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We propose an exchange economy evolutionary model with discrete time, in which there are two utility-maximizing groups of
agents which differ in the preference structure. Assuming an evolutionary mechanism based on the relative utility values realized
by the two kinds of agents, we analytically and numerically investigate the existence of equilibria, their stability, and possible
phenomena of coexistence between groups,mainly in terms of the heterogeneity degree in the preference structure.We find that our
system has two trivial equilibria, at which just one of the two groups is present, and possibly a nontrivial equilibrium, characterized
by the coexistence of the two groups of agents. Such nontrivial equilibrium may be stable, attracting all trajectories, or unstable. In
the latter case, interesting, periodic, or chaotic, dynamics arise. We prove that the nontrivial equilibrium emerges via a transcritical
bifurcation and loses stability via a flip bifurcation, after which the coexistence between groups is oscillatory in nature, presenting a
regular or irregular behavior. In order to better investigate the role of the heterogeneity degree parameter, we perform a bifurcation
analysis considering different scenarios, characterized by a balanced or unbalanced endowment distribution of the two goods.

1. Introduction

Many papers in the economic literature deal with represen-
tative agents. Such kind of modeling assumption is justified
if the initial heterogeneity among agents asymptotically
disappears from the system. In the present work, we show
that this is not always guaranteed, by proposing a simple
exchange economy evolutionary model with discrete time, in
which there are two utility-maximizing groups of agents that
differ in the preference structure and where the evolutionary
mechanism is based on the relative utility values realized by
the two kinds of agents. In such context we more generally
investigate, using both analytical and numerical techniques,
under which conditions both groups of agents coexist, and
thus heterogeneity persists, aswell aswhich are the conditions
that lead to the extinction of one of the two groups.

The model we present belongs to the line of research
started in [1] and further developed in [2]. Indeed, like in
those works, we consider a pure exchange economy model

with two utility-maximizing groups of agents heterogeneous
in the structure of preferences. Namely, the weights assigned
to the two consumption goods in the Cobb-Douglas utility
functions do not coincide across groups. Along the paper
we shall call the difference between such weights degree of
heterogeneity. In [1, 2] it was assumed that time is continuous
and the focus was on the analysis of the local stability of the
equilibria and on some of their static features, such as the
coexistence between groups. In those papers no interesting
dynamics could arise, because the only possible attractors
were given by steady states.

On the other hand, everyday life observation, supported
also by empirical data, highlights erratic behaviors in agents’
choices, and in particular oscillatory consumption phenom-
ena, such as the fashion cycle (see, e.g., [3, 4]), not reproduced
by [1, 2]. Moreover, from an interpretative viewpoint, the
results obtained in the previous works were not suitable to
describe the speed with which decisions are taken by real
agents. Indeed, in [1, 2], the growth rate of each population
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group was determined by a biological payoff function, which
depends on the consumption of the group’s agents, described
in terms of the assumed calorie intakes. In particular, the
share updating mechanism is supposed to be monotone in
the calorie intakes in [1] and bell-shaped in [2]. According
to [1], a monotone population growth rate is suitable to
represent the long-run centuries-old trend, as the diet of
a population group affects its long-term survival. However,
biological payoff functions monotonically increasing in the
calorie intakes well describe food regimes characterized by a
calorie shortage and thus they are not appropriate to represent
the framework of contemporary developed countries and the
negative effects of overconsumption on health and survival
(see [2, 5], and the references therein), which are instead
properly described by bell-shaped maps. Hence, the latter
setting is suitable to represent the long-run centuries-old
trend from the industrial revolution on.

Although the frameworks studied in [1, 2] are not well-
suited to describe the quick decisions agents take every
day, as observed in the conclusions in [1] the same setup
proposed therein can be used to analyze various contexts
in which the distribution of preferences changes over time,
like, for instance, the evolution of fashion and other trends
within a population. Accordingly, in the present work we
leave the biological share formation mechanisms considered
in the previous papers, replacing them with an economic
updating rule. Indeed, inside a pure exchange model in
which there are two utility-maximizing groups of agents
that differ in the preference structure, we do introduce an
evolutionary mechanism based on the relative satisfaction
degree, measured as the ratio between functions increasing
with the values taken in each time period by the two groups’
utility functions, obtaining a framework suitable to describe
agents’ consumption choices. More precisely, we assume that
agents know their own individual satisfaction degree, which
coincides with that of the other consumers belonging to the
same group and that they are correctly informed about the
individual satisfaction degree of the members of the other
group, so that they can compare the two values and decide
whether to choose again the same preference structure or
to switch to the other one. We stress that, different from
[1, 2], we here suppose that time is discrete rather than
continuous. Such choice comes from the consideration that
the former framework is more suitable to represent the
sequence of actions and decisionswhich lead to the formation
of the population shares. Namely, in view of embracing
a new preference structure, agents need to perform the
consumption activity, to evaluate the satisfaction degree
resulting from their previous choice, to gather information
on the other structure of preferences, and to compare the
various satisfaction levels, in order to make their next choice.
The modeling representation of those actions and decisions
requires a time structure which considers an interval between
two consecutive time instants. In particular, following [6,
7], we do consider a discrete exponential replicator rule
to describe the share updating mechanism. In this context,
thanks to the combined effect of the evolutionarymechanism
and of the price mechanism, which makes prices move in
such a way that demand and supply coincide, we are able to

obtain, in addition to static coexistence phenomena between
groups, also dynamical coexistence phenomena, oscillatory
in nature, in which agents’ choices change over time and
are not confined just on steady states, describing stationary
choices.

Indeed, in such setting, we do investigate from a dynami-
cal viewpoint underwhich conditions preference heterogene-
ity implies coexistence of groups characterized by attractors
which are not necessarily steady states. More precisely, along
the paper, we will try to answer two main questions. The
first one is under which conditions one of the two groups
asymptotically prevails over the other, leading to the eventual
disappearance of the initial agents’ heterogeneity.The second
one is whether the economy and the population shares set on
a stationary equilibriumor on a different (periodic or chaotic)
kind of attractor, when groups’ heterogeneity asymptotically
persists. The answer to the first question is ambiguous, as it
depends on the endowment distribution for the two goods.
Namely, if the latter is balanced, there exists a nontrivial, that
is, characterized by the coexistence between the two groups
of agents, equilibrium and agents’ heterogeneity persists.
If instead the endowment distribution is unbalanced, and
thus the endowment values for the two goods differ, a low
heterogeneity degree makes agents’ heterogeneity disappear.
Concerning the answer to the second question, we find
that the dynamic nature of the model is influenced by the
heterogeneity level, as well as by the endowment distribution.
Indeed, if the latter is balanced, the nontrivial equilibrium is
stable for low heterogeneity levels, while if the endowment
distribution is unbalanced, the nontrivial equilibrium is
stable for intermediate heterogeneity degree values. In both
frameworks, for larger values of the degree of heterogeneity
between groups, the economy and the population shares set
on periodic or chaotic attractors.

A paper which bears a resemblance to our work, in
regard to the topic and the outcomes, is [8]. Indeed, the
common focus is on cultural transmission, for us in the
form of transmission of the preference structure due to
social imitation, while [8] deals with the problem of cultural
transmission of knowledge, habits, and preferences, from
parents to their offspring. More precisely, the authors of [8],
both in the presence and in the absence of evolutionary
selection mechanisms, consider two forms of socialization:
the direct vertical one, inside the family, and the oblique
one, by society. Parents have to decide how much to invest
to affect the preferences of their children, which are also
influenced by the number of contacts with the other cultural
traits present in the external environment. We observe that
we consider just the oblique form of cultural transmission,
and not the direct vertical one, but in our model also the
price mechanism operates. Concerning the outcomes, [8]
analyzes what are the conditions on the transmission mecha-
nisms which induce heterogeneity in the long-run stationary
distribution of preferences in the population, while we do
also investigate whether the coexistence of different groups
can be observed along nonstationary orbits. In particular, we
find sufficient conditions for the presence of phenomena of
dynamic coexistence which are oscillatory in nature, both
regular or not, mainly in terms of the heterogeneity degree.
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We stress that another paper with an approach similar
to ours and in which chaotic dynamics are detected, too,
is [9], where, however, the authors consider an economy
with production and study whether market selection favors
profit maximizing firms. We also recall that evolutionary
frameworks with binary choices at a collective level have
been considered, for instance, in [10, 11]. On the other
hand, different from those papers, the binary choice here
occurs between preference structures that characterize the
two groups of agents, which are embedded in a general
equilibrium framework, where a price mechanism operates.

As we shall see, our assumptions lead us to work with
a discrete-time one-dimensional dynamical system, having
two trivial equilibria, at which just one of the two groups
is present, and possibly a nontrivial equilibrium, character-
ized by the coexistence between the two groups of agents.
According to the considered parameter values, such nontriv-
ial equilibrium may be stable, attracting all trajectories, or
unstable. In the latter case, interesting, periodic, or chaotic
dynamics arise. We prove that the nontrivial equilibrium
emerges via a transcritical bifurcation occurring at one
of the two trivial equilibria. As a consequence, when the
nontrivial equilibrium emerges, it is locally stable, while the
trivial equilibrium it collides with becomes unstable. The
nontrivial equilibrium loses stability via a flip bifurcation,
after which the coexistence of groups is no more stationary,
but oscillatory in nature, presenting a regular or irregular
behavior. We stress that a period-doubling bifurcation is
indeed the only way in which the nontrivial equilibriummay
lose stability, as fold or pitchfork bifurcations would imply
the emergence of further nontrivial equilibria, which in our
model do not exist. We also analyze the stability of the two
trivial stationary equilibria, which amounts to look at the
effect produced by their perturbation through the insertion
of a share of agents of the missing type. If the considered
equilibrium is locally stable, small perturbations will not be
successful from an evolutionary viewpoint, being reabsorbed
and leading again to the same homogeneous population.
On the contrary, insertions of larger shares of agents of the
missing type in the case of local stability, or insertions of any
size in the case of instability, will not be reabsorbed, leading to
a framework characterized just by the presence of the agents
of the other group, or to frameworks where the coexistence
between the two groups of agents may be stationary or
oscillatory, along a periodic or a chaotic trajectory. We find
that the stability of the trivial stationary equilibria depends
on whether the endowment distribution of the two goods is
balanced, and thus the endowment values for the two goods
coincide, or not. Moreover, the endowment values influence
the stability of the nontrivial equilibrium, too. Due to the
central role played by such parameters, in the bifurcation
analysis that we perform to better investigate the effect of the
heterogeneity degree parameter from a dynamical viewpoint,
we consider scenarios characterized just by the features of the
endowment distribution of the two goods. In particular, we
will study what happens when the distribution is balanced
and when it is unbalanced, obtaining the results reported
above in answering our two main questions.

The remainder of the paper is organized as follows. In
Section 2 we present our model and we find its equilibria,
performing some comparative statics exercises, as well as the
stability analysis. In Section 3we further investigate the role of
the heterogeneity degree parameter via a bifurcation analysis,
considering different scenarios. In Section 4webriefly discuss
our results and describe possible extensions of our model.

2. The Model

Let us consider an exchange economy with a continuum
of agents, which may be of type 𝛼 or of type 𝛽. There are
two consumption goods, 𝑥 and 𝑦, and agent preferences
are described by Cobb-Douglas utility functions, that is,𝑈𝑖(𝑥, 𝑦) = 𝑥𝑖𝑦1−𝑖, for 𝑖 ∈ {𝛼, 𝛽}, with 0 < 𝛽 < 𝛼 < 1. We
shall call the parameter Δ = 𝛼 − 𝛽 ∈ (0, 1 − 𝛽) degree of
heterogeneity between groups. Both kinds of agents have the
same endowments of the two goods, denoted, respectively, by𝑤𝑥 and 𝑤𝑦. Time is discrete and the analysis is performed
in terms of the relative price 𝑝(𝑡) = 𝑝𝑦(𝑡)/𝑝𝑥(𝑡), where𝑝𝑥(𝑡) and 𝑝𝑦(𝑡) are the prices at period 𝑡 for goods 𝑥 and𝑦, respectively. We assume that the population is constant at
each time period and normalized to 1, and we denote by 𝑎(𝑡)
the population fraction composed by the agents of type 𝛼, so
that the population fraction composed by the agents of type𝛽 is given by 1 − 𝑎(𝑡).

We now present the definition of market equilibrium; we
shall refer to in the remainder of the paper.

Definition 1. Given the economy and the population share𝑎(𝑡), a market equilibrium at time 𝑡 is a vector (𝑝∗(𝑡), 𝑥∗𝑖 (𝑡),𝑦∗𝑖 (𝑡)), with 𝑖 ∈ {𝛼, 𝛽}, such that
(i) every kind of agent chooses a utility-maximizing

consumption bundle, given 𝑝∗(𝑡);
(ii) the markets for the two goods are clear.

Simple computations show that, solving the consumer
maximization problems for agents of types 𝛼 and 𝛽 and using
a market clearing condition, the market equilibrium price is
given by

𝑝∗ (𝑡) = [1 − (𝑎 (𝑡) 𝛼 + (1 − 𝑎 (𝑡)) 𝛽)] 𝑤𝑥(𝑎 (𝑡) 𝛼 + (1 − 𝑎 (𝑡)) 𝛽)𝑤𝑦 (1)

and the consumer equilibrium quantities of the two goods for
an agent of type 𝑖 ∈ {𝛼, 𝛽} are
𝑥∗𝑖 (𝑡) = 𝑖 (𝑤𝑥 + 𝑝∗ (𝑡) 𝑤𝑦) = 𝑖𝑤𝑥𝑎 (𝑡) 𝛼 + (1 − 𝑎 (𝑡)) 𝛽 ,
𝑦∗𝑖 (𝑡) = (1 − 𝑖) ( 𝑤𝑥𝑝∗ (𝑡) + 𝑤𝑦)

= (1 − 𝑖) 𝑤𝑦1 − (𝑎 (𝑡) 𝛼 + (1 − 𝑎 (𝑡)) 𝛽) .
(2)

See [1, 2] for further mathematical details.
Oncewe specify a dynamical rule for the population share

evolution, it is also possible to give the definition of market
stationary equilibrium as follows.
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Definition 2. Given the economy, the vector (𝑎∗, 𝑝∗, 𝑥∗𝑖 , 𝑦∗𝑖 ),𝑖 ∈ {𝛼, 𝛽}, is a market stationary equilibrium if 𝑎∗ is constant
and if given 𝑎∗, (𝑝∗, 𝑥∗𝑖 , 𝑦∗𝑖 ), 𝑖 ∈ {𝛼, 𝛽}, is a market equilib-
rium for every 𝑡.

For the sake of brevity, we shall identifymarket stationary
equilibria just with the population share 𝑎, since it determines
all other equilibrium components.

The market stationary equilibria, at which for every 𝑡 the
population shares and thus also the market equilibrium price
and the consumer equilibrium quantities are constant, will be
called trivial if they are not characterized by the coexistence
between the two groups of agents, and nontrivial otherwise.

As concerns the evolutionary mechanism, we assume
that agents precisely know their own individual satisfaction
degree, which coincides with that of the other consumers
belonging to the same group and that they are correctly
informed about the individual satisfaction degree of the
members of the other group, so that they can compare the two
values.The share updating rule is based on such comparison,
where the satisfaction degrees are described by the utility
values. More precisely, following [6, 7], we consider a discrete
exponential replicator mechanism, so that the evolution of
the fraction 𝑎(𝑡) of traders of type 𝛼 is described by the
discrete choice model:

𝑎 (𝑡 + 1) = 𝑎 (𝑡) exp (𝜇𝑈𝛼 (𝑥∗𝛼 (𝑡) , 𝑦∗𝛼 (𝑡)))
𝑎 (𝑡) exp (𝜇𝑈𝛼 (𝑥∗𝛼 (𝑡) , 𝑦∗𝛼 (𝑡))) + (1 − 𝑎 (𝑡)) exp (𝜇𝑈𝛽 (𝑥∗𝛽 (𝑡) , 𝑦∗𝛽 (𝑡)))

= 𝑎 (𝑡)
𝑎 (𝑡) + (1 − 𝑎 (𝑡)) exp (−𝜇 (𝑈𝛼 (𝑥∗𝛼 (𝑡) , 𝑦∗𝛼 (𝑡)) − 𝑈𝛽 (𝑥∗𝛽 (𝑡) , 𝑦∗𝛽 (𝑡))))

= 𝑎 (𝑡)
𝑎 (𝑡) + (1 − 𝑎 (𝑡)) exp(−𝜇((𝑥∗𝛼 (𝑡))𝛼 (𝑦∗𝛼 (𝑡))1−𝛼 − (𝑥∗𝛽 (𝑡))𝛽 (𝑦∗𝛽 (𝑡))1−𝛽))

,

(3)

where the positive parameter 𝜇, also called intensity of choice
parameter (see [12]), represents the speed of adjustment of
the evolutive mechanism and may be interpreted as the
population rationality (We stress that the term “rationality”
has here to be intended not in the classical sense of the
economic analysis, but it has rather to be considered in the
context of an imitative decisional mechanism based on a
comparison of the utility levels generated by two preference
structures. In such framework, for the agents it is “rational”
to choose the preference structure that guaranteed the higher
utility level in the previous period. See [12, page 133] for a
discussion on the topic.) degree. In particular, in the limit𝜇 → 0 there is no imitation and (3) simply reads as 𝑎(𝑡 + 1) =𝑎(𝑡), ∀𝑡, so that initial conditions about population shares are
maintained and agents are insensitive to the relative values of
material payoffs. In fact, for 𝜇 > 0, the right-hand side in (3)
represents a monotone increasing function of the difference𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)) − 𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)). At the other extreme,
when 𝜇 → +∞, all agents instantaneously move towards
the “best” preference structure that guaranteed the higher
utility level in the previous time period. If 𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)) <𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)), then for 𝜇 → +∞ we have 𝑎(𝑡 + 1) → 0,
while if𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)) > 𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)), then 𝑎(𝑡+1) → 1.

We remark that initial conditions about population shares
are maintained also when 𝛼 = 𝛽, that is, when the degree of
heterogeneity Δ = 𝛼 − 𝛽 is null.

In view of the subsequent analysis, it is expedient to
introduce the one-dimensional map 𝑓 : [0, 1] → R related
to (3) and defined as

𝑓 (𝑎)
= 𝑎 exp (𝜇 (𝑥∗𝛼)𝛼 (𝑦∗𝛼 )1−𝛼)
𝑎 exp (𝜇 (𝑥∗𝛼)𝛼 (𝑦∗𝛼 )1−𝛼) + (1 − 𝑎) exp(𝜇 (𝑥∗𝛽)𝛽 (𝑦∗𝛽)1−𝛽)

. (4)

In the next result, we find the market stationary equilibria for
(3).

Proposition 3. Given the economy, the market stationary
equilibria for (3) are 𝑎 = 0, 𝑎 = 1, and 𝑎 = 𝑎∗, with

𝑎∗ = 1 − 𝛽 − 𝐶𝛽
(𝛼 − 𝛽) (𝐶 + 1) , (5)

where

𝐶 = ((1 − 𝛽)1−𝛽 𝛽𝛽(1 − 𝛼)1−𝛼 𝛼𝛼 )
1/(𝛼−𝛽) 𝑤𝑦𝑤𝑥 , (6)

as long as

(𝛼𝛽)
𝛽/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)

(1−𝛽)/(𝛼−𝛽) < 𝑤𝑦𝑤𝑥
< (𝛼𝛽)

𝛼/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)
(1−𝛼)/(𝛼−𝛽) .

(7)

Proof. The conclusion immediately follows by observing that𝑎 = 0, 𝑎 = 1, and 𝑎 = 𝑎∗ in (5) are all the solutions to the fixed-
point equation 𝑓(𝑎) = 𝑎, with 𝑓 as in (4). The conditions in
(7) guarantee that 𝑎∗ ∈ (0, 1).
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We remark that, by construction, at 𝑎 = 𝑎∗ in (5) it holds
that𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)) = 𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)), that is, at the unique
nontrivial equilibrium, characterized by the coexistence of
the two kinds of agents, the utility levels generated by the two
preference structures coincide.

We shall prove below that for 0 < 𝛽 < 𝛼 < 1 it holds that
(𝛼𝛽)
𝛽/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)

(1−𝛽)/(𝛼−𝛽) < 1

< (𝛼𝛽)
𝛼/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)

(1−𝛼)/(𝛼−𝛽)

(8)

(see Proposition 6). Hence, by (7) and (8), a sufficient
condition to have 𝑎∗ ∈ (0, 1) is that 𝑤𝑥 and 𝑤𝑦 do not
differ too much, that is, that the endowment distribution is
balanced. If instead the endowment distribution is strongly
unbalanced, then only the trivial equilibria do exist. We shall
apply such findings in Section 3.

We stress that even when allowing for heterogeneous
endowments of the two goods 𝑥 and 𝑦 for the two agents’
groups 𝛼 and 𝛽, that is, even when assuming 𝑤𝑥,𝛼 ̸= 𝑤𝑥,𝛽
and 𝑤𝑦,𝛼 ̸= 𝑤𝑦,𝛽, we would still find, in addition to the
two trivial equilibria, a unique nontrivial equilibrium for (3),
characterized by the coexistence of the two kinds of agents.
For such reason, not to overburden notation and to make
computations easier, we decided to confine ourselves to the
case of homogeneous endowments.

Before investigating the dynamical features of (3), in the
next result, we report some comparative statics exercises on𝑎∗, which can be derived by direct computations.

Proposition 4. For 𝑎 = 𝑎∗ in (5) it holds that

𝜕𝑎∗𝜕𝑤𝑥

= ((1 − 𝛽)1−𝛽 𝛽𝛽/ ((1 − 𝛼)1−𝛼 𝛼𝛼))1/(𝛼−𝛽) 𝑤𝑦
(𝛼 − 𝛽) (((1 − 𝛽)1−𝛽 𝛽𝛽/ ((1 − 𝛼)1−𝛼 𝛼𝛼))1/(𝛼−𝛽) 𝑤𝑦 + 𝑤𝑥)2

> 0,

(9)

𝜕𝑎∗𝜕𝑤𝑦

= − ((1 − 𝛽)1−𝛽 𝛽𝛽/ ((1 − 𝛼)1−𝛼 𝛼𝛼))1/(𝛼−𝛽) 𝑤𝑥
(𝛼 − 𝛽) (((1 − 𝛽)1−𝛽 𝛽𝛽/ ((1 − 𝛼)1−𝛼 𝛼𝛼))1/(𝛼−𝛽) 𝑤𝑦 + 𝑤𝑥)2

< 0.

(10)

Hence, according to (9), an increase in𝑤𝑥makes the value
of 𝑎 = 𝑎∗ raise, that is, at the nontrivial equilibrium the share
of agents of type 𝛼 raises when the endowment of good 𝑥
increases. By (10), an opposite effect on 𝑎 = 𝑎∗ is obtained

by raising 𝑤𝑦. Such facts may be explained by looking at
the expression of the utility functions for the two groups of
agents. Indeed, if the population shares were fixed and 𝑤𝑥
raised, the supply of commodity 𝑥 would increase, and thus
its price would decrease, causing a raise in the equilibrium
consumption levels of good𝑥 for both groups. Since, however,
agents of type 𝛼 have a stronger preference for commodity 𝑥
with respect to agents of type 𝛽, the utility level of the former
would exceed that of the latter, violating the utility balance
condition characterizing 𝑎 = 𝑎∗, that is, 𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)) =𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)). Hence, if we want to remain in the steady
state 𝑎 = 𝑎∗, the share of agents of type 𝛼 has to increase. In
this manner, the aggregate demand for commodity 𝑥 raises
and consequently the price of good 𝑥 tends to increase. Such
opposite price effect limits the equilibrium consumption
levels of good 𝑥 for both groups and prevents the utility level
of agents of type 𝛼 from exceeding that of agents of type 𝛽,
so that the utility balance condition characterizing 𝑎 = 𝑎∗ is
maintained.

Similarly, if𝑤𝑦 raises, the share 1−𝑎∗ of the agents of type𝛽 has to increase in the nontrivial steady state, leading to a
decrease in 𝑎∗, as predicted by (10). Indeed, in such manner,
the consequent increased aggregate demand for commodity𝑦, which agents of type 𝛽 have a stronger preference for,
produces an increase in the price of that good, contrasting
the decrease in 𝑝𝑦 caused by the larger supply of commodity𝑦, which, in the absence of a decrease in 𝑎∗, would make the
utility level 𝑈𝛽(𝑥∗𝛽(𝑡), 𝑦∗𝛽 (𝑡)) exceed 𝑈𝛼(𝑥∗𝛼(𝑡), 𝑦∗𝛼 (𝑡)), against
the utility balance condition characterizing 𝑎 = 𝑎∗.

We now turn to the dynamical analysis of (3), by studying
in Proposition 5 the local stability of the trivial equilibria and
in Proposition 7 the local stability of 𝑎 = 𝑎∗.
Proposition 5. The equilibrium 𝑎 = 0 is locally asymptotically
stable under (3) if

𝑤𝑦𝑤𝑥 ∈ ((
𝛼𝛽)
𝛼/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)

(1−𝛼)/(𝛼−𝛽) , +∞) . (11)

The equilibrium 𝑎 = 1 is locally asymptotically stable under (3)
if

𝑤𝑦𝑤𝑥 ∈ (0, (
𝛼𝛽)
𝛽/(𝛼−𝛽) (1 − 𝛼1 − 𝛽)

(1−𝛽)/(𝛼−𝛽)) . (12)

Proof. The stability conditions follow by direct computations,
imposing, respectively, −1 < 𝑓󸀠(0) < 1 and −1 < 𝑓󸀠(1) < 1,
with 𝑓 as in (4). In particular, −1 < 𝑓󸀠(0) and −1 < 𝑓󸀠(1) are
always fulfilled, because such derivatives are positive and do
not require any restriction on the parameters.

Comparing the stability conditions in Proposition 5 with
(7), we notice that when 𝑎∗ < 0, that is, for (𝛼/𝛽)𝛼/(𝛼−𝛽)((1 −𝛼)/(1 − 𝛽))(1−𝛼)/(𝛼−𝛽) < 𝑤𝑦/𝑤𝑥, then 𝑎 = 0 is locally
asymptotically stable, while 𝑎 = 0 becomes unstable when𝑎∗ > 0. As we shall see in Section 3, this happens because,
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Figure 1:The bifurcation diagram of 𝑓with respect to Δ ∈ (0, 0.49],
for 𝑤𝑥 = 1, 𝑤𝑦 = 1.5, 𝑎(0) = 0.85.

for suitable parameter values, at 0 a transcritical bifurcation
occurs, at which 𝑎 = 0 and 𝑎 = 𝑎∗ merge and the previously
stable equilibrium 𝑎 = 0 loses its stability in favor of 𝑎 =𝑎∗ (see Figure 1). Similar considerations hold for 𝑎∗ in a
neighborhood of 𝑎 = 1, where a transcritical bifurcation
may occur, too (see Figure 3). Hence, the unique nontrivial
equilibrium 𝑎 = 𝑎∗, characterized by the coexistence of the
two groups of agents, emerges via a transcritical bifurcation
at 𝑎 = 0 or at 𝑎 = 1. As a consequence, when 𝑎 = 𝑎∗ enters
the interval (0, 1), it is stable, while the trivial equilibrium it
collides with becomes unstable.

We also notice that, setting

𝑓𝛽 (Δ) = (𝛽 + Δ𝛽 )(𝛽+Δ)/Δ (1 − 𝛽 − Δ1 − 𝛽 )(1−𝛽−Δ)/Δ ,
𝑔𝛽 (Δ) = (𝛽 + Δ𝛽 )𝛽/Δ (1 − 𝛽 − Δ1 − 𝛽 )(1−𝛽)/Δ ,

(13)

we may rewrite the stability conditions in Proposition 5 in
terms of the heterogeneity degree Δ = 𝛼 − 𝛽 as 𝑓𝛽(Δ) <𝑤𝑦/𝑤𝑥 and 𝑤𝑦/𝑤𝑥 < 𝑔𝛽(Δ), respectively. Moreover, we can
equivalently rewrite (8) in terms of Δ as 𝐹𝛽(Δ) > 1 > 𝐺𝛽(Δ),
where

𝐹𝛽 (Δ) = (𝑓𝛽 (Δ))Δ

= (𝛽 + Δ𝛽 )𝛽+Δ (1 − 𝛽 − Δ1 − 𝛽 )1−𝛽−Δ ,
𝐺𝛽 (Δ) = (𝑔𝛽 (Δ))Δ = (𝛽 + Δ𝛽 )𝛽 (1 − 𝛽 − Δ1 − 𝛽 )1−𝛽 .

(14)

In the next result we show that such reformulation of (8) holds
true for 0 < 𝛽 < 1 and Δ ∈ (0, 1 − 𝛽), and we investigate how𝑓𝛽(Δ) and 𝑔𝛽(Δ) depend on Δ.

Proposition 6. For 𝑓𝛽(Δ), 𝑔𝛽(Δ), 𝐹𝛽(Δ) and 𝐺𝛽(Δ) in (13)
and (14), respectively, it holds that

𝐹𝛽 (Δ) > 1 > 𝐺𝛽 (Δ) ,
𝑓󸀠𝛽 (Δ) > 0,
𝑔󸀠𝛽 (Δ) < 0,

(15)

for Δ ∈ (0, 1 − 𝛽) and 0 < 𝛽 < 1.
Proof. In order to show that 𝐹𝛽(Δ) > 1 > 𝐺𝛽(Δ), we observe
that

lim
Δ→0+

𝐹𝛽 (Δ) = lim
Δ→0+

𝐺𝛽 (Δ) = 1. (16)

Moreover,

𝐹󸀠𝛽 (Δ) = 𝐹𝛽 (Δ) log((1 − 𝛽) (𝛽 + Δ)𝛽 (1 − 𝛽 − Δ) ) > 0 (17)

if and only if (𝛽+Δ)/(1−𝛽−Δ) > 𝛽/(1−𝛽), which is satisfied byΔ > 0.Hence,𝐹󸀠𝛽(Δ) > 0 and thus𝐹𝛽(Δ) > limΔ→0+𝐹𝛽(Δ) = 1,
for each Δ ∈ (0, 1 − 𝛽), 0 < 𝛽 < 1. Furthermore,

𝐺󸀠𝛽 (Δ) = 1
𝛽𝛽 (1 − 𝛽)(1−𝛽) (𝛽(

1 − 𝛽 − Δ𝛽 + Δ )1−𝛽

− (1 − 𝛽) ( 𝛽 + Δ1 − 𝛽 − Δ)
𝛽) > 0

(18)

if and only if 𝛽/(1−𝛽) > (𝛽+Δ)/(1−𝛽−Δ), which is fulfilled
by Δ < 0. Since we do admit just positive values for Δ, then𝐺󸀠𝛽(Δ) < 0 and thus 𝐺𝛽(Δ) < limΔ→0+𝐺𝛽(Δ) = 1, for eachΔ ∈ (0, 1 − 𝛽) and 0 < 𝛽 < 1.Thus, 𝐹𝛽(Δ) > 1 > 𝐺𝛽(Δ) is
fulfilled by any Δ ∈ (0, 1 − 𝛽) and 0 < 𝛽 < 1, as desired.

The fact that 𝑓𝛽(Δ) is increasing in Δ follows by direct
computations. Indeed,

𝑓󸀠𝛽 (Δ) = −𝑓𝛽 (Δ)Δ2 (𝛽 log(𝛽 + Δ𝛽 )
+ (1 − 𝛽) log(1 − 𝛽 − Δ1 − 𝛽 ))

(19)

is positive if and only if

𝐺𝛽 (Δ) = (𝛽 + Δ𝛽 )𝛽 (1 − 𝛽 − Δ1 − 𝛽 )1−𝛽 < 1, (20)

and we proved above that it is true for Δ ∈ (0, 1 − 𝛽) and0 < 𝛽 < 1.
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Finally, we find the following expression for 𝑔󸀠𝛽(Δ)
𝑔𝛽 (Δ)Δ ( 𝛽𝛽 + Δ − 1 − 𝛽1 − 𝛽 − Δ −

𝛽 (log ((𝛽 + Δ) /𝛽)) + (1 − 𝛽) (log ((1 − 𝛽 − Δ) / (1 − 𝛽)))
Δ ) , (21)

which is negative if and only if

exp( Δ2(𝛽 + Δ) (1 − 𝛽 − Δ))

> ( 𝛽𝛽 + Δ)
𝛽 ( 1 − 𝛽1 − 𝛽 − Δ)

1−𝛽 .
(22)

In order to show that the latter inequality is fulfilled for Δ ∈(0, 1 − 𝛽) and 0 < 𝛽 < 1, we observe that, setting
ℎ𝛽 (Δ) = exp (Δ2/ ((𝛽 + Δ) (1 − 𝛽 − Δ)))

(𝛽/ (𝛽 + Δ))𝛽 ((1 − 𝛽) / (1 − 𝛽 − Δ))1−𝛽 , (23)

it holds that limΔ→0+ℎ𝛽(Δ) = 1. If we prove that ℎ𝛽(Δ) is
an increasing function, then (22) follows. Indeed, straight-
forward computations show that ℎ󸀠𝛽(Δ) > 0 if and only if
Δ2+𝛽(1−𝛽) > 0, which is true forΔ ∈ (0, 1−𝛽) and 0 < 𝛽 < 1.
Hence, we have ℎ󸀠𝛽(Δ) > 0, and consequently 𝑔󸀠𝛽(Δ) < 0, forΔ ∈ (0, 1 − 𝛽) and 0 < 𝛽 < 1.This concludes the proof.

Hence, increasing Δ impairs the stability of 𝑎 = 0 and
of 𝑎 = 1, as both intervals in Proposition 5 get reduced.
This suggests that Δ has a destabilizing role: indeed, we shall
confirm it in Section 3.

We remark that the trivial stationary equilibria 𝑎 = 0
and 𝑎 = 1 are homogeneous, in the sense that they are
characterized by the presence of a unique kind of agents.
Studying their stability means then looking at the effect pro-
duced by their perturbation through the insertion of a share
of agents of the other type. If the considered equilibrium is
locally stable, small perturbations will not be successful from
an evolutionary viewpoint, being reabsorbed and leading
again to the same homogeneous population. On the contrary,
insertions of larger shares of agents of the other type in the
case of local stability, or insertions of any size in the case of
instability, will not be reabsorbed, leading to a framework
characterized just by the presence of the agents of the other
group, or to frameworks where the coexistence between the
two groups of agents may be stationary or oscillatory in
nature, along a periodic or a chaotic trajectory. We will better
illustrate the possible different frameworks in Section 3.

In the next result, we focus instead on the stability
of the unique nontrivial equilibrium, characterized by the
coexistence of the two groups of agents, and we also prove
that it loses stability via a flip bifurcation, after which the
coexistence is no more stationary, but oscillatory, presenting
a regular or irregular behavior. We stress that a period-
doubling bifurcation is indeed the only way in which the
nontrivial equilibrium may lose stability, as fold or pitchfork

bifurcations would imply the emergence of further nontrivial
equilibria, which in our model do not exist.

Due to the analytical difficulties arising when dealing
with parameter Δ, in Proposition 7 we focus on the role of
the speed of adjustment 𝜇.We shall investigate with the aid of
numerical tools the effects produced by the degree of hetero-
geneity on the stability of 𝑎∗ in Section 3, where we will con-
sider different parameter settings. In particular, we will see
that Δ has a destabilizing effect in all the scenarios and that,
increasing its value, the nontrivial equilibrium loses stability
again via a flip bifurcation, where the coexistence of groups
from stationary becomes oscillatory even in the long run.

Proposition 7. Recalling the definition of 𝐶 in (6), the equi-
librium 𝑎 = 𝑎∗ in (5) is locally asymptotically stable under (3)
if

𝜇 < 𝜇∗
= 2𝐶2−𝛼
(𝐶 + 1) (1 − 𝛽 − 𝛽𝐶) (𝛼 (𝐶 + 1) − 1) (𝛼𝑤𝑥)𝛼 ((1 − 𝛼)𝑤𝑦)1−𝛼 .

(24)

In particular, a flip bifurcation occurs at 𝑎 = 𝑎∗ for 𝜇 = 𝜇∗.
Proof. The stability condition follows by imposing 1 >𝑓󸀠(𝑎∗) > −1, with 𝑓 as in (4). Actually, 1 > 𝑓󸀠(𝑎∗) is
always fulfilled and does not require any restriction on the
parameters. Direct computations show that the factors (1 −𝛽 − 𝛽𝐶) and (𝛼(𝐶 + 1) − 1) are positive if and only if (7) is
satisfied, that is, when 𝑎∗ ∈ (0, 1).The condition for the flip
bifurcation follows by setting 𝑓󸀠(𝑎∗) = −1.

Although in Section 3 we will mainly rely on numerical
simulations to investigate the role of Δ, we stress that as
we will more precisely explain in the next section, it is
possible to use the stability condition for 𝑎 = 𝑎∗ obtained
in Proposition 7 to double-check the stability threshold value
of Δ that we derive in Proposition 9 and those we infer from
the bifurcation diagrams reported in Figures 3 and 5.

Still in regard to local stability, we finally remark that
also the endowment values asymptotically affect the system
behavior. Indeed, this is evident from the stability conditions
found in Proposition 5 for 𝑎 = 0 and 𝑎 = 1. Moreover, we
observe that 𝑤𝑥 and 𝑤𝑦 influence the stability of 𝑎 = 𝑎∗,
too. In fact, the stability condition derived in Proposition 7
for 𝑎 = 𝑎∗, when expanded, contains terms of degree 3 in 𝑤𝑥
and𝑤𝑦. Finding the stability threshold values in terms of such
parameters would then require cumbersome computations.
Nonetheless, due to the central role they play, the scenarioswe
will consider in Section 3 are characterized just by the features
of the endowment distribution of the two goods. In particular,
we will investigate what happens when it is balanced, that is,𝑤𝑥 = 𝑤𝑦, and when it is unbalanced.
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Figure 2: The graph of 𝑓 for 𝑤𝑥 = 1, 𝑤𝑦 = 1.5, and Δ = 0.1, 𝑎(0) = 0.85 in (a), Δ = 0.3, 𝑎(0) = 0.85 in (b), Δ = 0.37, 𝑎(0) = 0.122 in (c) andΔ = 0.42, 𝑎(0) = 0.85 in (d), respectively.

Let us conclude the present section by summarizing the
possible dynamical behaviors displayed by our model. When𝑎∗ ∉ (0, 1), then 𝑎 = 0 may be unstable and 𝑎 = 1 stable, or
vice versa. Hence, in such setting, according to the considered
parameter values, one of the groups totally prevails over the
other and preference heterogeneity disappears.When instead𝑎∗ ∈ (0, 1), it may be locally stable or unstable. In the former
case, since 𝑎∗ is characterized by the coexistence between the
two groups of agents, we have that preference heterogeneity
persists, being not absorbed by the market and evolutive
mechanisms. This happens also when 𝑎∗ ∈ (0, 1) but it is
unstable, the only difference with the previous framework
being the oscillatory, periodic, or chaotic behavior of the
system. For an illustration of the above described scenarios,
see Figures 2, 4, and 6.

3. The Role of the Heterogeneity Degree

With the aid of our simple evolutionary general equilibrium
model we are interested in answering two main questions.
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0 0.12 0.24 0.36 0.48

Figure 3:The bifurcation diagram of𝑓with respect toΔ ∈ (0, 0.49],
for 𝑤𝑥 = 1.5, 𝑤𝑦 = 1, 𝑎(0) = 0.15.

The first one is under which conditions one of the two
groups of agents asymptotically prevails over the other,
leading to the eventual disappearance of the initial population
heterogeneity, while the second one is whether the economy
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Figure 4: The graph of 𝑓 for 𝑤𝑥 = 1.5, 𝑤𝑦 = 1, and Δ = 0.1, 𝑎(0) = 0.15 in (a), Δ = 0.3, 𝑎(0) = 0.15 in (b), Δ = 0.34, 𝑎(0) = 0.505 in (c) andΔ = 0.38, 𝑎(0) = 0.15 in (d), respectively.
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Figure 5:The bifurcation diagram of𝑓with respect toΔ ∈ (0, 0.49],
for 𝑤𝑥 = 𝑤𝑦 = 1, 𝑎(0) = 0.5.

and the population shares set on a stationary equilibrium or
on a different (periodic or chaotic) kind of attractor, when
groups’ heterogeneity asymptotically persists. As we shall
see, the answer to both questions depends on whether the

endowment distribution for the two goods is balanced or not
and on the heterogeneity degree level.

In particular, in Section 2, we observed that, when the
degree of heterogeneity Δ = 𝛼 − 𝛽 is null, the map 𝑓 in
(4) simply reads as 𝑓(𝑥) = 𝑥 and initial conditions about
population shares are maintained. As Δ slightly increases,
we find a regime characterized by the presence of a unique
globally asymptotically stable equilibrium which, according
to the considered parameter configuration, may be given by𝑎 = 0, like in Figure 1, by 𝑎 = 1, like in Figure 3, or by𝑎 = 𝑎∗ ∈ (0, 1), like in Figure 5.Wewill analyze what happens
when stability is lost in the bifurcation analysis below.

We stress that, as mentioned in Section 2, when starting
from a trivial equilibrium, characterized by a homogeneous
population, considering initial conditions about population
shares coincides with studying that equilibrium stability,
which in turn amounts to investigate whether, asymptoti-
cally, the same homogeneous population regime persists, or
whether, on the contrary, a different homogeneous popu-
lation regime or an heterogeneous population regime does
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Figure 6: The graph of 𝑓 for 𝑤𝑥 = 𝑤𝑦 = 1, and Δ = 0.2, 𝑎(0) = 0.1 in (a), Δ = 0.40, 𝑎(0) = 0.058 in (b) and Δ = 0.42, 𝑎(0) = 0.1 in (c),
respectively.

prevail. Indeed, when starting from a trivial equilibrium, the
initial condition 𝑎(0) ∈ (0, 1) can be seen as a shock, that
is, as a perturbation of the uniform population distribution
through the insertion of a share of agents of the other group.
If the considered trivial equilibrium is locally stable, small
perturbations will not be successful from an evolutionary
viewpoint, being reabsorbed and leading again to the same
homogeneous population. This happens, for instance, in
Figure 2(a) with the equilibrium 𝑎 = 0, which, however,
is globally asymptotically stable. In such case, every shock𝑎(0) ∈ (0, 1) is reabsorbed and eventually the agents of type𝛼 disappear from the economy. On the other hand, if the
considered trivial equilibrium is unstable, insertions of any
share of agents of the other type are not reabsorbed, leading
to a framework characterized just by the presence of the other
group’s agents (like in Figure 4(a) when starting from 𝑎 = 0),
or to frameworks where the coexistence between the two
groups of agents may be stationary (like in Figures 2(b) and
4(b)) or oscillatory in nature, both regular (see Figures 2(c)
and 4(c)) or not (see Figures 2(d) and 4(d)).

3.1. Unbalanced Endowment Distribution. At first, we focus
on the framework in which the endowment distribution for
the two goods is unbalanced, that is,𝑤𝑥 ̸= 𝑤𝑦. In particular, in
Figure 1, we consider the following parameter setting:𝑤𝑥 = 1,𝑤𝑦 = 1.5, 𝛽 = 0.5, 𝜇 = 15 and Δ varies in (0, 0.49]. ForΔ close to 0, the stationary equilibrium 𝑎 = 𝑎∗ in (5) lies
outside (0, 1) as the right inequality in (7) is not satisfied, and
it enters the unit interval through a transcritical bifurcation
occurring at 𝑎 = 0 for Δ = Δ̃ = 0.197, when 𝑎 = 0 loses
stability in favor of 𝑎 = 𝑎∗. After the transcritical bifurcation,
the stable equilibrium is no more the homogeneous 𝑎 = 0,
characterized by the presence of agents of type 𝛽 only, but𝑎 = 𝑎∗, at which the two groups coexist. For Δ = Δ̂ = 0.360,𝑎 = 𝑎∗ undergoes a flip bifurcation. In Figure 2 we show the
graph of 𝑓, as well as its forward iterates, for different values
of Δ. For Δ = 0.1 in (a) we observe a converging behavior
towards 𝑎 = 0, for Δ = 0.3 in (b) trajectories tend to 𝑎 = 𝑎∗,
forΔ = 0.37 in (c) we find a period-two cycle and forΔ = 0.42
in (d) dynamics become complex due to the presence of a
chaotic attractor.
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We state in a formal manner the results about the trans-
critical and the flip bifurcations, respectively, in Propositions
8 and 9 below (We remark that the occurrence of the
transcritical and period-doubling bifurcations we observe in
Figures 3 and 5 could be proven as done in Propositions 8 and
9. However, in order not to overburden the paper, we chose
to omit such results. We also stress that the value for Δ we
find in Proposition 9 in correspondence to the flip bifurcation
is consistent with the value of 𝜇∗ derived in Proposition 7:
namely, when insertingΔ = 0.360 in that expression, together
with the other parameter values considered in this scenario,
we obtain 𝜇∗ = 15, which coincides with the value for 𝜇 we
are taking into account.The same comment applies also to the
period-doubling bifurcations occurring in Figures 3 and 5.).

Proposition 8. For the map 𝑓 = 𝑓(𝑎; Δ) in (4) a transcritical
bifurcation occurs at 𝑎 = 0 for Δ̃ = 0.197.
Proof. According to [13, page 507], for the occurrence of a
transcritical bifurcation at a point 𝑎 = 𝑎 for a certain Δ = Δ̃
we just have to check the following conditions:

𝑓 (𝑎; Δ̃) = 𝑎,
𝜕𝑓𝜕𝑎 (𝑎; Δ̃) = 1,𝜕𝑓𝜕Δ (𝑎; Δ̃) = 0,𝜕2𝑓𝜕𝑎𝜕Δ (𝑎; Δ̃) ̸= 0,
𝜕2𝑓𝜕𝑎2 (𝑎; Δ̃) ̸= 0.

(25)

Direct (software-assisted) computations show that the above
conditions are satisfied at 𝑎 = 0 for Δ̃ = 0.197. In particular, it
holds that (𝜕2𝑓/(𝜕𝑎𝜕Δ))(𝑎; Δ̃) = 7.879 and (𝜕2𝑓/𝜕𝑎2)(𝑎; Δ̃) =−5.719.This completes the proof.

Proposition 9. For the map 𝑓 = 𝑓(𝑎; Δ) in (4) a period-
doubling bifurcation occurs at 𝑎 = 𝑎∗ = 0.271 for Δ̂ = 0.360.
Proof. According to [13, page 516], for the occurrence of a
period-doubling bifurcation at a point 𝑎 = 𝑎 for a certainΔ = Δ̂ we have to check the following conditions:

𝑓 (𝑎; Δ̂) = 𝑎,
𝜕𝑓𝜕𝑎 (𝑎; Δ̂) = −1,𝜕𝑓2𝜕Δ (𝑎; Δ̂) = 0,𝜕2𝑓2𝜕𝑎𝜕Δ (𝑎; Δ̂) ̸= 0,

𝜕2𝑓2𝜕𝑎2 (𝑎; Δ̂) = 0,𝜕3𝑓2𝜕𝑎3 (𝑎; Δ̂) ̸= 0.

(26)

Direct (software-assisted) computations show that the above
conditions are satisfied at 𝑎 = 0.271 for Δ̂ = 0.360. In
particular, it holds that (𝜕2𝑓2/(𝜕𝑎𝜕Δ))(𝑎; Δ̂) = 35.937 and(𝜕3𝑓2/𝜕𝑎3)(𝑎; Δ̂) = −73.518.This completes the proof.

In Figure 3 we consider a different unbalanced endow-
ment distribution setting, fixing all the parameters as in
Figure 1, except for 𝑤𝑥 = 1.5 and 𝑤𝑦 = 1, so that now the
endowment of good 𝑥 exceeds that of good 𝑦. Also in this
case for Δ close to 0 the stationary equilibrium 𝑎 = 𝑎∗ in (5)
lies outside (0, 1) as the left inequality in (7) is not satisfied, it
enters the unit interval through a transcritical bifurcation at𝑎 = 1 for Δ = 0.188 and then undergoes a flip bifurcation forΔ = 0.321. In Figure 4 we show the graph of 𝑓, as well as its
forward iterates, for different values of Δ. For Δ = 0.1 in (a)
we observe a converging behavior towards 𝑎 = 1, for Δ = 0.3
in (b) trajectories tend to 𝑎 = 𝑎∗, for Δ = 0.34 in (c) we find
a period-two cycle and for Δ = 0.38 in (d) dynamics become
complex due to the presence of a chaotic attractor.

Comparing the two frameworks above, we notice that
switching the values for 𝑤𝑥 and 𝑤𝑦 produces a nearly
symmetric behavior for𝑓, concentrated in the second setting
around 𝑎 = 1 rather than around 𝑎 = 0. Nonetheless, in both
settings we found that for low values ofΔ the onlymarket sta-
tionary equilibria are 𝑎 = 0 and 𝑎 = 1, one of which is stable
and the other one unstable. Increasing Δ produces, through a
transcritical bifurcation, the emergence of an internal stable
equilibrium 𝑎 = 𝑎∗ from the side of the previously stable
equilibrium, so that the extremal equilibria become unstable.
Raising Δ further, also the internal equilibrium loses stability
via a flip bifurcation and undergoes a cascade of period-
doubling bifurcations leading to chaos. However, while in
Figure 1 we just observe an increasing complexity with the
raise of Δ, in Figure 3 we find a phenomenon of “bubbling”
(see [14–18]) between the first and the last period-two cycles.
Indeed, in such region 𝑎 = 𝑎∗ is always unstable, but with the
increase of Δ the system complexity grows until a four-piece
chaotic attractor and then decreases until the last period-two
cycle, which undergoes a flip bifurcation leading to a one-
piece chaotic attractor.

Looking at Figures 1 and 3, we notice that between the
transcritical and the flip bifurcations the stable equilibrium
is given by 𝑎 = 𝑎∗, characterized by the coexistence of the
two groups of agents. This means that it is not true that the
group with a stronger preference for themore abundant good
necessarily prevails, because of agents’ pressure on the price
formation mechanism. Indeed, even if the endowment of a
commodity is larger with respect to the endowment of the
other good, its price raises if the preferences for that good
become excessive and the demand for it is too high. Due to
the increased price, the agents who prefer it start consuming
also the other commodity and this induces a decrease in
their payoff, so that the share of the agents belonging to the
other group grows and in such way no group disappears from
the economy. When, however, the demand for a good is too
high, its price increases too much and the agents who have
a stronger preference for that good demand consume just a
little of that commodity. This produces a reduction of their
share and the weak aggregate demand for that good makes
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its price decrease and the demand raises again. In such way,
it is possible to have, for instance, a period-two cycle after
the flip bifurcation.We stress that a similar argument justifies
the existence of periodic orbits also in the case in which the
endowments for the two goods coincide, as considered below
and illustrated in Figure 5.

3.2. Balanced Endowment Distribution. We now focus on the
balanced endowment distribution setting, in which𝑤𝑥 = 𝑤𝑦,
considering in Figure 5 all the parameters as in Figure 1,
except for 𝑤𝑥 = 𝑤𝑦 = 1. In this case for Δ close to 0 the
stationary equilibrium 𝑎 = 𝑎∗ in (5) already belongs to (0, 1)
and it is stable, it undergoes a flip bifurcation for Δ = 0.332,
followed by a period-doubling cascade leading to a regime
characterized by the presence of chaotic regions alternating
with periodicity windows.

In such framework, no transcritical bifurcations occur,
and increasing Δ has just a destabilizing effect on 𝑎∗. In
Figure 6we show the graph of𝑓, as well as its forward iterates,
for different values of Δ. For Δ = 0.2 in (a) trajectories tend
to 𝑎 = 𝑎∗, for Δ = 0.40 in (b) we find a period-four cycle
and for Δ = 0.42 in (c) dynamics become complex due to the
presence of a chaotic attractor.

Comparing the results obtained in Sections 3.1 and 3.2,
we find that the answer to our first main question, that is,
under which conditions one of the two groups asymptotically
prevails over the other, depends for us on the endowment
distribution for the two goods. Indeed, if the latter is bal-
anced, there exists a nontrivial equilibrium, characterized
by the coexistence of the two groups of agents, and agents’
heterogeneity persists. If instead the endowment distribution
is unbalanced, a low heterogeneity degree makes agents’
heterogeneity disappear.

As concerns the answer to the second main question,
that is, whether the economy and the population shares
set on a stationary equilibrium or on a different (periodic
or chaotic) kind of attractor, when groups’ heterogeneity
asymptotically persists, we find that if the endowment dis-
tribution is balanced, the nontrivial equilibrium is stable for
low heterogeneity levels, while if the endowment distribu-
tion is unbalanced, the nontrivial equilibrium is stable for
intermediate heterogeneity degrees. In both frameworks, for
larger values of the heterogeneity level, the economy sets on
periodic or chaotic attractors.

4. Conclusion

In the present paper we considered a pure exchange economy
model with two utility-maximizing groups of agents hetero-
geneous in the structure of preferences over two consump-
tion goods. Introducing an evolutionary monotone selection
mechanism based on relative agents’ material payoffs, we
answered two main questions. The first one is under which
conditions one of the two groups asymptotically prevail
over the other, leading to the eventual disappearance of the
initial agents’ heterogeneity, while the second one is whether
the economy and the population shares set on a stationary
equilibrium or on a different (periodic or chaotic) kind of
attractor, when groups’ heterogeneity asymptotically persists.

We found that the answers to both questions depend on the
balance degree of the endowment distribution for the two
goods, as well as on the heterogeneity level between groups,
which influences the dynamic nature of the model.

We stress that our study has been stimulated by the
observation that many papers in the economic literature deal
with representative agents and that such kind of modeling
assumption is justified if agents’ heterogeneity asymptotically
disappears from the system. In our model, we showed that
this is not always guaranteed. In particular, different from
[1, 2], we assumed that time is discrete rather than continuous,
as we believe that the former framework is more suitable
to represent the sequence of actions and decisions which
lead to the formation of the population shares. Namely,
in view of embracing a new preference structure, agents
need to perform the consumption activity, to evaluate the
satisfaction degree resulting from their previous choice, to
gather information on the other structure of preferences
and to compare the various satisfaction levels, in order to
make their next choice. The modeling representation of
those actions and decisions requires a time structure which
considers an interval between two consecutive time instants.
In our discrete-time framework, we obtained, in addition to
the static coexistence phenomena between groups detected in
[1, 2], also dynamical coexistence phenomena, oscillatory in
nature, in which agents’ choices change over time and are not
confined just on steady states, describing stationary choices.
In fact, everyday life observation, supported by empirical
data, highlights erratic behaviors in agents’ choices, and in
particular oscillatory consumption phenomena, such as the
fashion cycle (see, e.g., [3, 4]), not reproduced by [1, 2].

In this respect, we remark that the setting here proposed
could be modified in order to make it suitable to describe the
fashion cycle. To such aim, more structure should be added
to our model, admitting the possibility of different consumer
lifestyles, that is, of certain preferences configurations over
the various consumption goods, and introducing variables
describing the attractiveness of each lifestyle.

Another possible line of research would concern the
application of the methodology used in the present paper
to contexts with strategic interaction, similar, for instance,
to those considered in [19, 20], which share with our work
the focus on the possible eventual coexistence among het-
erogeneous agents, as well as the evolutionary approach.
Assuming strategic complementarity and/or substitutability,
we could analyze the possible dynamical effects produced by
heterogeneity between groups in those settings, too.
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