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In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control,
which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the
timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and
stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated.
Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance
of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic
behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity
of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine
the key parameters in designing the pest control strategy. The present research can help us to further understand the importance
of timings of pesticide application in the pest control and to improve the classical chemical control and to make management

decisions.

1. Introduction

Integrated pest management (IPM) is the selection and
application of pest control actions that can ensure favourable
economic and ecological consequences [1-3], which has been
successfully applied to agricultural pest management situa-
tions. IPM employs a variety of tactics including cultural con-
trols, biological controls, and chemical controls or pesticides,
while biological pest control is one of the most common mea-
sures applied in IPM through the control and management
of natural predators and parasites. For example, mosquitoes
are often controlled by putting Bacillus thuringiensis (Bt) ssp.
israelensis, a bacterium that infects and kills mosquito larvae,
in local water sources. The aim of biological pest control is to
eliminate a pest which can minimize harm to the ecological
balance of the environment in its present form.

Pesticide application or chemical control is another
important component of IPM measures, which refers to
the practical way in which pesticides including herbicides,

fungicides, and insecticides are sprayed to the pest popu-
lation. Public concern about the application of pesticides
has highlighted the need to make this process as efficiently
as possible which could minimize their release into the
environment and human exposure [1-3]. Although pesticide
and insecticide applications can cause a number of problems,
in most cropping systems they are still the principle means
of controlling pests once the economic threshold that defines
the lowest population density at which the control actions
should be applied has been reached. In practice, pesticides
can be relatively cheap, are easy to apply and fast-acting, and
in most instances can be relied on to control the pests [1-3].
Undoubtedly, mathematical model is one of key tools to
help us to understand those factors in the IPM strategies
and the pest control. Recently, the continuous predator-prey
models concerning IPM strategy have been developed and
investigated [1, 4-10]. In particular, several factors including
pest natural enemy ratios, starting densities, timings of
natural enemy releases, dosages and timings of insecticide



applications, and instantaneous killing rates of pesticides
on both pests and natural enemies have been addressed
by Tang et al. [10]. Moreover, the importance of timings
of pesticide sprays and natural enemy releases has been
studied through the stability threshold condition for a pest
eradication periodic solution.

However, the discrete or nonoverlapping generation is a
common feature among the host and parasitoid populations
[11-15]. If so the use of continuous-time models to describe
the interaction between the pest population and its natural
enemy population becomes questionable. Those show that
the discrete host-parasitoid models are much more realistic
when the populations have discrete and synchronized gener-
ations [16-21]. The complex dynamics of the host-parasitoid
model with Holling IT functional response function have been
investigated by Tang and Chen [19]. The classical Nicholson-
Bailey model for a two species” host-parasitoid system with
discrete generations and IPM strategies has been studied by
Tang et al. [7]. Note that the pulse IPM control strategies
assumed to be applied at the end of each periodic number of
generations and some important issues concerning IPM have
been addressed.

According to the facts and main results of [7, 10], we know
that the timings of pesticide application and releasing natural
enemies play a key role in successful pest control. Note that
there are several different pesticide spraying methods based
on the pest growth generations and the parasitism season: (1)
the pesticides are applied at the beginning of each generation;
(2) the pesticides are sprayed at the end of each generation;
and (3) the pesticides can be applied at any time point
within the pest growth generation and the parasitism season.
Therefore, the questions are whether there exists an optimal
pesticide application time at which the number of the pest
populations can be minimized, even eradicated, and how the
pesticide application time and efficiency affect the successful
pest control and complex outbreak patterns.

To address those questions, it follows from the basic
modelling methods proposed in literatures [22-24] that we
assume that the chemical control tactic is applied instan-
taneously within the generation at any time. The main
purpose is to extend the Holling IT host-parasitoid model
with a fraction of survival rate of parasitoid from one
generation to next [25, 26] and then investigate the effects
of timings of pesticide application and killing rate on this
model. In particular, the existence and stability of both
the host and parasitoid populations extinction equilibrium
and parasitoid-free equilibrium have been investigated. The
interesting results indicate that the different pesticide appli-
cation times could result in significantly different size of the
host population and consequently influence the pest control.
Moreover, the effects of all important parameters including
timings of pesticide application on the threshold conditions
have been discussed in more detail. Further, the complex
dynamics including multiple attractors coexistence, quasi-
periodic windows, chaotic behavior, and initial sensitivity
have been studied by using numerical bifurcation analyses.
Finally, the uncertainty and sensitivity of all the parameters
on the solutions of both the host and parasitoid populations
have been investigated, which can help us to determine the
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key parameters in designing the successful pest control strat-
egy. The present research can help us to further understand
the importance of pesticide application times in the pest
control and to improve the classical chemical control and to
make management decisions.

2. The Host-Parasitoid Model with
Chemical Control

2.1. Host Growth Model with Chemical Control. The based
discrete map for host or pest population can be described as
follows:

Hn+1 = f(Hn) = HnF (Hn) > (1)

where H,, € [0, 00) is the pest population size at generation
n € N and f,F [0,00) — R are, respectively, the
population production and the per capita production. A
common example is the Rocker model f(H) = H exp(r(1 -
H/K)) withr > 0and K > 0.

It follows from the basic modelling methods proposed in
literatures [22-24] that we assume that the chemical control
tactic is applied instantaneously within the generation [#n,n +
1]; that is, there exists a positive constant @ with 0 < 6 < 1
such that the pesticide is sprayed at time point n + 0. Further,
we assume that a proportional number (denoted by q) of the
pest populations has been killed, and thus after n + 0, the
growth of pest population and its production depends on
(1 — g)H,,. Therefore, model (1) with chemical control can be
formulated as

Hn+1 = (1_q)Hn [GF(Hn)+(1_9)F((1 _q)Hn)] (2)
According to f(H,) = H,F(H,,), we have
H,,=0(1-q) f(H,)+1-0f((1-9H,). 3

2.2. Host-Parasitoid Model with the Effect of Overwintering
Parasitoid and Chemical Control. Involving the parasitoid
population into (1), the host-parasitoid system with discrete
generations can be written [16, 17] as the generalized model
H

n+l

= (1-q)H,[6f (H,)+(1-0) f ((1-q) H,)]

9((0+(1-6)(1-9)H,P,),
(4)

Pn+1

=y(1-q)H,[1-g((0+1-6)(1-q))H,P,)]

+ 6P,
where H,, and P, represent the host and parasitoid population
abundance in generation », respectively, f(H) denotes the per
capita net rate of the increase of the host population in the
absence of parasitoid population, and g(H, P) is the propor-
tion of host individuals that escape attack by the parasitoid.
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Note that P is generally interpreted as the abundance of adult
parasitoid females and N as the abundance of host adults
and thus y represents the number of parasitoid eggs laid per
host, the survival of the parasitoid in the attacked hosts, and
the sex ratio of the emerging parasitoid adults, where § €
[0,1) denotes the density-independent survival of parasitoid
propagules at generation n. A fraction of pathogen can sur-
vive from one generation to the next. This discrete-generation
framework characterizes a perfectly synchronized parasitoid
interacting with a host that has distinct generations, which is
frequent in host-parasitoid systems in temperate regions of
the world and even some from more tropical regions when
parasitism causes generation cycles within the overlapping
generations of some multivoltine hosts [16, 17].

In particular, if @ = 0 then model (4) can be changed as
the following impulsive difference equation:

Hy = an (Hn) g (Hn’ Pn)

Pn+1 = YHn [1 _g(Hn’Pn)] +6Pn’

n=0,1,2,...,
()
I_Irfr = (1_q)Hn’
Pn+=Pn,
n=012,...,

which indicates that the chemical control tactics have been
applied at the beginning of each generation or parasitism
season. For more details of impulsive difference equations,
please see [7].

If 6 = 1 then model (4) can be changed as the following
impulsive difference equation:

Hn+1 = an (Hn) "9 (Hn’Pn)
Pn+1 = yHn [1 - g(Hn’Pn)] + (SPn’

n=0,1,2,...,
(6)
H(n+1)* = (1 - Q) Hn+1’

Py = Parrs

n=0,1,2,...,

which shows that the chemical control tactics have been
applied at the ending of each generation or parasitism season.

Holling (1959) was the first ecologist to investigate the
interaction between host and parasitoid populations and
discussed the functional relationship in depth through the
experiments of the shrews and deer mice feeding on sawfly
cocoons. Holling (1959) presents three different functional
response classes, for which the following are nominal forms:
type I (linear then constant), type II (decelerating rise to an
upper asymptote), and type III (sigmoidal) [16, 17, 25, 26]. In
the present work, we assume that the pest population follows
the Ricker model in the absence of parasitoid population and

the Holling II functional response function for parasitism;
that is, we have

£ (a) =exp(r(1-22)),

K

oTP, @

n
g(Hn’Pn) - exp( 1+ OCTth>.

Therefore, based on the above special choices we will
focus on the existence and stability of the boundary equi-
librium which concerns the outbreak of the host population
and then address how the timing of spraying pesticides
affects the values of this boundary equilibrium. Moreover,
the completely numerical bifurcation analyses and sensitivity
analyses have been carried out to show the effects of interest-
ing parameters including instant killing rate g and pesticide
spraying time point 6 on the successful pest control and
outbreak.

3. Existence and Stability of
Boundary Equilibria

It is easy to see that model (4) has a zero equilibrium (0, 0)
and its stability can be determined by the following Jacobian
matrix:

Ji0,0)

:((1—q)(@f(0,0)+(1—9)f<o,0))g(0,0) 0) (8)
(1-4)(1-9(0,0) 8/

It follows from (7) that the stability of (0,0) can be

determined by the eigenvalues of following Jacobian matrix:
(1-q)(6e"+(1-6)e") 0

Joo = ( 0 6); )

that is, (0,0) is stable when the eigenvalues of the above
matrix are less than one in magnitude. Accordingto0 < 8 < 1
we can see that the stability of (0,0) is determined by the
value of (1 — g)e’. This indicates that if (1 — g)e” < 1, then
(0,0) is stable. Moreover, we note that the stability of (0,0)
only depends on the intrinsic growth of the host population
and the instant killing rate g, which means that both the host
and parasitoid populations could die out if the pesticide is
effective enough no matter when we spray the pesticides.

Although the timing of pesticide applications (i.e., 8) does
not affect the stability of (0, 0), from Figure 1 we note that it
can significantly influence the behavior of solutions of model
(4). For example, letting the parameter 6 vary and fixing
for all others as those in Figurel at which (1 — g)¢" < 1
holds true and further letting all solutions start from the same
initial value, we can see that the host population tends to
zero more quickly for small values of 0. This confirms that we
should apply the pesticides at the ending of parasitism season
or population generation, which could be best for the host
control in practice.
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F1GURE L: Illustration of the effects of pesticide application timing on the extinction of the host population. The parameter values are as follows:
T=10,T,=05 K=50,0=03,g=094, y=1, « =0.007,and r =2.8.

Furthermore, model (4) may have a boundary equilib-
rium (x*, 0), that is, parasitoid-free equilibrium, if x* satisfies
the following equation:

(1-q)[of )+ -0) f(1-g)x)] =1 (10)

that is, we have

o-afsen(r(-5)
o ((1-22))]

Note that it is not easy to find the sufficient conditions of
the existence of x™ for the above equation, so we first consider
the following two special cases: (a) 0 = 0 and (b) 0 = 1. The
analytical formula for x* can be easily obtained as follows:

(i) x; = (K/r)(r —=In(1/(1 - g))) for 6 = 1.
(ii) x;, = (K/r(1 = q))(r —In(1/(1 - q))) for 6 = 0.

Note that, for the existence of x* in the above two special
cases, we need

r—ln< ! >>0; (12)
l-q

that is, x* is positive provided (1—g)e” > 1, which means that
x" exists if (0, 0) is unstable in those special cases. Obviously,
we have x; > x7.

It follows from

o-afpen(r(-5)

(1-9q)

(1-6) o Gl
+ exp| r X

that
e (1-q)

| 6exp e +(1-0)exp r-gx (14)
(-%) .

:1’

from which we can see that the necessary condition for
existence of x ise’(1 —¢q) > 1.

For stability of the boundary equilibrium (x*, 0), the two
eigenvalues of Jacobian matrix are as follows:

A =(1-9q) <9expr(1— %)

=)
D (g (1)

+(1-0)r(1-g)expr (1 l_q)x )):1 (15)

(l—q)x (

+(1—9)expr<1—

Orexpr >

)

*+8.

+(1—9)r(1—q)expr<1—

1o (1-g)aTx"
> 1+al,(0+(1-0)(1-9)x

Obviously, we have A; < 1 and A, > 0.
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FIGURE 2: The effects of instant killing rate q and pesticide application time 6 on the values of x;. The parameter values are as follows:
T=10,T, =05 K=50,8=03,g=0.1,y=1, a=0007,and r = 2.8.

What we are interested in is how the parameters including
6 and g affect the values of x* and its stability. To address this,
we fix the parameter values as those in Figure 2 and plot x*
against the parameter 0 for given q (denoted by x;). It follows
from Figure 2 that the values of x™ are significantly changed
as 0 varies for large g (as shown in Figure 2 for g = 0.9),
and x, is a monotonically decreasing function of 6. All those
indicate that carefully selecting the pesticides and designing
the application time are quite important in pest control.

Therefore, we consider x* as the function of both param-
eters 0 and g (denoted by x;ﬁ) and fix all other parameters
as those in Figure 3(a). Meanwhile, the two eigenvalues
A, and A, are also plotted in Figure 3(b). It follows from
Figure 3 that the values of x;, and their stabilities can be
strongly influenced by the instant killing rate g and pesticide
application time 6. Note that beyond the stable regions of x;’e
the dynamical behavior of model (4) could be very complex.
Therefore, we will address the complexity of dynamics by
employing the bifurcation analysis in the following.

4. Bifurcation Analysis and
Complex Dynamics

It follows from [19] that the rich dynamic behavior for model
(4) can have multiple attractors coexistence and complex
bifurcations. However, what we are interested in is how the
key parameters of model (4) affect the successful pest control
and biological implications. In particular, we will focus on the
effects of the intrinsic growth rate, instant killing rate, timing
of pesticide applications, and the initial densities of host and
parasitoid populations on successful biological control in this
section by carrying bifurcation analyses.

Firstly, we show the bifurcation diagrams with respect
to the intrinsic growth rate for different instant killing rate
in Figure 4. Figure 4(a) is similar to the bifurcation diagram
shown in [19], from which we can see that model (4) has
quite complex dynamics including chaotic windows, periodic
windows, and quasi-periodic windows as parameter r varies.
Moreover, the different attractors can coexist for certain range
of parameter values of . When we slightly increase parameter
q from 0 to 0.05, we find that the bifurcation diagram is
significantly changed. In particular, the multiple attractors of
the host and parasitoid populations can coexist with a wide
range of parameter r, as shown in Figure 4(b).

To show the effects of changing the parameter values on
different attractors in more detail, we plot different attractors
in Figure 5, from which we can see that the instant killing rate
can significantly influence the final state of host-parasitoid
populations, as shown in Figures 5(a) and 5(b). Similarly, the
intrinsic growth rate can also affect the final state of host-
parasitoid populations, as shown in Figures 5(c) and 5(d).

Thus, it follows from Figure4 that different host-
parasitoid initial densities or host-parasitoid ratios can sig-
nificantly affect the dynamical behavior of systems (4). For
example, the solutions of model (4) starting from (5, 5) and
(2, 1) will tend to two different attractors for fixed parameter
values, as shown in Figure 6. Similar results can be obtained
for the fixed parameter values in Figure 7. Those further
clarify that the initial values play a key role in determining
the final states of host-parasitoid populations.

In order to address in more detail how the initial values
affect the final states of host and parasitoid populations,
we provide the basins of attraction of two attractors shown
in Figures 6 and 7, respectively, for a quite wide range of
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FIGURE 3: The effects of instant killing rate g and pesticide application time 6 on the values of x; 5 and its stability. The parameter values are
as follows: T'= 10, T}, = 0.5, K =50, § = 0.3, g = 0.1, y = 1, « = 0.007, and r = 2.8.
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FIGURE 4: Bifurcation diagrams with respect to the intrinsic growth rate r with different g values. The parameter values are as follows: T' =
10, T,=0.5,K=50,=03,y=1,a =0.01, 0 =0, g=0in (a), and g = 0.05 in (b).

initial values of host and parasitoid population. The basins of
attraction shown in Figures 8 and 9 indicate that the patterns
of basins are quite complex and the final states of both
host and parasitoid population can be influenced by slightly
changing the initial values, which could result in complexity
during the pest control due to random perturbation.

The bifurcation diagrams with respect to survival rate
0 given in Figure 10 show that the survival rate of the
parasitoid population can greatly affect the dynamic behavior
of model (4). Moreover, the periodicity could be strengthened
as parameter § increases and complexity can be reduced,
which means that the larger the survival rate, the stronger the
stability of model (4).

Furthermore, the bifurcation diagram with respect to the
searching rate a shows that model (4) exists as a boundary
equilibrium for small « (i.e., parasitoid-free equilibrium), and

then model (4) has an interior equilibrium as « increases
and exceeds some critical values (as shown in Figure 11). In
this case, both host and parasitoid populations can coexist
and stabilize at the interior equilibrium. The quasi-periodic
solution appears once we further increase the parameter «,
which could exist for a wide region of parameters.

5. Sensitivity Analysis and Key Parameters

In this section, what we would like to address is how
to determine the key parameters which can significantly
affect the dynamics and consequently affect the pest control.
Therefore, we employ the uncertainty and sensitivity analyses
methods in this section. We first consider the simple case
before we do this.
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The results shown in Figure 12 based on the baseline
parameter values in Figure 11 indicate that slightly changing
the parameter values « and 6 can strongly influence the
stability of both host and parasitoid populations. Those can be
confirmed by comparing Figures 12(a) and 12(b) with Figures
12(c) and 12(d), from which we can see that the slight increase
of the value of « can result in strong oscillation of solutions
for model (4).

To address those in more detail, in the following the
sensitivity analysis was performed by evaluating the PRCCs
[27, 28] for various input parameters against the solutions
of both the host and parasitoid populations where we have
calculated the values at 1000th generations, and then the
most significant parameters (such as killing efficiency rate g
and pesticide application time ) were determined. A type

of stratified Monte Carlo sampling method, named as LHS
method, first proposed by Marino et al. [28] has been
employed here, which has been applied to deterministic
mathematical models [27]. PRCC can measure the influence
of uncertainty in estimating the values of the input parameter
on the imprecision in predicting the value of the output
variable [27, 28]. Therefore, we performed uncertainty and
sensitivity analyses for all parameters in model (4) using LHS
with 1000 samples. A norm distribution function was used
and tested for significant PRCCs for all parameters with mean
values (i.e., the baseline values) as shown in Figures 13 and 14.

PRCC results and PRCC scatter plots of all the param-
eters involving in model (4) have been provided in Figures
13 and 14 for both the host and parasitoid populations,
respectively. In both figures the first row shows the PRCC
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FIGURE 6: Two attractors’ coexistence. The parameter values are as follows: T = 10, T, = 0.5, K =50, § =03, y =1, «=0.01,0 =0, g =0,

and r = 2.99. The initial values are (5, 5) for (a-b) and (1, 2) for (c-d).

results with sample size 1000 and all parameters were varied
simultaneously. The second and third rows provide the PRCC
scatter plots with sampling size 1000 and significant p <
0.01. We considered absolute values of PRCC greater than
0.4 as indicating an important correlation between input
parameters and output variables, values between 0.2 and 0.4
as moderate correlations, and values between 0 and 0.2 as
not significantly different from zero. The positive sign of their
PRCCs indicates that if the parameters are increased, the
value of the solution at that generation increases (and vice

versa). The negative sign suggests that if increased, the value
of the solution at that generation decreases (and vice versa).
All those show that the signs of PRCC values related to all
parameters can help us to design the pest control strategies
based on the sensitivity of each parameter with respect to the
solution of model (4).

It follows from Figures 13 and 14 that the parameters K,
r, and g are responsible for increasing the values of the host
solution at 1000th generation. The PRCC value for killing rate
q is a paradox result for pest control [23], because the larger
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q value is, the larger host population size we have. The main
reason is that we apply the chemical control strategy at the
end of each season or generation; that s, 0 = 1 or close to one.
The parameters T, «, and § are responsible for decreasing the
values of the host solution at 1000th generation, so increasing
all those parameters are beneficial for pest control. The most
significant control parameters for the host population are T,
K, a, and 6 (see Figure 13).

The sign of PRCC value of the parameter g related to the
parasitoid population is negative and is important correlation
to the size of the parasitoid population, which shows that

increasing the killing rate for the host population may result
in reducing the number of parasitoid populations, and in turn
the host could outbreak again. The effects of all the other
parameters on the parasitoid population have been provided
in Figure 14.

6. Biological Conclusions

In this work we have proposed a discrete host-parasitoid
model with pulse chemical control which can be imple-
mented within each pest generation or parasitism season.
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FIGURE 8: The basins of attraction of model (4) for two attractors shown in Figure 6. The parameter values are as follows: T = 10, T}, =
0.5, K=50,6=03,y=1,a=0.01,0=0,q=0,and r = 2.99.

FIGURE 9: The basins of attraction of model (4) for two attractors shown in Figure 7. The parameter values are as follows: T = 10, T}, =
05, K=50,=03,9y=1,0a=0.01,0=0,g=0.05andr =3.2.

(a) (b)

FIGURE 10: Bifurcation diagram with respect to parameter 0. The parameter values are as follows: T = 10, T, = 0.5, K = 50, y = 1, & =
0.015,0=1,g=02,andr = 2.6.
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0.5 0=1,g=02,andr =2.8.
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FIGURE 12: Sensitivity analyses of both parameter values of & and 6. The parameter values are as follows: T' = 10, T,, = 0.5, K =50, y = 1, § =
05 0=1,9g=0.2,andr =2.8.
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FIGURE 13: Sensitivity analyses based on the PRCC values for the host population at 1000th generation. The baseline parameter values are as
follows: T =10, T, = 0.5, K =50, « = 0.005, y =1, =0.5,0=1,g=0.2,and r = 2.8.

This allows us to address the effects of timings of pesticide
application and instant killing rate on the successful pest
control and on the complex dynamics of proposed model.

Therefore, based on the Holling IT host-parasitoid model
with a fraction of survival rate of parasitoid from one
generation to next, we focus on the effects of timings
of pesticide application and killing rate on the host or
pest control and on the complex dynamics. To address
those, we first discuss the existence and stability of both
the host and parasitoid populations extinction equilibrium
and parasitoid-free equilibrium, and then the threshold
conditions which guarantee the local stabilities have been
provided. The threshold condition for the stability of (0,0)
equilibrium indicates that it only depends on the intrinsic
growth of the host population and the instant killing rate
q. This shows that both the host and parasitoid populations
could be extinct simultaneously if the pesticide is effective
enough no matter when we spray the pesticides. But the
timing of pesticide applications can significantly influence the
asymptotic behavior of solutions of model (4), as shown in
Figure 1.

The interesting results shown in Figures 2 and 3 indi-
cate that the different timings of pesticide applications and

instant killing rate could result in significant different size
of the host population and consequently influences the
pest control. All those results confirm the importance of
timings of pesticide application when the density dependent
is involved into the model. Further, the complex dynam-
ics including multiple attractors coexistence, quasi-periodic
windows, chaotic behavior, and initial sensitivity have been
studied by using numerical bifurcation analyses. Finally,
the uncertainty and sensitivity of all the parameters on
the solutions of both the host and parasitoid populations
have been investigated, which can help us to determine
the key parameters in designing the successful pest control
strategy.

This work focused entirely on the host-parasitoid model
with chemical control, which means that we only focus on the
single control tactic and study its effects on the pest control.
Therefore, how can we formulate the host-parasitoid model
with IPM strategies? And in particular how can we involve
the biological control measure into model (4) with constant
releasing rate? All those questions will be considered and
studied in the near future, and our findings will be reported
elsewhere.
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FIGURE 14: Sensitivity analyses based on the PRCC values for the parasitoid population at 1000th generation. The baseline parameter values
are as follows: T = 10, T, = 0.5, K = 50, « = 0.005, y =1, =0.5,0 =1, 9= 0.2, and r = 2.8.
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