
Research Article
Gene Prediction in Metagenomic Fragments with Deep Learning

Shao-Wu Zhang, Xiang-Yang Jin, and Teng Zhang

Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation,
Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Shao-Wu Zhang; zhangsw@nwpu.edu.cn

Received 30 June 2017; Accepted 8 October 2017; Published 8 November 2017

Academic Editor: Jozef Anné

Copyright © 2017 Shao-Wu Zhang et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Next generation sequencing technologies used inmetagenomics yield numerous sequencing fragmentswhich come from thousands
of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in
metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and
Z-curve features) and using deep stacking networks learning model, we present a novel method (calledMeta-MFDL) to predict the
metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes
from metagenomic fragments.

1. Introduction

Metagenomics bypasses the needs for isolation and lab cul-
tivation of individual species, and the uncultured microbes
are sampled directly from their environment [1–3]. High-
throughput sequencing technology used in metagenomics
can yield millions of short DNA/RNA fragments (or reads)
in a single run for the environmental samples and helps us
uncover the microbial diversity and better understand how
these unknownmicrobes live and coexist with unprecedented
resolution. However, it is in many cases impossible to reliably
assemble these short reads into longer contigs because the
metagenomic sequencing reads come from thousands of
highly uneven different species, and it cannot provide a
high sequencing coverage of single species. Several de novo
metagenomic short read assemblers such as Meta-IDBA [4],
IDBA-UD [5], Ray Meta [6], MetaVelvet-SL [7], Omega
[8], and metaSPAdes [9] have shown promising results and
effectiveness in assembling metagenomic short reads, but
they do not work well in cases where there are more species
presenting in the environmental samples [10]. Thus, one way
to analyze the metagenomics data is to bypass assembly
and go directly finding the genes from these short reads.
Gene recognition is a necessary step to fully understand the
functions, activities, and roles of genes in cellular process-
es.

Accurate gene prediction in metagenomes is more com-
plicated than in isolated genomes [11–13]. One reason is that
most fragments (reads) from the high-throughput sequenc-
ing technologies are very short [11, 14]. Lots of genes are
incomplete with one or two ends exceed the fragments, and
a single fragment usually contains only one or two genes.
Another reason is that the source genomes of the fragments
are always unknown or totally new, which brings challenge
on statistical model construction and feature selection [11].

Until now, several methods have been developed to pre-
dict genes from metagenomics DNA fragments. These pre-
diction approaches can be categorized into homology-based
methods, model-based methods, and machine learning-
basedmethods.The homology-basedmethods such as CRIT-
ICA [15] and Orpheus [16] often used the BLAST package
to compare the input fragments against known protein
databases for analyzing the short sequences. However, these
methods just are used to find the genes with previously
known homologous proteins and cannot predict novel genes.
Themodel-basedmethods, such asMetaGeneAnnotator [17],
MetaGene [18], MetaGeneMark [19], FragGeneScan [14], and
Glimmer-MG [13], used either the higher-order Markov
chain models or the hidden Markov chain models to identify
genes in metagenomics. However, the main limitation of
such Markov chain models is that thousands of parameters
are needed in practical use. The machine learning-based

Hindawi
BioMed Research International
Volume 2017, Article ID 4740354, 9 pages
https://doi.org/10.1155/2017/4740354

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193466675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/4740354


2 BioMed Research International

methods such as Orphelia [20, 21], MGC [22], andMetaGUN
[11] often formulated the metagenomic fragments with an
effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted and
then designed a powerful classifier with machine learning
to operate the gene prediction. Orphelia [20, 21] integrates
monocodon and dicodon usage, sequence patterns around
translation initiation sites (TISs), open reading frame (ORF)
length, and GC-content to represent the ORF fragments,
then inputting into an artificial neural network to estimate
the probability that a given ORF encodes a protein. As an
improvement over the Orphelia algorithm, MGC [22] learns
separate models for several predefined GC ranges as opposed
to the singlemodel used inOrphelia and applies the appropri-
ate model to each fragment based on its GC-content. That is,
MGC uses a two-stage machine learning approach to predict
genes by firstly computing six features (i.e., monocodon
score, dicodon score, monoamino acid score, diamino acid
score, TIS coverage, and TIS probability) from ORF with the
corresponding linear discriminant, then estimating the gene
probability of a given ORF with the neural network model
from the corresponding GC range, which takes nine features
of the monocodon score, dicodon score, monoamino acid
score, diamino acid score, TIS coverage and TIS probability,
length complete, length incomplete, andGC-content as input.
MetaGUN [11] implements a three-stage strategy to predict
genes by firstly classifying input sequence into different phy-
logenetic groups, then identifying genes for each group inde-
pendently with support vector machine (SVM) classifier that
integrate entropy density profile of codon usage, translation
initiation site scores, and ORF length as the input features,
and finally adjusting TISs by employing a modified version
of MetaTISA. Although the existing metagenomics gene
predictors or methods can effectively identify genes, these
predictors employ the shallow architectures such as hidden
Markov models (HMMs), SVMs, and multilayer perceptron
(MLP) with a single hidden layer. A common property of
these shallow learning models is the simple architecture that
consists of only one layer responsible for transforming the
raw input features into a problem-specific feature space [23],
which has been shown effective in solving many simple or
well-constrained problems, but its limited modelling and
representational power can cause difficulties when dealing
with more complicated real-world applications [24].

To further enhance metagenomic gene prediction accu-
racy, in this study, we developed a new powerful predic-
tor (named as Meta-MFDL) by fusing multiple features of
the ORF length coverage, monocodon usage, monoamino
acid usage, and Z-curve features and employing the deep
learning classification algorithm. Deep learning is a new
area of machine learning research, which attempt to model
high-level abstractions in data by using model architectures
composed of multiple nonlinear transformations [24, 25].
Now, some deep learning architectures such as convolutional
deep neural networks (CNNs), deep belief networks (DBNs),
deep neural networks (DNNs), and deep stacking networks
(DSNs) have been applied to improve the performance in
image and speech recognition [26, 27], in natural language
processing [28, 29], and most recently in computational

biology [30, 31], such as protein structure and subcellular
localization prediction [32–35], gene expression regulation
regarding splice junctions or RNA binding proteins [36–42],
lncRNAprediction [24], andmetagenomic classification [43].
In comparison with the existing predictors, Meta-MFDL
showed better performance on the training datasets (i.e.,
Set700 and Set120) derived from 120 complete genomes in 10-
fold cross validation (10CV) and independent testing datasets
(i.e., TesData700 and TesData120) derived from 13 genomes.

2. Materials and Methods

2.1. Datasets. Genomic sequences and annotation informa-
tion of 120 complete genomes (i.e., 109 bacteria and 11
archaea) and 13 complete genomes (i.e., 10 bacteria and 3
archaea) are obtained from NCBI RefSeq database for sep-
arately constructing the training and testing datasets. The
genomes of the 13 species used in previous methods [20–22]
are not included in the training dataset. All genomes infor-
mation in the training and testing datasets is listed in
Tables S1 and S2 in Supplementary Material available online
at https://doi.org/10.1155/2017/4740354. In order to simulate
DNA sequences from different sequencing technologies, the
genome sequences in training dataset are randomly split into
700 bp and 120 bp fragments with 1-fold genome coverage for
each genome, and theMetasim [44] is used to generate 700 bp
and 120 bp fragments with the 3-fold genome coverage for
each genome in the testing dataset. Now that the purpose of
metagenomics gene prediction is to discriminate the coding
ORFs from the noncoding ORFs; thus we extracted all
ORFs from these fragments and divided these ORFs into
coding and noncoding ORFs based on the annotation of the
genome. ORFs obtained can be categorized into complete
and incomplete ORFs. The complete ORFs have both the
start codon and the stop codon. The incomplete ORFs lack
the upstream end, the downstream end, or both ends in
which case the ORF holds the whole fragments without
starting codons or stopping codons [21, 22]. Only ORFs
with a minimal length of 60 bp are kept in both training
and testing datasets, for the ORFs less than 60 bp is too
short to provide useful information [11, 17]. After strictly
following the above procedures, we finally obtained two
training datasets of TraData700 and TraData120 and two
testing datasets of TesData700 and TesData120. TraData700
dataset consists of 1,654,069 coding ORF fragments and
2,267,896 noncoding ORF fragments. TesData700 dataset
consists of 303,664 coding ORF fragments and 423,078
noncoding ORF fragments. TraData120 dataset consists of
5,204,861 coding ORF fragments and 5,812,025 noncoding
ORF fragments. TesData120 dataset consists of 548,357 coding
ORF fragments and 612,049 noncoding ORF fragments. The
TraData700, TesData700, TraData120, and TesData120 datasets
can be downloaded from http://180.208.58.19/Meta-MFDL/.

In general, establishing a highly useful predictor involves
the following five steps [24, 45, 46]: (1) constructing a valid
benchmark dataset to train and test the predictor; (2) using
effective mathematical expression to convert the nucleotide
(or protein) alphabetic sequences into feature vectors that

https://doi.org/10.1155/2017/4740354
http://180.208.58.19/Meta-MFDL/


BioMed Research International 3

truly reflect their intrinsic correlation with the attribute to
be predicted; (3) developing/choosing a powerful algorithm
to operate the prediction; (4) properly selecting the cross-
validation tests to objectively evaluate the performance of
the predictor; and (5) establishing a software tool. The Meta-
MFDL predictor can be divided into three steps: feature
extraction, feature fusion, and pattern classification. For
feature extraction which is one of the most critical steps in
designing a classifier, the query ORF fragments are converted
into a series of vectors with the ORF coverage (ORFC),
monocodon usage (MCU), monoamino acid usage (MAU),
and Z-curve descriptors. For feature fusion, the four kinds of
features of ORFC, MCU, MAU, and Z-curve are integrated
to represent the candidate ORF fragments. For pattern
classification, the vectors are classified by using the deep
stacking networks, one of the deep learning architectures.

2.2. Feature Descriptors

2.2.1. ORF Coverage Descriptor. Previous study shows that
the length of coding ORFs is considerably longer than that
of noncoding ORFs [47]. Thus, we can use the following
feature vector 𝑋ORFC to represent metagenomic fragment by
computing the length proportion of the ORF to the fragment:

𝑋ORFC = 𝑙
𝐿 , (1)

where 𝑙 is the ORF length and 𝐿 is the length of fragment.

2.2.2. Monocodon Usage Descriptor. Codon usage is a useful
feature in discriminating coding and noncoding ORFs [21].
Here, we use the following vector 𝑋MC to represent one
fragment by counting the monocodon frequency of ORF
(including the complete ORF fragment and incomplete ORF
fragment):

𝑋MC = [𝑓�푐1 , . . . , 𝑓�푐�푖 , . . . , 𝑓�푐64]

𝑓�푐�푖 = 𝑛�푖
𝑁 ,

(2)

where𝑓�푐�푖 is the frequency of 𝑖thmonocodon (e.g., AAA,AAC,
. . ., UUG, UUU, and three stop codons of UGA, UAA, and
UAG) occurring inORF, 𝑛�푖 is the number of 𝑖th codon inORF,
and 𝑁 is the number of all codons in ORF.

2.2.3. Monoamino Acid Usage Descriptor. The monoamino
acid usage is the 21 amino acid (20 amino acids plus one
“STOP” codon) frequencies occurring in theDNA sequences,
some of which are linearly related to the GC-content of the
genome [48] and are important in discriminating coding and
noncoding DNA sequences [22]. Here, we use the following
vector 𝑋MA to represent one fragment by counting the
monoamino acid frequency of ORF (including the complete
ORF fragment and incomplete ORF fragment).

𝑋MA = [𝑓aa
1 , . . . , 𝑓aa

�푗 , . . . , 𝑓aa
21] , (3)

where 𝑓aa
�푗 is the frequency of 𝑗th amino acid (e.g., A, C, D, E,

F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, and one “STOP”
codon) occurring in ORF.

2.2.4. Z-Curve Parameter Descriptor. Z-curve parameter fea-
tures are calculated for the frequencies of frame-dependent
𝑘-mers by using the Z-transform of DNA sequences [49] and
have been successfully applied to gene prediction [50, 51].
Let 𝑎1, 𝑐1, 𝑔1, 𝑡1; 𝑎2, 𝑐2, 𝑔2, 𝑡2; 𝑎3, 𝑐3, 𝑔3, and 𝑡3 represent the
frequencies of bases A, C, G, and T occurring at positions
1, 4, 7, 10, . . .; 2, 5, 8, 11, . . .; 3, 6, 9, 12, . . . and in an ORF
fragment, respectively. The p12(AA), p12(AC), . . ., p12(TT);
p23(AA), p23(AC), . . ., and p23(TT) denote the frequencies of
the 16 dinucleotides AA, AC, . . ., and TT occurring at the
codon positions 1-2 and 2-3 of an ORF fragment, respectively.
By using the Z-transform of DNA sequence [50], we can use
the following vectors 𝑋ZCPS, 𝑋ZCPD to represent the ORF
fragment by counting the frequencies of codon-position-
dependent single nucleotides and the frequencies of phase-
specific dinucleotides, respectively.

𝑋ZCPS = [𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝑥3, 𝑦3, 𝑧3]

𝑥�푖 = (𝑎�푖 + 𝑔�푖) − (𝑐�푖 + 𝑡�푖)

𝑦�푖 = (𝑎�푖 + 𝑐�푖) − (𝑔�푖 + 𝑡�푖)

𝑧�푖 = (𝑎�푖 + 𝑡�푖) − (𝑔�푖 + 𝑐�푖)
𝑥�푖, 𝑦�푖, 𝑧�푖 ∈ [−1, 1] , 𝑖 = 1, 2, 3

𝑋ZCPD = [𝑥A
12, 𝑦A
12, 𝑧A
12, . . . , 𝑥T

12, 𝑦T
12, 𝑧T
12, 𝑥A
23, 𝑦A
23, 𝑧A
23, . . . ,

𝑥T
23, 𝑦T
23, 𝑧T
23]

𝑥�푀�푘 = ((𝑝�푘 (MA) + 𝑝�푘 (MG))

− (𝑝�푘 (MC) + 𝑝�푘 (MT)))

𝑦�푀�푘 = ((𝑝�푘 (MA) + 𝑝�푘 (MC))

− (𝑝�푘 (MG) + 𝑝�푘 (MT)))

𝑧�푀�푘 = ((𝑝�푘 (MA) + 𝑝�푘 (MT)) − (𝑝�푘 (MC) + 𝑝�푘 (MG)))
𝑀 = A,C,G,T; 𝑘 = 12, 23.

(4)

2.3. Feature Fusion. Feature fusion can derive the most
discriminatory information from original multifeature sets
and eliminate the redundant information from the correla-
tion between distinct feature sets, which benefits the final
decision. Here, four kinds of feature set of ORF coverage,
monocodon usage, monoamino acid usage, and Z-curve
parameters are concatenated into one set of feature vectors
to represent the ORF fragments, which can be formulized as
follows:

𝑋 = [𝑋ORFC, 𝑋MC, 𝑋MA, 𝑋ZCPS, 𝑋ZCPD] . (5)

2.4. Deep Stacking Network. As one of the deep neural
networks, deep stacking network (DSN) has been successfully
applied in speech classification [52], information retrieval
[53], and lncRNA identification [24]. A DSN is stacked by a
series of modules with the same or similar structures. Each
DSNmodule takes a simplified formof the shallowmultilayer



4 BioMed Research International

perceptron, consisting of a linear input layer, a nonlinear hid-
den layer and a linear output layer. “Stacking” is accomplished
by concatenating the output of all previous modules with the
raw input vector to form the new “input” vector as the input
of the next module. The DSN weight parameters 𝑊 (input
weight matrices) and 𝑈 (output network weight matrices) in
each module are learned efficiently from the training data
by using the basic learning algorithm and the fine tuning
algorithm.

2.4.1. Basic Learning Algorithm. Let X = [x1, . . . , xi, . . . , xN]
represent the training vectors, inwhich each vector is denoted
by x�푖 = [𝑥1�푖, . . . , 𝑥�푢�푖, . . . , 𝑥�퐷�푖]�푇; T = [t1, . . . , t�푖, . . . , t�푁] rep-
resents the target vectors, in which each vector is denoted by
t�푖 = [𝑡1�푖, . . . , 𝑡V�푖, . . . , 𝑡�퐶�푖]�푇, where𝑁 is total number of training
samples, 𝐷 is the dimension of the input vector, and 𝐶 is
dimension of the output vector. Let 𝐿 denote the number of
hidden units.Then, the output of a DSNmodule is yi = UThi,
where hi = 𝜎(WTxi) is the 𝑖th hidden layer output,U is a 𝐿×𝐶
weightmatrix at the upper layer,W is a𝐷×𝐿weightmatrix at
the lower layer, and 𝜎(⋅) is the sigmoid function. For a given
W, the parameterU is learned to minimize the average of the
total square error.

𝐸 = ‖Y − T‖2 = Tr [(Y − T) (Y − T)T] , (6)

where Y = [y1, . . . , yi, . . . , yN]. If the lower layer weight
matrixW is fixed, the hidden layer output values H can also
been calculated. Consequently, the upper-layer weightmatrix
U in each module can be determined by setting the gradient
𝜕𝐸/𝜕U = 2H(U�푇H − T)�푇 to zero, then leading to the closed-
form solution.

U = (HH�푇)−1HT�푇. (7)

In general, there are two ways to set W: firstly, by using
various distributions to generate the random numbers to set
W; secondly, by applying contrastive divergence to separately
train the restricted Boltzmann machines (RBM), then using
the trained RBM weights to setW. In this paper, we used the
trained RBM weights to setW for the bottom module.

2.4.2. Module-Bound Fine Tuning. The weight matricesW of
DSN in each module can be further learned using the batch-
mode gradient descent [54]. That is,

𝜕𝐸
𝜕W =

𝜕Tr [(U�푇H − T) (U�푇H − T)�푇]
𝜕W = 2X [H�푇

∘ (1 − H)�푇 ∘ [H† (HH�푇) (TH†) − T�푇 (TH†)]]

W(�푗+1) = W(�푗) + 𝜂 × 𝜕𝐸(�푗)
𝜕W(�푗) ,

(8)

where H† = H�푇(HH�푇)−1 is pseudoinverse of H, the symbol
∘ represents the element-wise matrix multiplication, and 𝜂 is
the learning rate of updating the weight matricesW.

2.5. The Performance Measures of the Prediction System. The
performance measures of the sensitivity or true positive rate
(TPR), precision or positive predictive value (PPV), accuracy
(ACC), and F1 score were used to evaluate the performance
of the prediction system. They are defined as follows:

TPR = TP
TP + FN

PPV = TP
TP + FP

𝐹1 = 2 × PPV × TPR
PPV + TPR

ACC = TP + TN
TP + TN + FP + FN

,

(9)

where TP is the number of correctly predicted coding genes
and FP and FN are the number of incorrectly predicted
coding genes and noncoding gene, respectively. F1 score is the
harmonic mean of precision and sensitivity, which provides a
composite of precision and sensitivity.

3. Results and Discussion

3.1. Performance of Meta-MFDL. In statistical prediction, the
following three cross-validation methods are often used to
examine a predictor for its effectiveness in practical applica-
tion: independent dataset test, 𝐾-fold (e.g., 5-fold, 10-fold)
crossover or subsampling test, and jackknife test. Of the
three test methods, the jackknife test is deemed the least
arbitrary that can always yield a unique result for a given
benchmark dataset [45]. However, for large scale database,
the jackknife test needs to spend lots of time to generate
the prediction results. To reduce the computational time and
evaluate the generalization performance of a predictor, in this
study, we adopted the 10-fold cross-validation (10 CV) test
and independent dataset test as done by most investigators
[24, 46, 55–59].

Generally, more ORF fragments are used to train the
deep learning model, higher gene prediction accuracy can
be obtained, but it will spend more computational time. By
making a trade-off between the prediction accuracy and com-
putational time, we randomly select 50,000 coding ORF
fragments and 50,000 noncoding ORF fragments from
TraData700 and TraData120, respectively, to form Set700 and
Set120 datasets to train theMeta-MFDLpredictor. To demon-
strate the superiority of Meta-MFDL, in 10 CV test, we com-
pared it with other two state-of-the-art predictors, Orphelia
[21, 22] and FragGeneScan [14]. Orphelia [21, 22] firstly
extracts the features ofmonocodonusage, dicodonusage, and
translation initiation sites by building linear discriminants
and then combines these features with ORF length and GC-
content by using an artificial neural network to estimate the
probability of an ORF encoding a protein. FragGeneScan
[14] combines codon usage, sequence patterns for start/stop
codons, and sequencing error models in a hidden Markov
model to improve the prediction of protein-coding region in
short reads. In order to show the outstanding performance of



BioMed Research International 5

Table 1: The performance of Orphelia, FragGeneScan, Meta-MFSVM, and Meta-MFDL on the Set700 and Set120 training datasets in 10 CV
test.

Predictors
Set700 Set120

TPR (%) PPV (%) F1 TPR (%) PPV (%) F1
Orphelia 88.61 ± 1.89 89.05 ± 1.51 0.888 ± 0.016 83.19 ± 0.98 82.44 ± 1.20 0.847 ± 0.985
Meta-MFSVM 89.59 ± 2.39 90.23 ± 1.34 0.908 ± 0.018 84.70 ± 0.66 85.07 ± 1.26 0.849 ± 0.543
FragGeneScan 90.38 ± 2.23 91.89 ± 1.98 0.918 ± 0.013 86.56 ± 0.71 86.78 ± 0.54 0.868 ± 0.013
Meta-MGPDL 91.47 ± 1.37 93.26 ± 1.97 0.923 ± 0.008 89.28 ± 0.63 90.58 ± 0.61 0.899 ± 0.006

Table 2: The overall accuracy (%) of Orphelia, FragGeneScan, MGC, MetaGUN, Meta-MFSVM, and Meta-MFDL on the TesData700
independent testing dataset.

Species Orphelia Meta-MFSVM MGC FragGeneScan MetaGUN Meta-MFDL
A. fulgidus 89.49 92.25 92.47 93.14 94.30 94.70
N. pharaonis 84.73 89.87 89.90 91.67 94.40 94.12
M. jannaschii 86.13 91.68 91.69 95.91 95.03 94.65
B. aphidicola 94.16 93.43 93.75 95.60 96.24 96.05
B. pseudomallei 88.19 90.71 90.76 91.53 94.13 94.15
B. subtilis 91.56 92.55 91.78 92.49 93.86 93.89
C. jeikeium 86.03 90.15 90.85 91.32 91.31 91.62
C. tepidum 83.59 88.48 88.43 88.07 90.68 90.66
E. coli 91.50 91.98 92.06 93.45 93.58 93.66
H. pylori 92.88 93.30 93.48 94.98 93.81 94.49
P. aeruginosa 85.05 92.42 92.47 94.42 94.03 93.89
P. marinus 89.16 91.24 91.36 90.82 93.73 93.88
W. endosymbiont 78.66 84.70 84.78 75.67 83.69 87.34
Average 87.78 90.98 91.06 91.47 92.98 93.31

deep learning algorithm, we also design aMeta-MFSVMpre-
dictor. Meta-MFSVM uses the same features as Meta-MFDL,
inputting the support vector machine (SVM) to distinguish
between coding and noncoding ORF fragments. The results
of four predictors on the same training datasets (i.e., Set700
and Set120) in 10 CV test are shown on Table 1. It can be seen
that, for 700 bp dataset, the TPR of Meta-MFDL is 91.47%,
which is 2.86, 1.88, and 1.09% higher than that of Orphelia,
Meta-MFSVM, and FragGeneScan, respectively; the PPV of
Meta-MFDL is 93.26%, which is 4.21, 3.03, and 1.37% higher
than that of Orphelia, Meta-MFSVM, and FragGeneScan,
respectively; F1 score of Meta-MFDL is 0.923, which is 0.035,
0.015, and 0.005 higher than that of Orphelia, Meta-MFSVM,
and FragGeneScan, respectively; most deviations of Meta-
MFDL are also lower than that of Orphelia, Meta-MFSVM,
and FragGeneScan. For 120 bp dataset, the TPR of Meta-
MFDL is 89.28%, which is 6.09, 4.58, and 2.72% higher
than that of Orphelia, Meta-MFSVM, and FragGeneScan,
respectively; the PPV ofMeta-MFDL is 90.58%, which is 8.14,
5.51, and 3.8% higher than that of Orphelia, Meta-MFSVM,
and FragGeneScan, respectively; F1 score of Meta-MFDL is
0.899, which is 0.052, 0.05, and 0.031 higher than that of
Orphelia,Meta-MFSVM, andFragGeneScan, respectively; all
deviations of Meta-MFDL are lower than that of Orphelia,
Meta-MFSVM, and FragGeneScan. The results of 700 bp
and 120 bp datasets show that Meta-MFDL can effectively

recognize the short coding fragments in metagenomics than
Orphelia and FragGeneScan predictors.

In addition, the comparing results of Meta-MFDL and
Meta-MFSVM indicate that the classifying ability of deep
learning is superior to SVM. These results show that the
Meta-MFDL predictor has the powerful performance for
distinguishing coding and noncoding ORF fragments.

In order to further evaluate the generalized performance
of Meta-MFDL predictor, we also implemented Meta-MFDL
on TesData700 and TesData120 testing datasets derived from
13 species (i.e., 10 bacteria and 3 archaea) and compared with
Orphelia [21, 22], FragGeneScan [14], MGC [23], MetaGUN
[11], and Meta-MFSVM predictors. The overall accuracies
of Meta-MFDL, Meta-MFSVM, Orphelia, FragGeneScan,
MGC, and MetaGUN on the two independent testing
datasets (i.e., TesData700 and TesData120) are shown in Tables
2 and 3, respectively. The TPR, PPV, and F1 score of these
six methods are listed in Tables S3 and S4 available in
SupplementaryMaterial. It can be seen that bothMeta-MFDL
and MetaGUN achieve better performance than Orphelia,
Meta-MFSVM, MGC, and FragGeneScan on most species.
The performance ofMeta-MFDL is slightly better than that of
MetaGUN; for example, for the TesData700 independent test-
ing dataset, the average accuracy of Meta-MFDL is 93.31%,
which is 0.33% higher than that of MetaGUN; the average F1
score is 0.9184, which is 0.0029 higher than that ofMetaGUN.



6 BioMed Research International

Table 3: The overall accuracy (%) of Orphelia, FragGeneScan, MGC, MetaGUN, Meta-MFSVM, and Meta-MFDL on the TesData120
independent testing dataset.

Species Orphelia Meta-MFSVM MGC FragGeneScan MetaGUN Meta-MFDL
A. fulgidus 84.05 85.22 85.67 85.92 86.49 87.38
N. pharaonis 82.43 82.79 82.96 82.94 83.12 83.03
M. jannaschii 82.11 84.25 84.69 84.80 85.23 85.59
B. aphidicola 85.91 87.50 88.21 88.96 89.96 90.06
B. pseudomallei 84.28 84.73 84.93 85.10 85.37 85.60
B. subtilis 88.13 88.36 88.46 88.51 88.60 87.85
C. jeikeium 80.95 83.19 84.64 85.96 87.38 91.04
C. tepidum 79.17 79.67 80.02 80.16 80.52 79.22
E. coli 85.98 86.31 86.56 86.70 86.89 86.91
H. pylori 88.09 89.37 90.66 91.42 92.51 92.81
P. aeruginosa 83.71 84.28 84.57 84.84 85.15 84.67
P. marinus 88.26 88.76 88.98 89.11 89.71 88.73
W. endosymbiont 74.75 76.50 77.72 78.51 79.23 79.55
Average 83.68 84.69 85.24 85.61 86.17 86.34

These results suggest that the Meta-MFDL predictor has a
better generalized performance. In addition, MetaGUN used
261 complete genomes (229 bacteria and 32 archaea) to train
the predictor, while our Meta-MFDL just used 120 complete
genomes (109 bacteria and 11 archaea) to train the predictor.
If we use the same complete genomes as MetaGUN to train
Meta-MFDL, Meta-MFDL can achieve better generalized
performance than that of MetaGUN.

3.2. Effects of Training Data Size and Randomly Sampling.
In general, if we use more ORF fragments to train the deep
learning model, we can obtain higher prediction accuracy,
but it will spend more computational time. In order to inves-
tigate the effects of the training data size, we randomly sam-
ple different number fragments (e.g., 5000, 10,000, 50,000,
80,000, 100,000, 150,000, and 200,000) from TraData700 to
build the training dataset in which the number of coding
ORF fragments is the same as the noncoding fragments and
randomly sample the same number fragments as the training
dataset to test the predictors. The results of different training
data size are listed in Table S5 available in Supplementary
Material. From Table S5, we can see that the metrics of TPR,
PPV, ACC, and F1 score gradually increase with the increase
of size of training data, while the running time significantly
increases. For example, the accuracy and running time of
Meta-MFDL on the 100,000 and 150,000 fragment training
datasets are 92.6%, 92.7%, 1.027 h, and 1.45 h, respectively.
The accuracy on the 100,000 dataset just increases 0.1% than
150,000 dataset, while the running time increases 0.423 h.
By making a trade-off between the predict metrics and
running time, we randomly select 100,000 fragments (i.e.,
50,000 coding ORF fragments and 50,000 noncoding ORF
fragments) to train our Meta-MFDL predictor in this paper.

In order to investigate the effects of randomly sampling
strategy, we randomly sample 50,000 coding ORF fragments

Table 4: The effects of randomly sampling strategy to the Meta-
MFDL predictor in 10 CV test.

Sampling
times TPR (%) PPV (%) F1

(1) 91.27 ± 1.00 91.79 ± 1.10 0.915 ± 0.009
(2) 91.38 ± 0.92 91.38 ± 0.92 0.916 ± 0.007
(3) 91.64 ± 0.66 91.74 ± 0.88 0.916 ± 0.007
(4) 92.09 ± 0.95 91.73 ± 0.92 0.919 ± 0.008
(5) 92.16 ± 0.77 91.93 ± 0.51 0.920 ± 0.006
(6) 92.22 ± 0.63 91.98 ± 0.53 0.922 ± 0.004
(7) 92.14 ± 0.82 92.57 ± 0.91 0.924 ± 0.006
(8) 92.40 ± 1.26 92.64 ± 0.87 0.925 ± 0.007
(9) 91.92 ± 0.67 93.28 ± 1.50 0.926 ± 0.087
(10) 91.47 ± 1.37 93.26 ± 1.97 0.923 ± 0.008
Average 91.87 ± 0.90 92.23 ± 1.01 0.921 ± 0.015

and 50,000 noncoding ORF fragments from TraData700 ten
times and use the 10 CV test to assess the performance
of Meta-MFDL. Table 4 gives the results of ten randomly
samplings, in which we can see that randomly sampling
strategy has little effect to Meta-MFDL predictor. Thus, the
strategy of randomly sampling 50,000 coding ORF fragments
and 50,000 noncoding ORF fragments to train the Meta-
MFDLmodel is reasonable and feasible, which can reduce the
computational time and gives better prediction results.

3.3. Comparison with Individual Feature Classifier. To fur-
ther verify the effectiveness of Meta-MFDL predictor, we
compared it with four other individual feature deep learning
classifiers based on the ORF coverage (ORFC), monocodon
usage (MC), monoamino acid usage (MA), and Z-curve
parameter (ZC) feature descriptors, respectively. The results



BioMed Research International 7

Table 5: Results of Meta-MFDL and four individual feature deep
learning classifiers on Set700 dataset in 10 CV test.

Features TPR (%) PPV (%) F1
ORFC-DL 87.64 ± 1.24 92.28 ± 1.35 0.899 ± 0.003
MC-DL 87.97 ± 0.75 92.37 ± 1.05 0.899 ± 0.003
MA-DL 88.53 ± 0.49 92.68 ± 0.86 0.905 ± 0.004
ZC-DL 88.95 ± 0.36 93.85 ± 0.75 0.913 ± 0.002
Meta-MFDL 91.47 ± 1.37 93.26 ± 1.97 0.923 ± 0.008

on the Set700 dataset in 10 CV test are shown in Table 5,
from which we can see that the TPR of Meta-MFDL is 3.83,
3.5, 2.94, and 2.52% higher than that of ORFC-DL, MC-DL,
MA-DL, and ZC-DL classifiers, respectively; the PPV is little
higher than that of ORFC-DL, MC-DL, and MA-DL, and
slightly lower than that of ZC-DL; F1 score of Meta-MFDL
is also bigger than that of other four individual feature clas-
sifiers, suggesting that our feature fusion strategy is effective
for identifying the gene fragments. The MA and ZC feature
descriptors are more powerful than ORFC and MC feature
descriptors, meaning thatMA and ZC features contribute the
most to the overall performance of Meta-MFDL predictor.
These results show thatMeta-MFDL predictor is effective and
robust for predicting metagenomic gene compared with the
individual feature DL classifier.

4. Conclusions

Identification of genes directly frommetagenomic fragments
is an important task in annotating metagenomes. How-
ever, due to the incomplete and fragmented nature of the
metagenomic sequencing data, it is more complicated in
metagenomes than in isolated genomes, and the assembly of
metagenomes is often not available.Therefore, it is important
to develop the computational methods for identifying the
coding ORFs from the metagenomics short reads. In this
study, based on the DNA sequences, we introduced four
kinds of feature descriptors (i.e., ORFC, MC, MA, and ZC)
and fused them forming a vector to represent the ORF
fragments. Instead of the shallow learningmodels (e.g., SVM,
HMM), we used DSN deep learning architecture model
to design the Meta-MFDL predictor for identifying the
metagenomic gene fragments. Comparing with the existing
Orphelia, FragGeneScan, MGC, and MetaGUN predictors
for identifying metagenomics genes on the training datasets
and other 13 species independent testing datasets, Meta-
MFDL predictor shows strong robust and powerful ability for
identifying metagenomic gene fragments, and it represents
an intriguing and promising avenue for predicting metage-
nomic genes. Meta-MFDL software package is available at
http://180.208.58.19/Meta-MFDL/.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This paper was supported by the National Natural Science
Foundation of China (91430111, 61473232, and 61170134).

References

[1] C. S. Riesenfeld, P. D. Schloss, and J. Handelsman, “Metage-
nomics: genomic analysis of microbial communities,” Annual
Review of Genetics, vol. 38, no. 1, pp. 525–552, 2004.

[2] J. C. Venter, K. Remington, J. F. Heidelberg et al., “Environmen-
tal genome shotgun sequencing of the sargasso sea,” Science, vol.
304, no. 5667, pp. 66–74, 2004.

[3] S. G. Tringe, C. Von Mering, A. Kobayashi et al., “Comparative
metagenomics of microbial communities,” Science, vol. 308, no.
5721, pp. 554–557, 2005.

[4] Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, “Meta-
IDBA: a de Novo assembler for metagenomic data,” Bioinfor-
matics, vol. 27, no. 13, pp. i94–i101, 2011.

[5] Y. Peng,H.C.M. Leung, S.M.Yiu, and F. Y. L. Chin, “IDBA-UD:
a de novo assembler for single-cell and metagenomic sequenc-
ing data with highly uneven depth,” Bioinformatics, vol. 28, no.
11, Article ID bts174, pp. 1420–1428, 2012.

[6] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, and J.
Corbeil, “RayMeta: scalable de novometagenome assembly and
profiling,” Genome Biology, vol. 13, article R122, 2012.

[7] Afiahayati, K. Sato, and Y. Sakakibara, “MetaVelvet-SL: An ex-
tension of the Velvet assembler to a de novo metagenomic
assembler utilizing supervised learning,”DNAResearch, vol. 22,
no. 1, pp. 69–77, 2015.

[8] B. Haider, T.-H. Ahn, B. Bushnell, J. Chai, A. Copeland, and
C. Pan, “Omega: An Overlap-graph de novo Assembler for
Metagenomics,” Bioinformatics, vol. 30, no. 19, pp. 2717–2722,
2014.

[9] S. Nurk, D. Meleshko, A. Korobeynikov, and P. A. Pevzner,
“metaSPAdes: a new versatilemetagenomic assembler,”Genome
Research, vol. 27, no. 5, pp. 824–834, 2017.

[10] J. Vollmers, S. Wiegand, and A.-K. Kaster, “Comparing and
evaluating metagenome assembly tools from a microbiologist’s
perspective - Not only size matters!,” PLoS ONE, vol. 12, no. 1,
Article ID e0169662, 2017.

[11] Y. Liu, J. Guo, G. Hu, and H. Zhu, “Gene prediction in
metagenomic fragments based on the SVM algorithm,” BMC
Bioinformatics, vol. 14, no. 5, article no. S12, 2013.

[12] D. Hyatt, P. F. Locascio, L. J. Hauser, and E. C. Uberbacher,
“Gene and translation initiation site prediction inmetagenomic
sequences,” Bioinformatics, vol. 28, no. 17, Article ID bts429, pp.
2223–2230, 2012.

[13] D. R. Kelley, B. Liu, A. L. Delcher, M. Pop, and S. L. Salzberg,
“Gene prediction with Glimmer for metagenomic sequences
augmented by classification and clustering,” Nucleic Acids
Research, vol. 40, no. 1, p. e9, 2012.

[14] M. Rho, H. Tang, and Y. Ye, “FragGeneScan: predicting genes
in short and error-prone reads,” Nucleic Acids Research, vol. 38,
no. 20, p. e191, 2010.

[15] J. H. Badger and G. J. Olsen, “CRITICA: Coding region identi-
fication tool invoking comparative analysis,” Molecular Biology
and Evolution, vol. 16, no. 4, pp. 512–524, 1999.

[16] D. Frishman, A. Mironov, H.-W. Mewes, and M. Gelfand,
“Combining diverse evidence for gene recognition in com-
pletely sequenced bacterial genomes,” Nucleic Acids Research,
vol. 26, no. 12, pp. 2941–2947, 1998.

http://180.208.58.19/Meta-MFDL/


8 BioMed Research International

[17] H. Noguchi, T. Taniguchi, and T. Itoh, “MetaGeneAnnotator:
detecting species specific patterns of ribosomal binding site for
precise gene prediction in anonymous prokaryotic and phage
genomes,” DNA Research, vol. 15, no. 6, pp. 387–396, 2008.

[18] H. Noguchi, J. Park, and T. Takagi, “MetaGene: prokaryotic
gene finding from environmental genome shotgun sequences,”
Nucleic Acids Research, vol. 34, no. 19, pp. 5623–5630, 2006.

[19] W. Zhu, A. Lomsadze, andM. Borodovsky, “Ab initio gene iden-
tification in metagenomic sequences,” Nucleic Acids Research,
vol. 38, article e132, Article ID gkq275, 2010.

[20] K. J. Hoff, T. Lingner, P. Meinicke, and M. Tech, “Orphelia:
Predicting genes in metagenomic sequencing reads,” Nucleic
Acids Research, vol. 37, no. 2, pp. W101–W105, 2009.

[21] K. J. Hoff,M. Tech, T. Lingner, R. Daniel, B.Morgenstern, and P.
Meinicke, “Gene prediction inmetagenomic fragments: A large
scale machine learning approach,” BMC Bioinformatics, vol. 9,
article no. 217, 2008.

[22] A. El Allali and J. R. Rose, “MGC: A metagenomic gene caller,”
BMC Bioinformatics, vol. 14, no. 9, article no. S6, 2013.

[23] D. Yu, L. Deng, I. Jang, P. Kudumakis, M. Sandler, and K. Kang,
“Deep learning and its applications to signal and information
processing,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp.
145–154, 2011.

[24] X.-N. Fan and S.-W. Zhang, “LncRNA-MFDL: identification of
human long non-coding RNAs by fusing multiple features and
using deep learning,” Molecular BioSystems, vol. 11, no. 3, pp.
892–897, 2015.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[26] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training
of a convolutional network and a graphical model for human
pose estimation,” in Proceedings of the 28th Annual Conference
on Neural Information Processing Systems 2014, NIPS 2014, pp.
1799–1807, can, December 2014.

[27] G. Hinton, L. Deng, D. Yu et al., “Deep neural networks for
acoustic modeling in speech recognition: the shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[28] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from
scratch,” Journal ofMachine Learning Research, vol. 12, pp. 2493–
2537, 2011.

[29] C. Xiong, S.Merity, andR. Socher, “Dynamicmemory networks
for visual and textual question answering,” in Proceedings of the
33rd International Conference onMachine Learning, ICML 2016,
pp. 3574–3583, usa, June 2016.

[30] P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov,
“Applications of Deep Learning in Biomedicine,” Molecular
Pharmaceutics, vol. 13, no. 5, pp. 1445–1454, 2016.

[31] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep
learning for computational biology,”Molecular Systems Biology,
vol. 12, no. 7, article no. 878, 2016.

[32] J. Lyons, A. Dehzangi, R. Heffernan et al., “Predicting backbone
C𝛼 angles and dihedrals from protein sequences by stacked
sparse auto-encoder deep neural network,” Journal of Compu-
tational Chemistry, vol. 35, no. 28, pp. 2040–2046, 2014.

[33] R.Heffernan, K. Paliwal, J. Lyons et al., “Improving prediction of
secondary structure, local backbone angles, and solvent accessi-
ble surface area of proteins by iterative deep learning,” Scientific
Reports, vol. 5, Article ID 11476, 2015.

[34] M. Spencer, J. Eickholt, and J. Cheng, “A deep learning network
approach to,” IEEE Transactions on Computational Biology and
Bioinformatics, vol. 12, no. 1, pp. 103–112, 2015.

[35] S. r. Sønderby, C. K. Sønderby, H. Nielsen, and O. Winther,
“Convolutional LSTM networks for subcellular localization of
proteins,” in Algorithms for computational biology, vol. 9199 of
Lecture Notes in Comput. Sci., pp. 68–80, Springer, Cham, 2015.

[36] S. Cheng, M. Guo, C. Wang, X. Liu, Y. Liu, and X. Wu,
“MiRTDL: A deep learning approach for miRNA target pre-
diction,” IEEE Transactions on Computational Biology and
Bioinformatics, vol. PP, no. 99, 2015.

[37] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene
expression inference with deep learning,” Bioinformatics, vol.
32, no. 12, pp. 1832–1839, 2016.

[38] R. Singh, J. Lanchantin, G. Robins, and Y. Qi, “DeepChrome:
Deep-learning for predicting gene expression from histone
modifications,” Bioinformatics, vol. 32, no. 17, pp. i639–i648,
2016.

[39] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Pre-
dicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning,” Nature Biotechnology, vol. 33, no. 8,
pp. 831–838, 2015.

[40] J. Zhou andO. G. Troyanskaya, “Predicting effects of noncoding
variants with deep learning-based sequence model,” Nature
Methods, vol. 12, no. 10, pp. 931–934, 2015.

[41] D. Quang and X. Xie, “DanQ: A hybrid convolutional and
recurrent deep neural network for quantifying the function of
DNA sequences,” Nucleic Acids Research, vol. 44, no. 11, article
no. e107, 2016.

[42] D. R. Kelley, J. Snoek, and J. L. Rinn, “Basset: Learning the reg-
ulatory code of the accessible genome with deep convolutional
neural networks,” Genome Research, vol. 26, no. 7, pp. 990–999,
2016.

[43] G. Ditzler, R. Polikar, andG. Rosen, “Multi-Layer and Recursive
Neural Networks for Metagenomic Classification,” IEEE Trans-
actions on NanoBioscience, vol. 14, no. 6, pp. 608–616, 2015.

[44] D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and D. H. Huson,
“MetaSim—a sequencing simulator for genomics and metage-
nomics,” PLoS ONE, vol. 3, no. 10, Article ID e3373, 2008.

[45] K.-C. Chou, “Some remarks on protein attribute prediction and
pseudo amino acid composition,” Journal ofTheoretical Biology,
vol. 273, pp. 236–247, 2011.

[46] S.-W. Zhang, Y.-F. Liu, Y. Yu, T.-H. Zhang, and X.-N. Fan,
“MSLoc-DT: A new method for predicting the protein sub-
cellular location of multispecies based on decision templates,”
Analytical Biochemistry, vol. 449, no. 1, pp. 164–171, 2014.

[47] M. Pohl, G. Theien, and S. Schuster, “GC content dependency
of open reading frame prediction via stop codon frequencies,”
Gene, vol. 511, no. 2, pp. 441–446, 2012.

[48] J. Besemer andM. Borodovsky, “Heuristic approach to deriving
models for gene finding,” Nucleic Acids Research, vol. 27, no. 19,
pp. 3911–3920, 1999.

[49] C.-T. Zhang and R. Zhang, “Analysis of distribution of bases
in the coding sequences by a digrammatic technique,” Nucleic
Acids Research, vol. 19, no. 22, pp. 6313–6317, 1991.

[50] F.-B. Guo, H.-Y. Ou, and C.-T. Zhang, “ZCURVE: A new system
for recognizing protein-coding genes in bacterial and archaeal
genomes,” Nucleic Acids Research, vol. 31, no. 6, pp. 1780–1789,
2003.

[51] S. Chen, C.-Y. Zhang, and K. Song, “Recognizing short coding
sequences of prokaryotic genome using a novel iteratively



BioMed Research International 9

adaptive sparse partial least squares algorithm,” Biology Direct,
vol. 8, no. 1, article no. 23, 2013.

[52] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in Proceedings of the 2012 IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’12), pp. 2133–2136, Kyoto, Japan, March 2012.

[53] L. Deng, X. He, and J. Gao, “Deep stacking networks for infor-
mation retrieval,” in Proceedings of the 2013 38th IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,
ICASSP 2013, pp. 3153–3157, can, May 2013.

[54] D. Yu and L. Deng, “Accelerated parallelizable neural network
learning algorithm for speech recognition,” in Proceedings of
the 12th Annual Conference of the International Speech Commu-
nication Association, INTERSPEECH 2011, pp. 2281–2284, ita,
August 2011.

[55] S.-W. Zhang and Z.-G. Wei, “Some remarks on prediction of
protein-protein interaction with machine learning,” Medicinal
Chemistry, vol. 11, no. 3, pp. 254–264, 2015.

[56] S.-W. Zhang, L.-Y. Hao, and T.-H. Zhang, “Prediction of
protein-protein interaction with pairwise kernel support vector
machine,” International Journal ofMolecular Sciences, vol. 15, no.
2, pp. 3220–3233, 2014.

[57] S.-W. Zhang, Y.-L. Zhang, H.-F. Yang, C.-H. Zhao, and Q. Pan,
“Using the concept of Chou’s pseudo amino acid composition
to predict protein subcellular localization: an approach by
incorporating evolutionary information and von Neumann
entropies,” Amino Acids, vol. 34, no. 4, pp. 565–572, 2008.

[58] W.-R. Qiu, B.-Q. Sun, X. Xiao, Z.-C. Xu, and K.-C. Chou,
“iPTM-mLys: Identifying multiple lysine PTM sites and their
different types,” Bioinformatics, vol. 32, no. 20, pp. 3116–3123,
2016.

[59] J. Jia, Z. Liu, X. Xiao, B. Liu, and K.-C. Chou, “iSuc-PseOpt:
identifying lysine succinylation sites in proteins by incorpo-
rating sequence-coupling effects into pseudo components and
optimizing imbalanced training dataset,” Analytical Biochem-
istry, vol. 497, pp. 48–56, 2016.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


