
Research Article
Unified and Modular Modeling and Functional Verification
Framework of Real-Time Image Signal Processors

Abhishek Jain1,2 and Richa Gupta1

1ECE Department, Jaypee Institute of Information Technology, Noida 201309, India
2Systems & Platforms Solutions, STMicroelectronics, Greater Noida 201308, India

Correspondence should be addressed to Abhishek Jain; abhishek-mmc.jain@st.com

Received 31 December 2015; Revised 31 May 2016; Accepted 31 July 2016

Academic Editor: Mohamed Masmoudi

Copyright © 2016 A. Jain and R. Gupta.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In VLSI industry, image signal processing algorithms are developed and evaluated using software models before implementation
of RTL and firmware. After the finalization of the algorithm, software models are used as a golden reference model for the
image signal processor (ISP) RTL and firmware development. In this paper, we are describing the unified and modular modeling
framework of image signal processing algorithms used for different applications such as ISP algorithms development, reference for
hardware (HW) implementation, reference for firmware (FW) implementation, and bit-true certification.The universal verification
methodology- (UVM-) based functional verification framework of image signal processors using software reference models is
described. Further, IP-XACT based tools for automatic generation of functional verification environment files and model map files
are described. The proposed framework is developed both with host interface and with core using virtual register interface (VRI)
approach.This modeling and functional verification framework is used in real-time image signal processing applications including
cellphone, smart cameras, and image compression.The main motivation behind this work is to propose the best efficient, reusable,
and automated framework for modeling and verification of image signal processor (ISP) designs. The proposed framework shows
better results and significant improvement is observed in product verification time, verification cost, and quality of the designs.

1. Introduction

Image signal processor (ISP) mainly corrects the output
images of the sensor so that the best possible defects and
noise-free images can be generated. It processes the stream
of image data into a form which can be easily managed by
upstreammobile baseband or multimedia processor chipsets
[1, 2]. Different markets, including gaming, smartphones,
surveillance, and medical and automotive applications, are
mainly covered by the ISP. The integration of image pro-
cessors has become a simple process by the use of industry
standard interfaces and a rich set of application programming
interfaces (APIs). It also helps to lower time tomarket of end-
product.

Restoration engine (RE) of the ISP is responsible for
removing the noise and the artifacts and generating the
RGB data from the Bayer image. Color engine (CE) of
ISP is responsible for scaling the image as per the output

requirements, sharpening the image, and converting the RGB
data to YUV.

Universal verification methodology (UVM) is a generic
methodology for the functional verification of hardware
designs,mainly using simulation.The hardware designwhich
is to be verified can be described using VHDL, Verilog,
SystemVerilog, or SystemC at any appropriate abstraction
level. This can be register transfer level or behavioral or gate
level. Assertion-based verification and hardware emulation
or acceleration can also be used along with the universal
verification methodology [2, 3].

A SystemVerilog UVM test bench consists of reusable
verification components. A verification component is a con-
figurable, encapsulated, ready-to-use verification environ-
ment for a design submodule, an interface protocol, or a
full system [4, 5]. Each verification component follows a
standard architecture for stimulus generation, data/protocol
checking, and obtaining coverage information for a specific

Hindawi Publishing Corporation
VLSI Design
Volume 2016, Article ID 7283471, 14 pages
http://dx.doi.org/10.1155/2016/7283471

2 VLSI Design

design or protocol.The verification environment is applied to
the designs to verify implementation of the protocol or design
architecture [6].

In our case, development and evaluation of image sig-
nal processing algorithms are done using Python software
models before implementation of RTL and firmware. After
the finalization of the algorithm, Python models are used
as a golden reference model for the development of ISP
RTL and firmware. Then, Python reference models are
used in universal verificationmethodology based verification
framework of ISP RTL for its bit-true verification. This
proposed framework shows better results and significant
improvement is observed in product verification time (∼
50% improvement), verification cost (∼20% reduction), and
quality of the designs (∼75–80% improvement).

This paper is organized in different sections. It presents
the ISP development flow that we have developed going
through algorithm investigation, algorithmdevelopment, ISP
RTL implementation, and its functional verification using
UVM-based verification environment. Section 2 discusses
the earlier functional verification frameworks. Section 3
describes the ISP development flow and modeling frame-
work. Section 4 discusses the proposed functional verifica-
tion framework. Section 5 discusses methodology of early
development of verification framework. Section 6 discusses
IP-XACT flow for automatic generation of verification envi-
ronment files and map files. Section 7 discusses results of
experiments done by us and Section 8 concludes by listing the
performance and the advantages of the proposed framework.

2. Related Work

Marconi et al. proposed a verification framework based
on SystemVerilog and universal verification methodology
(UVM) for high energy physics (HEP) applications [7]. This
verification framework described the reusability and high
flexibility of verification components. The framework helped
verification engineers in verification of various DUTs and
architectures at different abstraction levels.

Liang et al. proposed a SystemVerilog UVM-based meth-
odology for mixed-signal level verification of wireless power
receiver family MCU [8]. Usage of the universal verifica-
tion methodology- (UVM-) based verification environment
with analog design enhanced the verification quality and
efficiency.

Kim et al. proposed a FPGA-based verificationmethodol-
ogy for the image signal processor (ISP) of CMOS image sen-
sor [9]. A four-step verification methodology composed of
ARM core based verification, system verification, algorithm
verification, and performance verification was used.

Kannavara proposed the idea of a validation framework
[10]. Main issues were mentioned which need to be resolved
for success of such validation framework.

The studied papers were describing the different frame-
works for verification of image signal processors and other
applications. Earlier frameworkswere not taking into account
the flexibility in the verification environment to verify designs
using both host interface and actual core in a unifiedmanner.
Modeling part of ISP designs was also not described. In our

approach, we are describing unified and modular modeling
and functional verification framework of real-time image
signal processors. Common infrastructure is proposed for
all the IP/subsystem/SoC level verification environment. The
proposed framework provides flexibility to use verification
components in different languages (SV, SC, “e,” etc.).The pro-
posed framework is developed both with host interface and
with core using virtual register interface (VRI) approach.The
methodology of early development of verification environ-
ment before arrival of RTL is developed. IP-XACTbased tools
are developed for automatic configuration and development
of the verification environment for various IPs/SoCs.

3. ISP Development Flow

ISP development flow is clearly understood from Figures 1
and 2. At the start, the Pythonmodel is written for evaluation
of the algorithms. At that stage, there is no hardware or
firmware partitioning done in the model. After evaluation,
this model is used as a reference model for the algorithmic
ISP RTL. After the evaluation stage, hardware and firmware
partitioning is done in reference model. An implementation
model is developed where both hardware and firmware parts
of the algorithm exist. Now the firmware part of this model is
used by the firmware developer to verify the firmware drivers
and the hardware part of Python reference model is used at
unit level for bit-true verification of the ISP RTL.

In the initial stage of verification of the ISP IP RTL,
directed test scenarios are driven from UVM-based verifi-
cation environment. Once the ISP IP RTL becomes stable
for few directed scenarios, random test data is generated
from verification environment. Generated random test data
is driven to both ISP IP RTL and software reference model.
Comparison between the output of ISP IP RTL and software
reference model is done for its bit-true verification. After
initial verification of the ISP IP RTL by running few directed
and random test scenario simulations, light regression is run
using regression tool so as to make sure that 60–70% of the
ISP IP RTL has been verified and can be used for ISP HW
system integration.Then, full regression at ISP IP level is run
to complete verification of the ISP IP RTL in parallel with
initial verification of the ISP HW at subsystem/SoC level.
Functional coverage is also measured to know whether all
possible functional test scenarios are covered or not.

At ISP level, ISP block diagram represents ISP hardware
specifications.Verified ISP IPs are integrated tomake ISPHW
system and ISP reference model be used for the verification.
The ISP is then continued to be tuned formore improvements
and better performance.

Mapping between configuration and status registers of
ISP RTL and attributes of reference model is provided
through a Python map file with the following:

(i) A function which translates HW inputs (parameters,
register values, memory contents, and images) to
model attributes

(ii) A function which translates model output attributes
to HW outputs (register values, memory contents,
and images)

VLSI Design 3

IP RTL bit-
true
verification

Algorithm
FW
implement-
ation

Algorithm
RTL
implement-
ation

ISP FW
integration

ISP RTL
integration

IP FW bit-
true
verification

ISP RTL bit-
true
verification Chip

ISP
model
refinement

Algorithm architecture
(HW/FW partitioning)

ISP model
integration

IQ tools &
metrics

Algorithm
investigation

IQ tuning
tools and
characteri-
zation
metrics

Algorithm
development

Figure 1: Algorithm development methodology from idea to product.

FW drivers verification

Implementation
model

ISP HW spec.

UVM-based
light regress

ISP tuningISP model ISP block
diagram

FW
Dev

IP Dev

ISP Dev

ISP model

Map file

Model for
algorithm
evaluation
(without
HW/FW
partitioning)

HW/FW
partitioning

ISP integration

Python model

Design with first level
of verification using
Python implementation
model

ISP verification

UVM full
regress

Figure 2: IP and ISP development flow.

(iii) Python mapping file that describes how to transfer
hardware inputs to model inputs and model outputs
to hardware outputs. The mapping file does not
describe how hardware inputs have to be provided or
how hardware outputs have to be processed. Python
script file provides those data andprocesses the results

It is clear from Figure 3 that the map file contains both
the RTL-to-model and model-to-RTL mapping. The most
basic requirement to write a map file is to have the register
description file and instantiation parameters description file.
These files are in standard XML format, so that they are easily
converted to Python map file via IP-XACT flow.

4 VLSI Design

RTL to
model

RTL simulation
UVM

RTL level
Output data
matching
verification

Software model
execution

parameters
Instantiation

RTL level

memory)
(pipe,
Input data

Register
values

Model to
RTL

Map file
conversionMap file

conversion

Figure 3: Bit-true verification overview.

Scoreboard

Control bus UVC driver

UVM_REG register and memory
model

Test image
data generator

Data bus
UVC

driver

Data bus
UVC

receiver

IP golden reference model

Image signal processor IP
(RTL)

Figure 4: Image signal processor RTL verification environment.

The development of unified and modular modeling
framework of image signal processing algorithms provides
the following benefits:

(i) Reduction of the development time
(ii) Coherent modeling approach making development

and support not reserved to algorithms experts
(iii) Maximum reuse of IP
(iv) Bit-true certification between models and products
(v) Algorithms/ISP developers, HW designers, FW engi-

neers, HWverification engineers, and application and
marketing people using the same modeling frame-
work

4. Functional Verification

ISP RTL is verified using UVM-based verification environ-
ment as shown in Figure 4. Coverage-driven verification
(CDV) feature of universal verification methodology (UVM)
is used to generate both user-defined and random input
image test data for the ISP IP RTL [4, 11]. Self-checking

mechanism in test bench is performed by comparison of
output of software referencemodel and ISP IP RTL. Coverage
metrics are measured to know whether all desired test
scenarios are covered or not.

Registers andmemories of ISPDUTaremodeled by using
UVM REG register and memory model [5, 12]. UVM REG
register and memory model integrated with control bus
UVC accesses ISP DUT registers and memories using host
interface. Control bus UVC acts as initiator and ISP RTL
control bus interface acts as target. Control bus UVC drives
the target control bus of the ISP RTL. After programming
of ISP RTL registers and/or memories, data bus UVC drives
the user-defined/random test image data to the data bus
interface.The same test image data is also sent to the reference
model.

Data bus UVC monitor receives the output data of the
ISP RTL. The output data of ISP RTL and reference model
is compared by the scoreboard and it gives the result saying
whether both outputs (image/status data) match or not.

Register sequencer executes ISP RTL register operation
sequences according to the register model specification and

VLSI Design 5

ISP DUT

Configuration

Randomize
environment
& DUT
configuration

Memory

tx_mode

Data bus UVC

RX agent

mon drv

Seqr

mon

Control bus UVC

Master
agent

mon drv

Reg file
tx_mode

Register
transactions are
translated into
bus transactions

Executes bus
transaction

rx_mode

tx_status

rx_status

tx_status

rx_mode

rx_status

Register
sequencer

Executes register
operation sequences
according to the
register model spec.
& configuration

Controls
timing and
data flow of the
entire system
via reusable
sequences

seqr

Virtual
sequencer

Figure 5: Synchronization between register sequences and data sequences.

configuration. Similarly, data bus sequencer also executes
data operation sequences according to the data bus specifica-
tion and configuration.Virtual sequencer controls timing and
data flow of the entire system via reusable sequences [13, 14].

UVM REG API is developed to write simpler directed
tests which require less or no SystemVerilog/UVM under-
standing. Our own register/memory sequences are also
developed to address the SoC level register and memory
testing [12].

Since register or data sequences, sequencers, and drivers
are focused on point interfaces, ISP RTL verification environ-
ment has a virtual sequence to coordinate the stimulus across
register and data interfaces and the interactions between
them [13, 15]. Virtual sequence controls the register and data
sequences as shown in Figure 5.

When host BFM is replaced with actual core, then it
becomes challenging to reuse the existing verification envi-
ronment as “C” test code is used to do functional verification
with core in place. At SoC level, it is important to verify
that the hardware and software work seamlessly together to
deliver the functionality and performance of the image signal
processor.

As shown in Figure 6, virtual register interface (VRI)
layer is a virtual layer over verification components to make
it configurable from embedded software. It also gives high
level C-APIs and masks low level implementation details
from the users. A VRI layer is developed over verification
components to configure the SystemVerilog UVM-based
data bus UVC and other verification components from the
“C” test cases [16]. VRI layer provides the access of the
sequences of these verification components to the embedded
software [17]. It enables the configuration and control of these
verification environments with actual core and performs the
same exhaustive functional verification at SoC level [2].

VRI approach covers the following aspects of ISP func-
tional verification at SoC level:

(i) Embedded software configures ISP verification com-
ponents.

(ii) ISP verification environments are reused from IP level
to SoC level.

(iii) ISP test cases are reused from IP level to SoC level.

6 VLSI Design

VRI layer

Verification IP

Registers

Platform

User test code

Virtual register interface C-APIs

Figure 6: Virtual register interface (VRI).

(iv) ISP integration test cases created by IP verification
teams are used by SoC team.

The main benefit of the VRI approach is the reuse of
verification IP (VIP) and “C” test code.The sameVIP and “C”
test cases are reused from IP level to SoC level verification.

Figure 7 shows SoC level functional verification environ-
ment where using virtual sequences and ISP SoC DUT is
simultaneously bombarded at all interfaces in an automated
and coordinated way [18, 19]. Virtual sequence is controlling
the stimulus generation using several sequencers of host bus
UVC, USB UVC, Ethernet UVC, and so forth [20]. Here,
programming of ISP SoC registers is done using control bus
UVC and not the actual core. All test cases are written in
SystemVerilog language.

Figure 8 shows SoC level functional verification environ-
ment where test softwaremixed with host BFM. VRI APIs are
converted to host bus UVC’s transactions.

The basic interface between embedded processors and
internal IPs (e.g., peripheral devices) in an ISP SoC is a
set of control and status registers [16]. These registers that
are usually located in the memory space of the system
(memory mapped) are part of the ISP IP implementation.
These registers represent features of the ISP IP itself. Similarly,
any external verification IP like Ethernet VIP used for the
verification of an ISP SoC is interfaced to an embedded
processor through a set of control and status registers in the
same way we do with hardware ISP IPs.

VRI exposes the functionality of the VIPs (e.g., VIP
configuration or VIP sequences) in the form of a register map
suitable to be controlled by an embedded processor. Using
VRI layer, verification environment users can write both “C”
and SystemVerilog test cases to control the sameVIP. Software
data randomization can also be done using VRI layer.

Figure 9 shows ISP SoC level functional verification
environment where test software mixed with bare metal
software. ISP DUT processor acts like virtual sequencer. The
core is executing the “C” test cases along with virtual register
interface API.

An example of “C” test case for Ethernet VIP using virtual
register interface is described below:

vri ethernet packet tx pkt;
vri ethernet packet rx pkt;
rx pkt.data = new vri uint8 t[4000];
tx pkt.packet kind = ETHERNET 802 3;
tx pkt.data length = 0; //Data length 0 means sending
random number of data
tx pkt.src address high = 0x2000;
tx pkt.dest address high = 0x1000;
tx pkt.error code = 0;
for (int j = 0; j < 200; j++) {

tx pkt.src address low = j + 1;
tx pkt.dest address low = j;
ethernet send packet(1, &tx pkt); //send packet
(MAC)
ethernet receive packet(0,&rx pkt); //receive
packet (PHY)
compare packet(tx pkt,rx pkt);

};

The main advantages of using VRI layer in the proposed
framework are as follows:

(1) Using VRI layer, verification framework users can
write C test cases to control the SystemVerilog/e VIPs.
This gives flexibility to verification framework users to
use the VIPs without knowing SystemVerilog/e.

(2) Through VRI layer, SW data randomization can also
be done.

(3) Verification framework users can write both C and
SystemVerilog test cases to control the same VIP.

(4) VRI layer gives verification framework users the
flexibility to use the same test cases at IP/SoC level
functional verification as well as for validation.

Static Formal Verification. Static formal verification is used to
compliment the dynamic Metric Driven Verification (MDV)
methodology in ISP verification. Static formal verification
methodology provides a substitute for some of the verifi-
cation tasks usually done under dynamic simulation. Static
formal verification reduces the regression reruns to achieve
coverage goals and to reduce the effort to write additional test
scenarios.

Assertions are embedded within the ISP design code and
they are written both within and outside the design code.
Both designers and verifiers are using it independently. The
ISP verification flow that includes the usage of assertions is
shown in Figure 10.

Assertions are used in verification environments of image
signal processor to

VLSI Design 7

USB
PHY

USB

USB
PHY

USB Ethernet

ROM Flash Bridge

UART GPIO I2C PCM

On-chip interconnection

Peripheral bus

Memory
controller RAMHost BFM

USB
VIP

Ethernet
VIPSequences

SequencesSequencesSequences

USB
VIP

ISP

Virtual
sequence

Ethernet
PHY

Figure 7: ISP SoC level functional verification environment using UVM.

(i) monitor signals on an interface that connects different
blocks;

(ii) track the expected behavior of a logic gate, flip-flop,
or module;

(iii) watch for forbidden behavior within a design block.

Some of the examples of usage of assertion-based VIP
(ABVIP) in ISP verification are described as follows.

(1) Protocol Compliance Checking. As described in Figure 11,
a top-level ISP module contains a Master IP and an ABVIP
monitor.Master behavior of IP is checkedwithABVIPmaster
properties. Slave behavior is assumed with ABVIP slave
properties.

(2) As a Driver (Constraints) to Verify Other Functionalities.
As described in Figure 12, ABVIP drives defined, constrained
random bus traffic to ISP DUT following interface bus
protocol.Thus, ABVIP offload this time consuming task from
dynamic simulation and verify functionality of the ISP RTL.
Here, ISP RTL is acting as a receiver. Interface bus protocol
behavior is assumed with ABVIP interface bus properties.

(3) Protocol Conversion (Bridge) Verification. As described
in Figure 13, ABVIP is used for verification of protocol
conversion (bridge) in ISP SoC RTL. Formal verification

is a very efficient way for verification of bridges. Using
only dynamic simulations for verification of bridges cannot
efficiently complete the full verification of bridges as some test
scenarios may miss in dynamic simulations.

(4) As Protocol Monitor in Simulation. As described in
Figure 14, ABVIP is used in dynamic simulations to monitor
the bus protocol. ABVIP also provides functional coverage of
the properties covered.

5. Early Development of
Verification Framework

For early development ofUVM-based verification framework
of image signal processing designs, TLM/SystemC reference
model of ISP RTL is created from software reference model
[21, 22]. Regressive verification of the TLM/SystemC model
with user-defined/random test image data is done. After
regression, the model is used as behavioral replica of ISP
DUT. This speeds up development and better validation of
the verification frameworkwithwider test image datawithout
waiting for ISP RTL to be available.

Standard “interfaces” are used for reusing the verification
framework components. In addition to the standard method
of signals level connectivity, UVM Multilanguage (UVM-
ML) Open Architecture is used to connect SystemVerilog

8 VLSI Design

USB PHY

USB USB

Ethernet PHY

Ethernet

ROM Flash Bridge

UART GPIO I2C PCM

On-chip interconnection

Peripheral bus

RAM

USB
VIP

USB
VRI

USB
VIP

USB
VRI

Ethernet
VIP

Ethernet
VRI

Host BFM

API2BFM
TXN converter

VRI
APIsHAL

APIs

ISP

VRI decoder

Memory
controller

USB PHY

Figure 8: Test software mixed with host BFM.

TLM port directly to SystemC TLM port. This gives benefit
of better simulation speed and better development cycle in
addition to clean and easy integration of blocks [1, 22]. Usage
of TLM components gives flexibility to make backdoor direct
access to the ISP RTL registers and memories.

As shown in Figure 15, a TLM/SystemC model of pro-
cessor is used for early development of “C” test cases for
configuration of ISP RTL registers/memories via CPU inter-
face [23]. The same “C” test cases are used for configuring
the SystemVerilog UVM-based data bus VIPs using virtual
register interface layer. In ISP verification environment,
alternative host interface path is used to perform config-
uration of registers/memories using SystemVerilog UVM-
based test cases. In both cases, image data and control flow
across both bus interface and TLM boundaries [24]. This
method improves the possibility of reusing already existing
verification components in the verification flow.

Complete verification framework and image test data
are ready with sufficient quality before the arrival of ISP
RTL, thus eliminating the number of verification framework
problems which may arise when actual ISP RTL verification

is started.When ISP RTL arrives, the TLM/SystemCmodel is
replaced with ISP RTL block with reuse of maximum of other
verification components. This enables the regress testing of
ISP design immediately. Also, the same C test cases are run
on the actual core.

6. IP-XACT Flow

In UVM-based verification framework of image signal pro-
cessor, register definition file for UVM REG register model,
top-level address map file, register and data sequences file,
data checker (scoreboard) file to compare the output of ISP
RTL with output of Python reference model, and functional
coverage file are ISP IP/SoC specific. These files are modified
for every ISP IP/SoC. IP-XACT based tools are developed
for generation of these verification environment files [25].
First, the register map description has to be provided in XML
format.

Description of registers and memories of ISP RTL in
XML format is automatically generated from the register

VLSI Design 9

ISP

USB
PHY

USB USB

Ethernet
PHY

Ethernet

ROM

UART GPIO I2C PCM

On-chip interconnection

RAM

VRI decoder

Ethernet
VRI

Processor

HAL
APIs

DUT processor
acts like virtual
sequencer.
It handles HAL
& VRI
programming
sequences USB

VRI

Memory
controller

VRI
APIs

USB
VRI

Ethernet
VIP

USB
VIP

USB
VIP

USB
PHY

Flash Bridge

Peripheral bus

Figure 9: ISP functional verification environment using virtual register interface (VRI).

Simulations

Simulation planning

Assertion runs

Formal verification
planning

Closure

IP specification

Functional partitioning (for verification)

Coverage goals/verification
plans

Figure 10: ISP verification flow including usage of assertions.

10 VLSI Design

ABVIP

MasterAssume Assert

Figure 11: Protocol compliance checking.

ISP DUT UT

A A

A

ABVIP

Figure 12: ABVIP as a driver (constraints).

specification document using spec2spirit (specification-to-
SPIRIT) script as shown in Figure 16.

In data checker (scoreboard) file, Python referencemodel
which contains attributes is executed using system command.
Thus, automatic generation of data checker file requires
the mapping between the registers/register-fields/parameters
of RTL and the attributes of Python reference model. In
spirit2uvm (SPIRIT-to-UVM environment files) script, there
are two input files:

(i) XML file for register map informationwhich contains
the registers and memories description of ISP RTL

(ii) Data and control interface information file

IP-XACT based spirit2uvm tool generates ISP IP/SoC
specific files which are used in the UVM-based verification
framework as shown in Figure 17. Map file for mapping
between the registers/register-fields/parameters of RTL and
the attributes of Python model is also generated from IP-
XACT based tool. Development of IP-XACT based tools
helps to generate thousands of lines of code of verification
environment in a very short time.

Figure 18 represents one example of input XML file and
generated output register definition file. The XML file
contains all the required information of the ISP IP/SoC

BridgeX-protocol ABVIP

Figure 13: ABVIP for protocol conversion (bridge) verification in
ISP SoC RTL.

A B

ABVIP

Figure 14: ABVIP as protocol monitor.

such as base address (<spirit:baseAddress>0x100</spirit:
baseAddress>), register name (<spirit:name>MUX<spirit:
name>), register-field bit width (<spirit:bitWidth>4</spirit:
bitWidth>), register-field bit offset (<spirit:bitOffset>0
</spirit:bitOffset>), and register-field accessibility (<spirit:
access>read-only</spirit:access>). Using the information in
input XML file, spirit2uvm tool generates register definition
file.

7. Results and Discussion

The development of unified and modular modeling frame-
work of image signal processing algorithms provides the
following benefits:

(i) Reduction of the development time
(ii) Coherent modeling approach making development

and support not reserved to algorithms experts
(iii) Maximum reuse of IP
(iv) Bit-true certification between models and products
(v) Algorithms/ISP developers, HW designers, FW engi-

neers, HWverification engineers, and application and

VLSI Design 11

AMBA AXI UVC

Register sequences

SystemVerilog
test case

C test case

ISP RTL

UVM_REG
register and
memory model

Core

VRI

SystemVerilog
test case

Virtual
platform
with AMBA
transactor

C test case

Data bus
UVC
(monitor)

AXI3
BFM

Processor
model

SystemVerilog
test bench SystemVerilog

test bench

Register sequences

Data bus
UVC
(driver) Data bus

UVC
(driver)

TLM IP
(C + Python) Data bus

UVC
(monitor)

Virtual

AMBA
transactor

platform with

TLM2
transaction

UVM_REG

memory model
register and

AMBA
AXI
UVC

Processor
model

VRI

Scoreboard Scoreboard

Figure 15: Reuse of early developed verification environment.

Register model
golden
specification

Register model
golden
specification
(machine
readable)

Test sequences Functional test
API

Register testing
Ready for use
in functional
tests

Specification

Automated
register model
generation &
test collaterals

Verification
of ISP design
under test

spec2spirit

Python map file

spirit2uvm

UVM_REG
based register
model

√

Figure 16: IP-XACT flow.

12 VLSI Design

Register description file

Sequences file

Test case file & top
environment file

Address map file

Functional coverage file

XML file

Interface
information

spirit2uvm
script

Figure 17: spirit2uvm script.

REG_DEF file

XML file

Figure 18: XML to REG DEF file conversion.

marketing people using the same modeling frame-
work

As compared to traditionalmethodology, development of
UVM-based verification framework for ISP designs helped in
saving verification cost and efforts by

(i) decreasing the maintenance of multiple verification
environments;

(ii) improving the quality of the verification framework;

Table 1: Challenges of previous verification framework.

Factors Description

Reusability

Different verification languages at unit level
(Specman(e)/Verilog) and system level (C/C++)
verification framework.
Different verification methodologies both
horizontally (across projects) and vertically (unit
to system level verification).

Reproducibility Significant time was spent in reproducing the
issue reported at SoC level at IP/subsystem level.

(iii) early development of reusable verification frame-
work;

(iv) flexibility in the verification environment to verify
designs using both host interface and actual core in
a unified manner;

(v) automatic development of verification environment
files;

(vi) license cost saving; UVM is open standard supported
by multiple vendor tools; thus, there is no need to pay
extra license cost for one vendor specific solution.

Simultaneously, development of IP-XACT based tools
helped to generate thousands of lines of code of verification
environment in a very short time.This resulted in a significant
reduction in product verification time and improvement in
verification quality.

In our case of image signal processor designs, Specman
(e)/Verilog based verification framework for IP/subsystem
level verification and C/C++/Verilog based directed verifica-
tion framework for SoC level verification were traditionally
used for functional verification. The main challenges of the
previous verification framework are described in Table 1.

Experimentation results which we listed in Table 2 are
the comparison between the previous framework and the

VLSI Design 13

Table 2: Experimentation results.

Comparison features Previous
framework

The proposed
framework Description

Product verification time
(in weeks) of one ISP
IP/SoC

IP: ∼4 weeks
SoC: ∼12 weeks

IP: ∼2 weeks
System: ∼6-7 weeks

(verification
productivity is increased

by ∼50% percent)

Reusability. The proposed verification framework can be
reused both vertically (unit level to system level) and
horizontally (across different projects).
Automatic Checkers. Development and usage of automatic
checkers (assertions and scoreboard) helped to automatically
find bugs while running simulations. Formal tools were really
helpful to find real complex bugs/problems.
Automation. Automatic generation of verification framework
files using IP-XACT flow helped us to generate thousands of
lines of code of verification environment in a very short time.

Verification cost (in our
case) ∼500k dollars ∼400k dollars (∼20%

cost reduction)

License Cost Saving. UVM is open standard supported by
multiple vendor tools. Thus, there is no need to pay extra
license cost for one vendor specific solution.
Specman tool cost for the old eRMmethodology was
∼4000$/per license/year. Source: ST license cost data sheet.
Minimum 40,000$ license cost saving per year (10 licenses ×
4000$).
Man-Hour Saving. Automatic development of verification
environment and reuse of verification components helped to
save the man-hour cost. Minimum 60,000$ manpower cost
saving per year.

Quality of the designs
(number of bugs)

15–20 functional
bugs/problems
per project

3-4 functional
bugs/problems per
project (∼75–80%
improvement)

Automatic Checkers. Development and usage of automatic
checkers (assertions and scoreboard) helped to automatically
find bugs while running simulations. Formal tools were really
helpful to find real complex bugs/problems.
Randomization, coverage-driven approach, and other features
of verification framework helped to generate/analyze complex
corner scenarios which resulted in resolving corner bugs.
Interfacing issues and many corner case bugs are identified
and resolved.

proposed framework in terms of product verification time,
verification cost, and quality of the product for image signal
processor designs. After analyzing results of the proposed
framework used in imaging group of STMicroelectronics, it is
found that the proposed framework shows better results and
significant improvement is observed in product verification
time (∼50% improvement), verification cost (∼20% reduc-
tion), and quality of the designs (∼75–80% improvement).

Figure 19 represents a comparison chart between previ-
ous framework(s) and the proposedmodeling and functional
verification framework in terms of product verification time
(∼50% improvement), verification cost (∼20% reduction),
and quality of the designs (∼75–80% improvement).

8. Conclusion

Thispaper presented thework done in developing unified and
modular modeling and functional verification framework
of real-time image signal processors. SystemVerilog UVM-
based verification environment with UVM REG register and
memory model integrated is used to verify a variety of
image signal processor devices covering various protocols,

Number of bugs

Previous framework(s)
Proposed framework

0

5

10

15

20

25

Product verification
time (weeks)

Verification cost
(lakh dollars)

Figure 19: Comparison chart between previous framework(s) and
the proposed framework.

14 VLSI Design

applications, and domains. VRI approach addresses the
configuration of verification components from embedded
software. IP-XACT based tools are used for automatic gen-
eration of verification environment files andmodel map files.
This paper is a very good reference for modeling the image
signal processing algorithms and for applying the advanced
and novel techniques of verification and automation for
development of verification environment and for functional
verification of image signal processing designs.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Giuseppe Bonanno (Man-
ager, STMicroelectronics), Piyush Kumar Gupta (Manager,
STMicroelectronics), Dr. Vineet Khandelwal (JIIT, Noida),
and Professor Alka Tripathi (JIIT, Noida) for their guidance
and support. They would also like to thank management
and teammembers of Imaging Division, STMicroelectronics,
and faculty members and peer scholars of ECE Department,
Jaypee Institute of Information Technology, for their support
and guidance.

References

[1] A. Jain, S. Jana, H. Gupta, and K. Kumar, “Early development of
UVM based verification environment of image signal process-
ing designs using TLM reference model of RTL,” International
Journal of Advanced Computer Science and Applications, vol. 5,
no. 2, pp. 77–82, 2014.

[2] A. Jain, G. Bonanno, H. Gupta, and A. Goyal, “Generic system
verilog universal verification methodology based reusable ver-
ification environment for efficient verification of image signal
processing IPS/SOCS,” International Journal of VLSI Design &
Communication Systems, vol. 3, no. 6, pp. 13–25, 2012.

[3] A. Jain, P. K. Gupta, H. Gupta, and S. Dhar, “Accelerating system
verilog UVM based VIP to improve methodology for verifica-
tion of image signal processing designs using HW emulator,”
International Journal of VLSI Design&Communication Systems,
vol. 4, no. 6, pp. 13–25, 2013.

[4] S. Rosenberg and K. Meade, A Practical Guide to Adopting the
Universal Verification Methodology (UVM), Cadence Design
Systems, San Jose, Calif, USA, 2nd edition, 2010.

[5] J. Bergeron,Writing Testbenches: Functional Verification of HDL
Model, Kluwer Academic, Boston, Mass, USA, 2nd edition,
2013.

[6] N. Kitchen and A. Kuehlmann, “Stimulus generation for con-
strained random simulation,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD
’07), pp. 258–265, San Jose, Calif, USA, November 2007.

[7] S. Marconi, E. Conti, J. Christiansen, and P. Placidi, “Reusable
SystemVerilog-UVM design framework with constrained stim-
uli modeling for High Energy Physics applications,” in Pro-
ceedings of the 1st IEEE International Symposium on Systems
Engineering (ISSE ’15), pp. 391–397, September 2015.

[8] C. Liang, G. Zhong, S. Huang, and B. Xia, “UVM-AMS based
sub-system verification of wireless power receiver SoC,” in

Proceedings of the 12th IEEE International Conference on Solid-
State and Integrated Circuit Technology (ICSICT ’14), pp. 1–3,
October 2014.

[9] Y. Kim, H.-S. Kim, R. Lee, and S. Kang, “FPGA-based verifica-
tion methodology of SoC-type CMOS image signal processor,”
in Proceedings of the IEEE International SOC Conference (SOCC
’09), pp. 231–234, IEEE, Belfast, Ireland, September 2009.

[10] R. Kannavara, “Towards a unified framework for pre-silicon
validation,” in Proceedings of the 4th International Conference on
Information, Intelligence, Systems andApplications (IISA ’13), pp.
321–326, July 2013.

[11] M. Glasser, “Open Verification Methodology Cookbook,” 2009,
http://www.springer.com.

[12] A. Jain and R. Gupta, “Scaling the UVM REG model towards
automation and simplicity of use,” in Proceedings of the 28th
International Conference on VLSI Design (VLSID ’15), pp. 164–
169, Bangalore, India, January 2015.

[13] R. Edelman, A. Rose, A. Meyer, R. Ardeishar, and J. Poly-
chronopoulos, “You are in a maze of twisty little sequences,
all alike—or layering sequences for stimulus abstraction,” in
Proceedings of the DVCon, pp. 1–9, San Jose, Calif, USA, 2010.

[14] S. Iman, Step-by-Step Functional Verificationwith SystemVerilog
and OVM, Hansen Brown, San Francisco, Calif, USA, 1st
edition, 2008.

[15] Universal Verification Methodology, UVM 1.0, 2011.
[16] J. Andrews, “Unified Verification of SoCHardware and Embed-

ded Software,” Chip Design Magazine, 2007, http://chipdesign-
mag.com/display.php?articleId=1267.

[17] Virtual Register Interface Layer over VIPs, Cadence Design
System.

[18] MentorGraphics, “UVM/OVMCookbook,” 2015, https://verifi-
cationacademy.com/cookbook.

[19] Accellera, “Standard Universal Verification Methodology Class
Reference, Release 1.2.,” 2015, http://www.accellera.org/.

[20] IEEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification Language, IEEE 1800–2009,
2009.

[21] S. Swan, An Introduction to System Level Modeling in System C
2.0, Cadence Design Systems, 2001.

[22] A. Rose, S. Swan, J. Pierce, and J. M. Fernandez, Transaction
Level Modeling in SystemC, Cadence Design Systems, 2005.

[23] F. Ghenassia, Transaction Level Modeling with System C—TLM
Concepts and Applications for Embedded Systems, Springer,
Amsterdam, The Netherlands, 2010.

[24] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with
System C, Kluwer, Boston, Mass, USA, 2002.

[25] Accellera, “Spirit information,” November 2015, http://accellera
.org/xmlschema/spirit.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

