N
Max freq N_
Min freq |— ‘\ ::ﬁ

(d) Conservative

FIGURE 3: Frequency changes in various governors.

Home CPU Power Process

Memory

CPU Performance

ETC

Odroid XU3 board: 4 little cores (A7) and 4 big cores (A15)

CPU STAT
CPUO 1400 MHz
A7 CPU1 1400 MHz
CPU2 1400 MHz
CPU3 1400 MHz
CPU4 2000 MHz 67°C
CPU5 2000 MHz 58°C
AlLS CPU6 2000 MHz 67°C
CPU7 2000 MHz 67°C

CPU USAGE
6.79% 3.61% 88.72%
4.76% 2.15% 92.07%
4.70% 1.99% 92.17%
4.45% 1.80% 92.74%
2.76% 2.66% 93.81%
2.15% 2.42% 94.61%
2.71% 2.79% 93.88%
1.88% 2.14% 95.12%

FIGURE 4: CPU utilization reported by the online resource usage monitor on the Odroid XU3 device.

already equipped in a mobile device. The Odroid XU3
device supports such functionality, providing the power
consumption of each unit including big core, little core,
GPU, and RAM. For devices that do not support such
functionality, Raspberry Pi 2 and Pine 64 in this paper, we
utilize an external power meter that can quantify the overall
power consumption by assessing the voltage driven into the
power unit.

3.4. Policy Manager. Based on the measured information
provided by the online resource usage monitor, the policy
manager makes a policy that can lead to better energy effi-
ciency. Then, it enforces the policy using interfaces supported
by the low-power controller.

The policy manager introduces four control parameters,
namely, max_utilization, min_utilization, max_frequency,

and min_frequency. The former two parameters are used
to trigger the policy manager to enforce its policy while
the latter two parameters are used for DVES. For instance,
when the current utilization of a core is higher than the
max_utilization, the policy manager is triggered to increase
computing resource.

Since our framework integrates two techniques, DPM
and DVFS, we need to have a rule about which technique is
applied first. The policy manager supports two options. The
first option is providing an interface so that a user can specify
his/her preference. The second option is giving a default
rule by considering the overhead of the two techniques and
features of mobile devices.

To devise a guideline for the default rule, we analyze
the overhead of the techniques and the power reduced by
them using the online resource usage monitor. We make the

decrease_computing()
for each big core do
if (core.freq > parameter.big.min_freq) then
decrease core.freq to the next lower level
return
for each big core do
if (core.state == on) then
turn off this core
return
for each little core do
if (core.freq > parameter.little.min_freq) then
decrease core.freq to the next lower level
return
for each little core do
if (core.state == on) then
turn off this core
return

ALGORITHM 1: Pseudocode for decreasing computing resources in
the policy manager.

following three observations. First, the latency to turn off a
core is much longer than that to change the frequency of a
core. Second, the power saved by turning oft a core is smaller
than that by decreasing the frequency of a core. This result
is also observed by Carroll and Heiser’s study where they
recommend that one should “offline cores conservatively and
reduce frequency aggressively” [19]. This is partly because
cores share various resources in the same processor [6]. Third,
the power used by big cores is much higher than that by little
cores.

Our observations lead us to design an algorithm, shown
in Algorithm 1, which is invoked when we decrease comput-
ing resource. The algorithm prefers big cores to little ones and
prefers DVES to DPM by default. Specifically, it first tries to
reduce the frequency among big cores. If it is not possible,
it tries to turn off a big core. Again, if not feasible, it tries to
reduce the frequency and to turn off a core among little cores.
When one of the four “if” conditions satisfies, this function
returns without going further.

Algorithm 2 presents an algorithm for increasing com-
puting resources. The sequence of this algorithm is reverse to
that of the one in Algorithm 1. It gives a higher priority for
little cores. Then, it tries to turn on a core before increasing
the frequency. The next higher level and the next lower level in
the pseudocodes are determined by the governors, discussed
in Figure 3.

The policy manager provides a configuration file so
that a user can configure his/her preferred parameters. The
parameters include min/max utilization, min/max frequency,
DPM/DVES preference, monitoring period, and monitoring
number. The default values for the preference, monitoring
period, and monitoring number are DPM preference, 200
milliseconds, and 5, respectively. The monitoring number
is the number of consecutive measurements for calculating
the moving average of the CPU utilization. When it is
small, the policy tries to apply the low-power techniques

Mobile Information Systems

increase_computing()
for each little core do
if (core.state == off) then
turn on this core
return
for each little core do
if (core.freq < parameter.little.max_freq) then
increase core.freq to the next higher level
return
for each big core do
if (core.state == off) then
turn on this core
return
for each big core do
if (core.freq < parameter.big.max_freq) then
increase core.freq to the next higher level
return

ALGORITHM 2: Pseudocode for increasing computing resources in
the policy manager.

TABLE 1: Multicore-based mobile devices.

Device Multicore description
Odroid XU3 Octa cores (Cortex-Al5

4 cores, Cortex-A7 4
(32]

cores)
Raspberry Pi 2 Quad cores (Cortex-A7
(33] 4 cores)
Pine 64 [34] Quad cores (Cortex-A53
4 cores)

aggressively. When a user prefers DVES, the first/third part
of the pseudocodes is changed with the second/fourth part.

4. Evaluation

In this section, we first describe our experimental devices
and workloads considered in this paper. Then, we discuss
evaluation results from the power measurements to the power
and energy saving achieved by the proposed framework.

4.1. Experimental Environments. We have implemented the
framework on the Linux kernel version 3.10. The online
resource usage monitor uses the proc file system for mon-
itoring and reports usage statistics via a web page using
Node.js. The low-power manager provides the integrated low-
power interfaces based on the CPU hotplug and governor
mechanism. The policy manager is implemented as a daemon
process that analyzes resource usage statistics at every 200
milliseconds and applies the integrated low-power interfaces
when the current CPU utilization is above/below the thresh-
old of the max/min utilization, whose default values are 80%
and 20% in this experiment.

Table 1 summarizes three mobile computing devices used
in this study. The Odroid XU3 device has the big. LITTLE

Mobile Information Systems

(a) Video recording

(b) Pedestrian detection

FIGURE 5: Workloads for experiments.

architecture, consisting of four little cores (Cortex-A7) and
four big cores (Cortex-Al5). Each core supports the same
ISA and equips L1, L2 cache, where the size of L2 cache
for little and big core is 512 KB and 2 MB, respectively. Both
the Raspberry Pi 2 and Pine 64 devices have homogeneous
four cores, Cortex-A7 and Cortex-A53, respectively. Note that
the multicore architecture used in Odroid XU3, also called
Exynos 5422, is actually employed for commercial mobile
devices including Samsung Galaxy S5 and Chromebook 2.

We use three workloads for experiments. The first one
is a video recording, as shown in Figure 5(a). It is an I/O
intensive workload, recording using a camera and displaying
through LCD. The second one is the Sunspider test suite
[36]. It is a CPU intensive workload that tests JavaScript
performance including function calls, math, and recursion
without rendering. The third one is a pedestrian detection
using the Haar classifier [37].

4.2. Evaluation Results

4.2.1. Video Recording Workload Results. This section con-
sists of two parts. In the first part, we explain evaluation
results observed using the Odroid XU3 device that has
heterogeneous 8 cores. The second part is the results of the
Raspberry Pi2 and Pine 64 device that have homogeneous 4
cores. Note that, in Odroid XU3, we can measure the power
consumption of each component individually using the
measurement functionality already equipped in the device
while, in Raspberry Pi2 and Pine 64, we only measure the
overall power consumed by the device using the external
power meter, as discussed in Section 3.3.

Figure 6 presents the power measurement results of the
Odroid XU3 device when it is in an idle state. The results
are reported by the online resource usage monitor discussed
in Section 3.3. This measurement is conducted under the
baseline configuration where all hardware components are
powered on. The results reveal that big cores are the heaviest
power consumer, using 0.929 watt, while little cores, GPU,
and DRAM consume 0.155, 0.055, and 0.096 watt, respec-
tively. Note that big cores consume quite large power even in

0.929
- 0.929

0.9
08
07
0.6
0.5
04
03
0.2
01
0

(Watt)

0.155

-0.096

©0.055
o

GPU DRAM

Little core Big core

FIGURE 6: Power measurement results under the idle state on the
QOdroid XU3 device.

2.5
5
:*:; 1.5
g
L
0.5
0.07 0.07 0.090.09
Ay
Little core Big core GPU DRAM
= Baseline

m Al-framework

FIGURE 7: Power consumption comparison under the video record-
ing workload on the Odroid XU 3 device.

an idle state, demonstrating the importance of the DPM and
DVES techniques.

To evaluate the power consumption reduced by our
proposed framework, we execute the video recording work-
load under the two configurations, as shown in Figure 7.
The first configuration is the baseline where any low-power

8

08 07507

0.7 ~

06 o gy

05 06

S04 o ~ -

03 m0.23 0.24

02 , ,

01" , ,
0 Idle Recording Idle Recording

(a) Raspberry Pi 2 (b) Pine 64
= Baseline

= Al-framework

FIGURE 8: Power consumption comparison on the Raspberry Pi 2
and Pine 64 device.

technique is not applied. The second configuration is under
our framework, labelled as Al-framework (Adaptive and
Integrated framework) in the figure.

Since the video recording is not a CPU intensive work-
load, it uses only one core during most of its execution period.
Hence, our framework turns on one little core, while turning
off other cores. On the contrary, in the baseline, all cores are
powered on and the workload mostly runs on one of the big
cores. As a result, the power consumed by big cores becomes
2.44 watt in the baseline, while that consumed in the Al-
framework is 0.13 watt due to offlining. The power consumed
by little cores is 0.42 watt in the Al-framework, higher than
that in the baseline. The overall power consumed by all cores
in the baseline is 2.66 watt while that consumed in the AI-
framework is 0.55 watt (79% reduction).

Figure 8 presents the power measurement results using
Raspberry Pi 2 and Pine 64 under the idle and the video
recording case. Note that these devices provide the frequency
change functionality only, not supporting the dynamic power
oft functionality for an individual core. Hence, in this exper-
iment, the Al-framework exploits the DVES technique only.

The results show that our proposed Al-framework can
reduce the power consumption by decreasing CPU frequency
appropriately. For Raspberry Pi2, it reduces the power con-
sumption from 0.27 to 0.23 watt under the idle state and
from 0.47 to 0.36 watt when we run the video recording
workload. For Pine 64, it reduces from 0.34 to 0.24 watt and
from 0.75 to 0.73 watt, respectively. The reduction is relatively
low for the video recording workload on the Pine 64 device.
We conjecture that the camera module equipped in the Pine
64 device consumes a large portion of power consumption,
leading to this small difference. We leave the component-level
fine-grained power analysis as the future work.

4.2.2. Sunspider Workload Results. Figure 9 presents the
number of active cores that are powered on during the
execution period of the Sunspider workload in the Al-
framework on the Odroid XU3 device. It shows that when the
workload requires a large computing resource, the number
of active cores increases up to the maximum cores. When

Mobile Information Systems

N W R U1 Y N 0 O

Number of active cores

—~

second)

Times

FIGURE 9: The number of active cores when we execute the Sunspider
workload on the Odroid XU3 device.

14)))) 127))))
o 1.2 . 1. . . 1 . 1. . .
2 1 0.81
o .
=9 .
g 08 B 0.63 = . .
38 o
P 0.6 o . . .
s 04
[} e
o020

0 Power Execution time Energy
= Baseline

m Al-framework

FIGURE 10: Power consumption, execution time, and energy saving
comparison using the Sunspider workload on the Odroid XU 3
device.

the workload does not need that much computing resource,
the active cores decrease down to the one core. It reveals that
our framework indeed supports adaptability according to the
workload characteristics.

Figure 10 presents the power consumption, execution
time, and consumed energy when we run the Sunspider
workload under the baseline and Al-framework. Note that
the y-axis is the relative value. The power consumed in the
baseline is 2.6 watt while that in the AI-framework is 1.6 watt
(37% reduction).

However, the execution time of the workload in the
baseline is 39 seconds while that in the AI-framework is
49 seconds (27% degradation). It shows the tradeoff of
the low-power techniques, reducing power consumption at
the expense of performance drop. As a net result, the Al-
framework can achieve the 19% energy saving, reducing
from 1.97 to 1.6 joule. For a CPU intensive workload, we
can mitigate the performance drop by turning off cores
conservatively, which will be further discussed in the next
section.

We also run the Sunspider workload on the Pine 64 and
Raspberry Pi 2 device. The results show that even though the

Mobile Information Systems

TABLE 2: Power consumption and detection latency on the Pine 64
and Raspberry Pi 2 device.

TABLE 3: Power consumption and detection latency on the Odroid
XU3 device (max utilization: 80%, min utilization: various).

: . Power Latency : . Power Latency
Device Device Configuration
v Configuration (watt) (ms) g (watt) (ms)
' Al-framework 247 122.7 AI-fraItl?lfzygf)}: min 5.90 2517
Pine 64 Baseline 1: max freq 3.18 121.6 ut ="0% '
Baseline 2: min freq 2.07 275.0 Al-framework: min 5.74 264.8
Odroid XU3 util =10%
. Al-framework 1.34 239.1 Al-framework: min - e
Raspberry Pi2 Baseline 1: max freq 1.41 230.5 util = 30% ‘ '
Baseline 2: min freq 1.28 338.1 AI—frarpework: min 313 425
util = 60%

Al-framework provides better energy efficiency as discussed
in Figure 10, the improvement is small, ranging from 1% to
6%. Our analysis reveals that since the Sunspider workload is
CPU intensive, requiring more than 4 cores on average, the
Al-framework does not have enough chance to apply DVFS.
Note that these two devices have 4 cores, as explained in
Table 1.

4.2.3. Pedestrian Detection Workload Results. We measure the
power consumption and average detection latency when we
execute the pedestrian detection workload on the Pine 64
and Raspberry Pi2 device, presented in Table 2. Since we can
utilize DVFS only in these devices, we conduct experiments
under three configurations. In the baseline 1, we configure
all cores to run at the maximum frequency (1152 MHz for
Pine 64 and 900 MHz for Raspberry Pi2). In baseline 2,
all cores are configured to run at the minimum frequency
(480 MHz for Pine 64 and 200 MHz for Raspberry Pi2). On
the contrary, in the Al-framework, the frequency of a core
is changed adaptively based on the current CPU utilization
and the min/max utilization threshold (20% and 80% in this
experiment).

Experimental results show that the AI-framework bal-
ances well between the power consumption and perfor-
mance. Baseline 1 provides the best performance at the cost
of high power consumption. On the contrary, baseline 2
reduces power the most but gives a noticeable impact on
performance. However, our framework can reduce the power
consumption (22% reduction for Pine 64 and 5% reduction
for Raspberry Pi2) while hardly affecting the performance of
the workload.

Table 3 shows the results when we execute the pedestrian
detection workload on the Odroid XU3 device. In this
device, the Al-framework can utilize not only DVEFS but
also DPM. Therefore, we conduct experiments with four
different min_utilization threshold values that trigger the
policy manager in our framework as discussed in Section 3.4.
When the threshold becomes smaller, the AI-framework tries
to apply low-power techniques conservatively, while applying
techniques aggressively as the threshold becomes larger.

When the min utilization threshold is set as 0%, the
Al-framework tries to decrease computing resources when
the current utilization is less than 0%. It means that the
Al-framework does not apply DPM and DVFS, turning
on all cores with maximum frequency, which provides the

best performance and the worst power consumption in this
device (baseline configuration). When the threshold is 10%,
the Al-framework tries to decrease computing resources
conservatively, obtaining relatively small power reduction
(from 5.9 to 5.74 watt in this case). On the contrary, when
the threshold is 60%, it tries aggressively, yielding better
power reduction at the cost of latency. These results reveal
the tradeoff between power reduction and performance. By
setting the threshold appropriately (30% in this case), the
Al-framework can reduce the power consumption without
considerable performance degradation.

5. Conclusion

In this paper, we design a new low-power framework
for multicore mobile devices. It integrates both DPM and
DVES techniques and applies them adaptively according
to the workload characteristics and device features. Real
implementation based experiments show that the proposed
framework balances well between the power consumption
and performance, resulting in the energy saving.

We will extend our work into the two directions. First,
we investigate the performance drop, especially for a CPU
intensive workload observed in Figure 10, using hardware-
level performance monitoring unit supported by processors.
We conjecture that workload-aware fine-grained power man-
agement can alleviate the drop while maintaining the power
reduction benefit. The second direction is developing a what-
if engine that can predict how an alteration of frequency
or number of active cores influences energy efficiency in
advance using our framework.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The present research was conducted by the research fund of
Dankook University (BK21 Plus) in 2014 and by the MSIP
(Ministry of Science, ICT and Future Planning), Korea, under
the ITRC (Information Technology Research Center) support
program (IITP-2016-R0992-16-1012) supervised by the IITP
and by the Center for Integrated Smart Sensors funded by

10

the Ministry of Science, ICT & Future Planning as Global
Frontier Project (CISS-2-3).

References

(1]

(8]

[9]

(10]

(12]

N. D. Lanez, S. Bhattacharyaz, P. Georgievy, C. Forlivesiz, and
E Kawsar, “An early resource characterization of deep learning
on wearables, smartphones and internet-of-things devices,” in
Proceedings of the ACM International Workshop on Internet of
Things towards Applications (IoeT-App ’15), November 2015.

J. S. Kim, D. H. Yeom, and Y. H. Joo, “Fast and robust
algorithm of tracking multiple moving objects for intelligent
video surveillance systems,” IEEE Transactions on Consumer
Electronics, vol. 57, no. 3, pp. 1165-1170, 2011.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K.
I. Farkas, “Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance; ACM SIGARCH
Computer Architecture News, vol. 32, no. 2, 2004.

C. Baun, “Mobile clusters of single board computers: an option
for providing resources to student projects and researchers,”
SpringerPlus, vol. 5, no. 1, article 360, 2016.

T. Guan, Y. Wang, L. Duan, and R. Ji, “On-device mobile
landmark recognition using binarized descriptor with multi-
feature fusion,” ACM Transactions on Intelligent Systems and
Technology, vol. 7, no. 1, article 12, 2015.

M. Zhu and K. Shen, “Energy discounted computing on
multicore smartphones,” in Proceedings of the USENIX Annual
Technical Conference (ATC ’16), Denver, Colo, USA, June 2016.

A. Carroll and G. Heiser, “Unifying DVFS and offlining in
mobile multicores,” in Proceedings of the 20th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS
’14), pp. 287-296, April 2014.

Y. Tawara, A. Idehara, and H. Yamamoto, “DVES and power-off
controls on a multicore operating system,” in Proceedings of the
10th International Forum on Embedded MPSoC and Multicore
(MPSoC ’10), Gifu, Japan, June 2010.

J. M. Kim, Y. G. Kim, and S. W. Chung, “Stabilizing CPU
frequency and voltage for temperature-aware DVFES in mobile
devices,” IEEE Transactions on Computers, vol. 64, no. 1, pp.
286-292, 2015.

G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-
time multiprocessor system-on-chip with optimal DVES and
DPM combination,” ACM Transactions on Embedded Comput-
ing Systems, vol. 13, no. 3s, article 111, 2014.

L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
8, no. 3, pp. 299-316, 2000.

M. E. Salehi, M. Samadi, M. Najibi, A. Afzali-Kusha, M. Pedram,
and S. M. Fakhraie, “Dynamic voltage and frequency schedul-
ing for embedded processors considering power/performance
tradeoffs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 10, pp. 1931-1935, 2011.

C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and
C.-J. Wu, “A study of mobile device utilization,” in Proceedings of
the 15th IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS ’15), pp. 225-234, March 2015.
Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F Zhao,
“Towards better CPU power management on multicore smart-
phones,” in Proceedings of the ACM Workshop on Power-Aware
Computing and Systems (HotPower ’13), Farmington, Pa, USA,
November 2013.

(15]

(16]

(21]

(22]

[27]

Mobile Information Systems

W. Seo, D. Im, J. Choi, and J. Huh, “Big or little: a study of
mobile interactive applications on an asymmetric multi-core
platform,” in Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC ’I5), pp. 1-11, IEEE,
Atlanta, Ga, USA, October 2015.

Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vaddagiri,
“Linux kernel CPU hotplug support,” in Proceedings of the OLS,
July 2004.

V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in
Proceedings of the Ottawa Linux Symposium (OLS "06), Ottawa,
Canada, July 2006.

A. Carroll and G. Heiser, “An analysis of power consumption
in a smartphone,” in Proceedings of the USENIX Conference on
USENIX Annual Technical Conference (USENIXATC 10), ACM,
Boston, Mass, USA, 2010.

A. Carroll and G. Heiser, “Mobile multicores: use them or
waste them,” in Proceedings of the Workshop on Power-Aware
Computing and Systems (HotPower ’13), November 2013.

Q. Zhu, M. Zhu, B. Wu, X. Shen, K. Shen, and Z. Wang,
“Software engagement with sleeping CPUs,” in Proceedings of
the 15th Workshop on Hot Topics in Operating Systems (HotOS

’I5), Kartause Ittingen, Switzerland, March 2015.

W. Song, N. Sung, B.-G. Chun, and J. Kim, “Reducing energy
consumption of smartphones using user-perceived response
time analysis,” in Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications (HotMobile ’14), ACM,
February 2014.

J. Wambhoff, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and
D. Dice, “The TURBO diaries: application-controlled frequency
scaling explained,” in Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC ’I4), June 2014.

M. Chiesi, L. Vanzolini, C. Mucci, E. Franchi Scarselli, and
R. Guerrieri, “Power-aware job scheduling on heterogeneous
multicore architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 868-877, 2015.

M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo,
“Energy-aware scheduling for real-time systems: a survey;,
ACM Transactions on Embedded Computing Systems, vol. 15, no.
1, article 7, 2016.

S. Li and E Broekaert, “Low-power scheduling with DVFS
for common RTOS on multicore platforms,” in Proceedings of
the 3rd Embedded Operating Systems Workshop (EWiLi ’13),
Toulouse, France, August 2013.

A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Maziéres, and
N. Zeldovich, “Energy management in mobile devices with
the Cinder operating system,” in Proceedings of the 6th ACM
EuroSys Conference on Computer Systems (EuroSys ’11), pp. 139-
152, April 2011.

D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser, “Koala:
a platform for OS-level power management,” in Proceedings of
the EuroSys, March-April 2009.

K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen,
“Power containers: an OS facility for fine-grained power and
energy management on multicore servers,” in Proceedings of
the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13),
pp- 65-76, ACM, March 2013.

Y. Kwon, S. Lee, H. Yi et al., “Mantis: efficient predictions
of execution time, energy usage, memory usage and network
usage on smart mobile devices;” IEEE Transactions on Mobile
Computing, vol. 14, no. 10, pp- 2059-2072, 2015.

Mobile Information Systems

[30] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J.
P. Singh, “Who killed my battery: analyzing mobile browser
energy consumption,” in Proceedings of the 2Ist International
Conference on World Wide Web (WWW ’12), pp. 41-50, ACM,
Lyon, France, April 2012.

[31] D. H. Bui, Y. Liu, H. Kim, I. Shin, and E Zhao, “Rethinking
energy-performance trade-off in mobile web page loading,
in Proceedings of the 2Ist Annual International Conference on
Mobile Computing and Networking (MobiCom ’I5), pp. 14-26,
ACM, Paris, France, September 2015.

[32] http://www.hardkernel.com/main/products/prdt_info.php?g
code=g140448267127.

[33] https://www.raspberrypi.org/products/raspberry-pi-2-model-b/.

[34] https://www.pine64.org/.

[35] CPU hotplug Support in Linux Kernel, https://lwn.net/Articles/
537570/.

[36] J. Resig, “JavaScript Performance Rundown,” http://ejohn.org/
blog/javascript-performance-rundown/.

[37] P. 1. Wilson and J. Fernandez, “Facial feature detection using
HAAR dlassifiers,” Journal of Computing Sciences in Colleges, vol.
21, no. 4, pp. 127-133, 2006.

1

http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.pine64.org/
https://lwn.net/Articles/537570/
https://lwn.net/Articles/537570/
http://ejohn.org/blog/javascript-performance-rundown/
http://ejohn.org/blog/javascript-performance-rundown/

b
B

e

e

H H International J I'of
The Scientific ~ JEEEEETEE

Applied
Computational
Intelligence and Soft

Computing—

| INultimedia N‘! 2 e ndustrial Engineering
: Va
® o

World Journal Sensor Networks L W

Modelling &
Simulation }
in Engineering

et Rsmary oo
=i g

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of:

Computer Networhks
and Communications

Advances in
Artificial
Neural Systems

A

Advances in

Software Engineering

Reconfigurable
Computing

Computational

Journal of I Human-Computer \nte\ﬁgence and
Robotics Interaction Neuroscience

Journal of
Electrical and Computer
Engineering

S in

