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In this paper we introduce a novel method for obtaining good quality paths for autonomous road vehicles (e.g., cars or buses)
in narrow environments. There are many traffic situations in urban scenarios where nontrivial maneuvering in narrow places is
necessary. Navigating in cluttered parking lots or having to avoid obstacles blocking the way and finding a detour even in narrow
streets are challenging, especially if the vehicle has large dimensions like a bus. We present a combined approximation-based
approach to solve the path planning problem in such situations. Our approach consists of a global planner which generates a
preliminary path consisting of straight and turning-in-place primitives and a local planner which is used to make the preliminary
path feasible to car-like vehicles. The approximation methodology is well known in the literature; however, both components
proposed in this paper differ from existing similar planning methods. The approximation process with the proposed local planner
is proven to be convergent for any preliminary global paths.The resulting path has continuous curvature which renders ourmethod
well suited for application on real vehicles. Simulation experiments show that the proposedmethod outperforms similar approaches
in terms of path quality in complicated planning tasks.

1. Introduction

Looking around in the automotive industry, we can see a
great amount of automation and an accelerating pursuit to
develop intelligent self-driving vehicles. According to the
popularity of the field, research is considerably active in the
last decades [1–5].The navigation task of autonomous robotic
vehicles consists of many subproblems, involving sensing,
perception and recognition of situations, localization,motion
planning, and execution. Amongst these, we treat here the
problem of generating appropriate paths for robotic cars in
the presence of obstacles. As usual in case of cars, we assume
the workspace of interest being a planar surface. From a
control theoretic view, the rolling without slipping constraint
of wheels induces nonholonomic constraints, which do not
prohibit the controllability of a system but cause remarkable
difficulties (it is enough to think of parallel parking a car).
Although controlling a nonholonomic vehicle is a control
theoretic challenge, it is worth incorporating knowledge
about the specific system in the path planning task as well.

This paper describes a path planning algorithm which is
intended to solve navigation problems where the vehicle has
to cross narrow or cluttered areas in order to reach the goal.
Since cars have a nonzero minimum turning radius, such
environments require in many cases nontrivial maneuvering
(including more reversals) between narrowing. Our solution
is appropriate for the continuous steering car, which means
that the finite steering rate is taken into account as well
beyond the turning radius. In other words, steering at
standstill is avoided by forcing the path to have a continuous
curvature profile. This is achieved by using clothoid curves
between straight and circular path segments. The proposed
algorithm is an approximation-based method consisting of a
local and a global planner.The local planner generates feasible
paths in the absence of obstacles. The global planner delivers
a preliminary collision-free path by omitting the minimum
turning radius constraint of the vehicle. It is shown that the
proposed local and global planners are appropriate to be
applied together and guarantee finding a feasible solution
in the presence of obstacles if the planning task is solvable.
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Moreover, the local paths are designed to be similar to those
a human driver would find.

Although different human drivers and passengers prefer
different types of paths, we try to summarize the main char-
acteristics of a “human-like” path as follows. Existing optimal
planners strive to return the shortest possible solution which
results in sharp (mostly maximal curvature) turns and many
reversals in most cases. In our opinion optimal length is not
as important for a passenger as feeling comfortable. If a path
is longer than optimal (to a meaningful extent, of course) but
contains less sharp turns and reversals, then we treat it better
from the passenger’s perspective. Our proposed approach is
designed with these preferences in mind: the preliminary
global path consists only of straight segments (with in-place
turning between them), and the local planner has the task of
connecting these segments with smooth and not necessarily
maximal curvature turns.

The remaining part of the paper is organized as follows.
The next section summarizes related work in path planning
for car-like vehicles. Section 3 introduces the main charac-
teristics of the proposed approach and the previous work of
the authors in this field. In Section 4 we describe the local
planning component (TTS-planner) in detail, in which we
discuss the applied path elements, the properties of local
paths, and a topological admissible steeringmethod based on
these. In Section 5 the global planning tool (RTR-planner)
is described which generates the collision-free preliminary
path. Finally, simulation examples are presented which
confirm the advantageous characteristics of the proposed
approach.

2. Related Work

Thepath planning task for nonholonomic systems is difficult,
caused by the concurrent presence of global geometric
(environmental) and local kinematic constraints. For this
reason most available approaches decouple the treatment
of these in two separate phases of the planning process.
Basically we can distinguish between global and local path
planning methods, which account for the two subproblems.
In some approaches the configuration space of the vehicle is
sampled and a graph-based description is used to grasp the
topological structure of the environment [6]. For example,
the Probabilistic Roadmap Method [7] uses general graphs
with an offline sampling; the Rapidly Exploring Random
Tree approach [8–10] builds one or more trees online to
cover the free space.These sampling-based frameworksmake
use of a vehicle-specific local planner module (also denoted
as a steering method), which accounts for connecting two
arbitrary configurations of the nonholonomic car. Graph
vertices represent configurations, while edges in the graphs
correspond to local paths in these approaches. The global
admissibility of these is checked by an appropriate collision
detector module.

Other approaches are based on the Holonomic Path
Approximation Algorithm [11], which recommends planning
a preliminary holonomic (kinematically unconstrained) path
first and approximating it using a steering method in a
second step. In this framework, the holonomic global path is

iteratively subdivided and the steering method together with
a collision detector is applied to replace the parts. To ensure
the convergence of this algorithm, the steeringmethod has to
verify the topologically property, which is defined in [12].

Steering nonholonomic systems is a difficult task even in
the absence of obstacles. Exact algorithms are not available in
general but only for special classes, for example, nilpotentiz-
able [13], chain-formed [14–16], and differentially flat systems
[17]. Common examples for the above-mentioned system
classes include wheeled vehicles with or without trailers.
There exist elegant solutions of path planning and control
especially for differentially driven and car-like robots [18–21]
and mobile manipulators [22–24]. Most of the available work
investigates differentially driven robots with one trailer [19]
or more trailers [18, 20]. The steering methods presented in
[19, 20] are shown to verify the topological property as well.
Since the kinematics of a car is equivalent to a differentially
driven robot towing a trailer hitched on top of the wheel axis,
these flatness-basedmethods were shown to be applicable for
cars [21] as well. In these approaches a sufficiently smooth
planar curve is planned for the flat output of the system,
which is the axlemidpoint of the last trailer, or simply the rear
axle midpoint in case of a single car. Although the method
proposed in [21] is a simple and elegant way of generating
local paths for carswith continuous curvature, it does not take
into account the upper-bounded curvature constraint (except
at the start and end configurations).

An important and widely used family of steering
approaches is based on optimal control. For general sys-
tems only approximate methods exist [25]. However, exact
methods for computing optimal (e.g., shortest length) local
paths are available for cars moving only forward (Dubins-
car [26]) or both forward and backward (Reeds–Shepp-
car [27–30]). For the Reeds–Shepp-car, it is shown in [27]
that for any pair of configurations the shortest path can
be chosen from 48 possible sets of paths, each of which
consisting of maximum five circular or straight segments
and having maximum two cusps. The number of sets was
reduced to 46 in [28] and to 26 in [30]. Because these
optimal paths consist of linear and circular segments, the
resulting curvature profile contains abrupt changes, which
can be traversed precisely only when the car is stopped at
points where the curvature changes, in order to reorient its
wheels. To overcome this limitation, a steering method is
introduced in [31] which approximates Reeds–Shepp paths
using continuous curvature turns, which contain clothoid
curves to connect linear and circular parts. It was shown that
although these paths are not optimal, they converge to the
optimal Reeds–Shepp paths when the allowed sharpness of
the clothoids tends to infinity. Both the Reeds–Shepp planner
and its continuous curvature generalization (let us denote it
as CCRS planner in the sequel) is proved to be topological
admissible.

Other continuous curvature planning approaches fall into
the “path smoothing” class, where a sequence of configura-
tions or a preliminary polygonal route is given and the goal
is turning it to a smooth curve. These make use of clothoids
[32] and higher order polynomial curves [33–35], or curves
with closed form expressions such as Bézier curves [36, 37]
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or 𝐵-splines [38]. Unfortunately these are not treating issues
such as topological admissibility or convergence guarantees
in general planning tasks.

Beyond these approaches, there are specialized algo-
rithms, which were designed to solve a specific planning
task, for example, parallel or garage parking. These are not
suited to solve more general planning problems in case of
arbitrary obstacle distributions. For example, [39, 40] use
circle segments and straight lines to generate trajectories for
car parking. In [40] these are denoted as translation (TM) and
rotation movements (RM), and a number of TM–RM–TM
combinations are linked together, depending on the maneu-
vering complexity of the parking task. An exhaustive search is
performed in every step; thus the computational complexity
increases heavily with the number of necessary maneuvers.
Themethod of Müller et al. [41] proposes solving the parking
task by the general two-step path approximation approach,
where they use the CCRS local planner [31] and the global
planner described in [42]. Although a general framework is
applied, they exploit some simplifications and assumptions
(e.g., regarding the shape of obstacles and symmetry of their
distribution) in order to make computations tractable for
real-time applications.

A recent publication [43] introduces a planning approach
which generalizes a parking planner to handle more difficult
obstacle distributions, for example, navigation in a narrow
parking lot containing some additional obstacles. It is shown
that the algorithm can be applied in real time thanks to the
fast optimization strategy it is based on. However, complete-
ness or guaranteed convergence is not proven.

3. The RTR + TTS-Planner

Many of the mentioned planning methods were seminal for
the development of our approach presented in this paper. Our
goal was to design an algorithmwith the following properties:

(i) It should solve the general planning task; that is,
no assumptions are made regarding the obstacle
distribution or the starting and goal configurations of
the vehicle. At the same time, it should perform well
also in the specialized parking situations.

(ii) The resulting paths should have continuous curvature
profile.

(iii) The aim is to generate “human-like” paths, which
are simple and contain a “meaningful” number of
maneuvers needed by the task at hand.

We chose the followingmethodology during the design of
this planning method. A two-step approximation approach
similar to [11, 41] was chosen; however, our global planner
already takes some nonholonomic properties of the vehicle
into account. The main contributions of this paper are the
introduction of our novel topological admissible continuous
curvature local planning method (TTS-planner) which facil-
itates the construction of “human-like” paths, as well as the
detailed description of the global RTR-planner.

This paper extends our previous work [45] giving a thor-
ough theoretical treatment, detailed derivation, and proofs

L



v



1/

x

y

Figure 1: Kinematic model of a car.

regarding the local planning method, as well as a more
detailed description of the global planner.

Previous versions of the proposed two-step planning
approach can be found in [46–49], where the local plan-
ner used only straight and circular segments, resulting in
a discontinuous curvature profile. The currently proposed
generalized version uses clothoids as well (similarly to [31]).
In the derivation we rely on the results of Wilde [50]
regarding the parametrization of clothoids. Our approach is
mostly comparable to the CCRS planner [31] or the two-step
planning method [41] based on it, because they have similar
theoretical properties. However, the simulation examples in
Section 6 show that our local planner generates better quality
paths and has a higher success rate in narrow environments
than a CCRS-based approach.

In the sequel we introduce the local TTS-planner first,
by deriving it from the kinematic properties of the car
and choosing path primitives with clothoids as building
blocks.The global RTR-planner is introduced after that where
we explain the reason of using only straight movement
and in-place turning primitives in the preliminary planning
phase.

4. Local Planning: The TTS-Planner

Before going into details of the local path planning method,
we give mathematical definitions of the solvable problem.
First the vehicle model is introduced, followed by basic
properties of the feasible paths, which will serve as a basis for
choosing the geometric building elements of the local planner
module.

4.1. Vehicle Model. The geometrical model of a car can be
seen in Figure 1. In this approach we use the one-track (or
bicycle) motionmodel of a continuous steering kinematic car
[41]:
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[[[[[[[
𝑥̇̇𝑦̇𝜃̇𝜙
]]]]]]] = [[[[[[[

cos 𝜃
sin 𝜃1𝐿 tan𝜙0

]]]]]]] V + [[[[[[
0001
]]]]]]Ω, (1)

where 𝑥 and 𝑦 are the position coordinates of the back axle
midpoint (treated as the reference point of the model), 𝜃 is
the orientation of the car, 𝜙 denotes the steering angle, and 𝐿
is the distance of the front and rear wheel axles. The signed
velocity of the reference point is V (positive means forward
motion), and Ω stands for the steering rate. The absolute
values of the steering angle and its rate of change are limited
to 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨 ≤ 𝜙max < 𝜋2|Ω| ≤ Ωmax < ∞. (2)

The instantaneous turning radius (the reciprocal of the path
curvature 𝜅) is given by 1𝜅 = 𝐿

tan𝜙 . (3)

The steering angle limit implies an upper bound on the path
curvature |𝜅| ≤ 𝜅max = tan𝜙max𝐿 . (4)

The more widespread form of the motion equation is the
following [51]:

[[[[[[
𝑥̇̇𝑦̇𝜃̇𝜅
]]]]]] = [[[[[[

cos 𝜃
sin 𝜃𝜅0

]]]]]] V + [[[[[[
0001
]]]]]]𝜎, (5)

where 𝜎 denotes the curvature change rate. The vector 𝑞 =(𝑥, 𝑦, 𝜃, 𝜅) is called the configuration (or state) of the vehicle
and 𝑢 = (V, 𝜎) is the input vector of the system. The
connection between (1) and (5) is given by𝜅 = tan𝜙𝐿𝜎 = 𝜅̇ = 𝜙̇𝐿 cos2𝜙 = Ω𝐿 cos2𝜙 . (6)

An upper bound on the curvature change rate can be ex-
pressed as |𝜎| ≤ 𝜎max = Ωmax𝐿 ≤ Ωmax𝐿 cos2𝜙 . (7)

4.2. Feasible Paths. To elaborate the properties of feasible
local paths of our car model, let the translational velocity
of the car be written as V = 𝛾|V|, where |V| stands for the

magnitude of the velocity and 𝛾 represents the local direction
of motion:

𝛾 = {{{1, if V ≥ 0 (forward motion),−1, if V < 0 (backward motion).
(8)

Furthermore, let us introduce the translational displacement
of the car along its path𝑠 (𝑡) = ∫𝑡

0
|V (𝜏)| 𝑑𝜏 (9)

and express the translational velocity as

V = 𝛾𝑑𝑠𝑑𝑡 . (10)

Using (10) and the chain rule of differentiation, we reformu-
late the motion equation (5) as follows:

𝑑𝑑𝑠 [[[[[[
𝑥𝑦𝜃𝜅
]]]]]] ⋅ 𝑑𝑠𝑑𝑡 = [[[[[[

cos 𝜃
sin 𝜃𝜅0

]]]]]]𝛾𝑑𝑠𝑑𝑡 + [[[[[[
0001
]]]]]]𝜎. (11)

After dividing by (10) and defining𝛼 (𝑠) = 𝜎
V
= 𝛾𝑑𝜅𝑑𝑠 (𝑠) = 𝑑2𝜃𝑑𝑠2 (𝑠) , (12)

the sharpness of the path, we get the spatial description of
feasible paths:

𝛾 𝑑𝑑𝑠 [[[[[[
𝑥𝑦𝜃𝜅
]]]]]] = [[[[[[

cos 𝜃
sin 𝜃𝜅0

]]]]]] + [[[[[[
0001
]]]]]]𝛼. (13)

We can establish the following properties of these paths
for our car model:

(i) The orientation 𝜃 at 𝑠 is constrained by the local dis-
placements along the𝑥- and𝑦-axes and by themotion
direction 𝛾. The path curvature 𝜅 is given by the first
(spatial) derivative of 𝜃 and the motion direction.
Thus every feasible path can be fully described by a
planar curve labeled by the motion direction at every
point. This fact actually arises from the differential
flatness property of the carwith the rear axlemidpoint
position as flat output [17, 21].

(ii) The sharpness of the path is the second derivative of𝜃 (the spatial change rate of the curvature along the
path) and determines themaximal allowed velocity at
every point on the path:|V (𝑠)| ≤ 𝜎max|𝛼 (𝑠)| . (14)
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If a nonzero minimal traveling speed Vmin is required,
then the sharpness has an upper bound:|𝛼 (𝑠)| ≤ 𝛼max = 𝜎max󵄨󵄨󵄨󵄨Vmin

󵄨󵄨󵄨󵄨 . (15)

In otherwords, if wewould like to obtain a pathwhich can
be followed by the continuous steering car (1) and we allow
the car to stop only if the motion direction is reversed, then
the path should be a planar curve with

(i) bounded curvature and
(ii) bounded sharpness (continuous curvature).

In Sections 4.3, 4.4, and 4.5 we are about to present
specific paths fulfilling these requirements and the local path
planner for generating such paths.

4.3. Path Elements. Our aim is to choose geometric primi-
tives which can serve as building elements in the process of
path construction. We assume that the motion direction is
the same along a primitive, but it can change between the
primitives (whichmeans a cusp in the path).Themost simple
planar curves with bounded curvature are straight lines (𝜅 =0, called 𝑆 segments in the sequel) and curvature-limited
circular arcs (|𝜅(𝑠)| = const ≤ 𝜅max, called𝐶 segments). Paths
constructed by these primitives have piecewise constant cur-
vature with abrupt curvature changes (i.e., infinite sharpness)
between the pieces. To obtain continuous curvature, we are
about to use clothoids, which are the most simple parametric
curves with changing curvature and bounded sharpness.

4.3.1. Clothoids. Aclothoid is a curvewith constant sharpness|𝛼 (𝑠)| = |𝛼| ≤ 𝛼max < ∞, ∀𝑠. (16)

According to (13), the equations describing a clothoid path
can be obtained by integration. If we assume that 𝑞(0) = 0,
we get

𝑥 (𝑠) = 𝛾√ 𝜋|𝛼|𝐶𝐹(√ |𝛼|𝜋 𝑠) , (17a)

𝑦 (𝑠) = 𝛾 sgn (𝛼)√ 𝜋|𝛼|𝑆𝐹(√ |𝛼|𝜋 𝑠) , (17b)

where sgn(𝛼) denotes the sign of 𝛼 and 𝐶𝐹 and 𝑆𝐹 stand for
the Fresnel cosine and sine integrals:𝐶𝐹 (𝑟) = ∫𝑟

0
cos(𝜋2 𝜇2)𝑑𝜇, (18a)

𝑆𝐹 (𝑟) = ∫𝑟

0
sin(𝜋2 𝜇2)𝑑𝜇. (18b)

4.3.2. Clothoid Types. From the point of view of path plan-
ning, eight different types of clothoids can be distinguished,
based on the following properties:

CCNB
in

CCNF
out

CCPF
out

CCPB
in

CCPF
in

CCPB
out

CCNB
out

x

y

CCNF
in

Figure 2: Clothoid types.

(i) Sign of the sharpness: sgn(𝛼) = 𝛾 sgn(𝑑𝜅/𝑑𝑠), it can
be positive (𝑃, sgn(𝛼) = 1) or negative (𝑁, sgn(𝛼) =−1). Zero sharpness is omitted because it results in a
straight or circular segment instead a clothoid.

(ii) Direction of motion: 𝛾, it can be forward (𝐹) or
backward (𝐵)

(iii) Sign of the absolute curvature change: sgn(𝑑|𝜅|/𝑑𝑠).
The absolute curvature grows if the vehicle is entering
a turn (called in-type clothoid) and vanishes if it
returns to a straight segment (out-type clothoid).

Equations (17a) and (17b) describe in-type clothoids
parametrized by the constants 𝛼, 𝛾 and the running variable𝑠 ∈ [0, 𝑠CC], starting from 𝑞in(0) = 0 and arriving at some𝑞in(𝑠CC), where 𝑠CC denotes the whole curve length. From
every in-type clothoid we can derive an out-type counterpart
by preserving the same geometry but reversing the motion
direction:𝑥out (𝑠) = −𝛾√ 𝜋|𝛼|𝐶𝐹(√ |𝛼|𝜋 (𝑠CC − 𝑠)) , (19a)

𝑦out (𝑠) = −𝛾 sgn (𝛼)√ 𝜋|𝛼|𝑆𝐹(√ |𝛼|𝜋 (𝑠CC − 𝑠)) . (19b)

Note that these out-type clothoids start from some 𝑞out(0) =𝑞in(𝑠CC) and arrive at 𝑞out(𝑠CC) = 0. The eight different types
of clothoids are illustrated in Figure 2.

Note that we deal here only with such clothoid path
segments which have either their starting or their final con-
figuration at the origin with zero orientation and curvature
(𝑞(0) = 0 for in-type and 𝑞(𝑠CC) = 0 for out-type clothoids).
However, this causes no serious limitations. On the one hand,
any 𝑞 = (𝑥, 𝑦, 𝜃, 0) can be transformed to 𝑞󸀠 = (0, 0, 0, 0)
by translation and rotation. On the other hand, 𝜅(0) = 0
or 𝜅(𝑠CC) = 0 means that our final concatenated paths
can consist of 𝑆 segments, CCin-𝐶-CCout triplets, and CCin-
CCout pairs. Practically, the only limitation is that transitions
between two 𝐶 segments of different curvatures are allowed
only with a curvature profile crossing or touching zero, that
is, by a 𝐶-CCout-CCin-𝐶 sequence. As we will see later, this
does not prohibit the creation of a complete path planner.
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From now on, according to the nomenclature of [31], we
will denote CCin-𝐶-CCout triplets asCC-turns or𝑇 segments,
andCCin-CCout pairs as elementary paths or𝐸 segments.Note
that an elementary path is a special case of a CC-turn.

4.3.3. Reparametrization of Clothoids. By looking at (17a) and
(17b), we can state that any point on an in-type clothoid
starting from 𝑞(0) = 0 can be described by the pair (𝛼, 𝛾𝑠),
the sharpness and the signed displacement along the curve. It
was shown byWilde [50] that an equivalent representation is
available using the pair (𝜅, 𝛿), the curvature and the deflection
of the curve at a certain point:

𝑥 (𝜅, 𝛿) = sgn (𝛿) √2𝜋 |𝛿|𝜅 𝐶𝐹(√2 |𝛿|𝜋 ) , (20a)

𝑦 (𝜅, 𝛿) = √2𝜋 |𝛿|𝜅 𝑆𝐹(√2 |𝛿|𝜋 ) . (20b)

As it can be seen, 𝜅 appears only as a multiplier in the
expressions; thus it can be interpreted as a scaling factor. In
this representation 𝛿 is responsible for the “shape” of the
clothoid segment, and 𝜅 determines its “size.”

From a computational perspective, this (𝜅, 𝛿) parametri-
zation is less convenient than the parametrization by (𝛼, 𝛾𝑠).
The reason is that 𝛼 and 𝛾 are constant values and only 𝑠 is
variable along the path segment; thus the curve is described
by some fixed parameters and exactly one free parameter, as
usual. This makes the explicit computation of these curves
simple, for example, for visualization or collision checking.
Opposed to this, both 𝜅 and 𝛿 are varying along the curve,
and coherency has to be maintained between them to obtain
proper results. The coherency is ensured by the constant
sharpness, which is related to 𝜅 and 𝛿 as𝛼 = 𝜅22𝛿 . (21)

For simplicity, let us choose fixed curvature and deflection
values 𝜅CC and 𝛿CC at the endpoint of curve. This is the point
with maximal absolute curvature and deflection:𝜅CC = argmax

𝜅
|𝜅| , (22a)𝛿CC = argmax

𝛿
|𝛿| . (22b)

Based on (20a), (20b), (22a), and (22b), in-type clothoids can
be fully described by

𝑥in (𝛿) = sgn (𝛿CC) √2𝜋 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅CC 𝐶𝐹(√2 |𝛿|𝜋 ) , (23a)

𝑦in (𝛿) = √2𝜋 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅CC 𝑆𝐹(√2 |𝛿|𝜋 ) , (23b)

𝜃in (𝛿) = 𝛿, (23c)

𝜅in (𝛿) = 𝜅CC√ 𝛿𝛿CC , (23d)

where 𝛿 ∈ [0, 𝛿CC] is the variable parameter and 𝛿CC and 𝜅CC
are constant values. A shorter form for 𝑥in(𝛿) and 𝑦in(𝛿) can
be obtained by defining the following functions:

𝑋(𝛽) = sgn (𝛽)√𝜋 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨 ⋅ 𝐶𝐹(√ 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨𝜋 ) (24)

𝑌 (𝛽) = √𝜋 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨 ⋅ 𝑆𝐹(√ 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨𝜋 ) . (25)

Using these, (23a), (23b), (23c), and (23d) will look like

𝑥in (𝛿) = 𝑋 (2𝛿)𝜅CC √𝛿CC𝛿 = 𝑋 (2𝛿)𝜅in (𝛿) , (26a)

𝑦in (𝛿) = 𝑌 (2𝛿)𝜅CC √𝛿CC𝛿 = 𝑌 (2𝛿)𝜅in (𝛿) , (26b)𝜃in (𝛿) = 𝛿, (26c)𝜅in (𝛿) = 𝜅CC√ 𝛿𝛿CC . (26d)

Note that if we look at the endpoint, 𝑋(2𝛿CC) and 𝑌(2𝛿CC)
can be treated as the end position of and “unscaled” in-type
clothoid of 𝛿CC full deflection.The “scaling factor” 1/𝜅CC can
be used to obtain the real endpoint coordinates 𝑥in(𝛿CC) and𝑦in(𝛿CC).

Now, let us consider a pair of in-type and out-type
clothoids having the same geometry (such pairs were shown
in Figure 2, e.g., CC𝑃𝐹

in and CC𝑃𝐵
out). In order to ensure the

above-mentioned coherency between 𝜅CC and 𝛿CC, we define
them according to (22a) and (22b) for out-type clothoids
as well. However, in this case 𝜅CC belongs to the starting
point, while 𝛿CC to the endpoint of the curve. Since an out-
type clothoid has the same geometry as its in-type pair but
opposite motion direction, we can obtain its equation as𝑥out (𝛿)

= − sgn (𝛿CC) √2𝜋 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅CC 𝐶𝐹(√2 󵄨󵄨󵄨󵄨𝛿 − 𝛿CC󵄨󵄨󵄨󵄨𝜋 ) , (27a)

𝑦out (𝛿) = √2𝜋 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅CC 𝑆𝐹(√2 󵄨󵄨󵄨󵄨𝛿 − 𝛿CC󵄨󵄨󵄨󵄨𝜋 ) , (27b)

𝜃out (𝛿) = 𝛿 − 𝛿CC, (27c)

𝜅out (𝛿) = 𝜅CC√𝛿CC − 𝛿𝛿CC . (27d)
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Figure 3: Structure of (a) elementary paths and (b) CC-turns.

4.3.4. Elementary Paths and CC-Turns. As already men-
tioned, elementary paths (𝐸 segments) are symmetric curves,
consisting of a pair of compatible CCin and CCout clothoids.
The curvature of the first curve changes from 0 to 𝜅CC, while
the second from 𝜅CC back to 0. Both curves have the same
deflection 𝛿CC. Compatibility is assured by the same motion
direction 𝛾 and the same curvature 𝜅CC at the end of the
in-type part and at the beginning of the out-type part. The
compatible pairs are

(i) CC𝑃𝐹
in and CC𝑁𝐹

out ,

(ii) CC𝑁𝐹
in and CC𝑃𝐹

out,

(iii) CC𝑃𝐵
in and CC𝑁𝐵

out ,

(iv) CC𝑁𝐵
in and CC𝑃𝐵

out.

A CC-turn consists of a pair of compatible CCin and
CCout curves, with an additional circular arc between them,
which has 𝜅𝐶 = 𝜅CC curvature and 𝛿𝐶 deflection. As
mentioned before, an elementary path is a special case of a
CC-turn with 𝛿𝐶 = 0 (see Figure 3).

Let us characterize these path components. They can
be described by a parametric configuration curve 𝑞(𝛿) =(𝑥(𝛿), 𝑦(𝛿), 𝜃(𝛿), 𝜅(𝛿)) with 𝛿 ∈ [0, 𝛿end]. The curve is fully
determined by the following parameters:

(i) A starting configuration 𝑞(0) = 𝑞𝑠 = (𝑥𝑠, 𝑦𝑠, 𝜃𝑠, 0).
(ii) The maximal curvature 𝜅CC (in an absolute sense:|𝜅CC| ≥ |𝜅(𝛿)|, ∀𝛿).
(iii) Deflections of the clothoid (𝛿CC) and circular (𝛿𝐶)

parts.

We use the following building elements to synthesize elemen-
tary paths and CC-turns:

(i) An in-type clothoid 𝑞in(𝛿) of deflection 𝛿CC, starting
from 𝑞in(0) = (0, 0, 0, 0) and arriving at 𝑞in(𝛿CC) =(𝑥in(𝛿CC), 𝑦in(𝛿CC), 𝛿CC, 𝜅CC), as described by (23a),
(23b), (23c), and (23d).

(ii) A circular arc 𝑞𝑐(𝛿) of deflection 𝛿𝐶 and curvature𝜅CC, starting from 𝑞𝑐(0) = (0, 0, 0, 0), described by𝑥𝑐 (𝛿) = sin 𝛿𝜅CC (28a)

𝑦𝑐 (𝛿) = 1 − cos 𝛿𝜅CC (28b)𝜃𝑐 (𝛿) = 𝛿 (28c)𝜅𝑐 (𝛿) = 𝜅CC. (28d)

(iii) A compatible out-type clothoid 𝑞out(𝛿) of deflec-
tion 𝛿CC, starting from 𝑞out(0) = (𝑥out(0), 𝑦out(0),−𝛿CC, 𝜅CC) and arriving at 𝑞out(𝛿CC) = (0, 0, 0, 0), as
described by (27a), (27b), (27c), and (27d).

The starting and end configurations of these parts have to be
aligned in order to obtain the resulting elementary path or
CC-turn. The alignment is performed by rotation and trans-
lation, described by homogeneous transformation matrices.
Let us assign a transformation matrix to any configuration 𝑞0
as follows:

𝑞0 = (𝑥0𝑦0𝜃0𝜅0) 󳨀→

𝑇(𝑞0) = [[[[[[[[[
cos 𝜃0 − sin 𝜃0 0 0 𝑥0
sin 𝜃0 cos 𝜃0 0 0 𝑦00 0 1 0 𝜃00 0 0 1 00 0 0 0 1

]]]]]]]]]
.

(29)

This transformation matrix represents the pose of the local
coordinate frame attached to 𝑞0. The transformation of
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another configuration 𝑞 by 𝑇(𝑞0) can be performed as usual:(𝑞󸀠1) = 𝑇 (𝑞0) (𝑞1) . (30)

This means that we interpret the coordinates of 𝑞 as local,
relative to 𝑞0.Multiplying by𝑇(𝑞0)we get 𝑞󸀠, which represents
the global coordinates of the transformed 𝑞. Notice that
the transformation does not affect the curvature part of the
configuration. It follows that the original configuration 𝑞0
can be obtained by applying the transformation 𝑇(𝑞0) to 𝑞 =(0, 0, 0, 𝜅0):

(𝑞01 ) = 𝑇 (𝑞0)((
(

000𝜅01
))
)

. (31)

The inverse transformation is given by𝑇−1 (𝑞0)
= [[[[[[[[[

cos 𝜃0 sin 𝜃0 0 0 −𝑥0 cos 𝜃0 − 𝑦0 sin 𝜃0− sin 𝜃0 cos 𝜃0 0 0 𝑥0 sin 𝜃0 − 𝑦0 cos 𝜃00 0 1 0 −𝜃00 0 0 1 00 0 0 0 1
]]]]]]]]]
. (32)

These transformation matrices have the following chaining
property:

𝐻𝑞󸀠 = 𝑇 (𝑞0) ⋅ 𝐻𝑞 ⇐⇒ 𝑇(𝑞󸀠) = 𝑇 (𝑞0) ⋅ 𝑇 (𝑞) , (33)

where the upper “𝐻” index stands for the homogenous
coordinate representation 𝐻𝑞 = [𝑞, 1]𝑇.

Now, we have all the tools to assemble CC-turns and
elementary paths. A general description of these is obtained
as follows:

𝐻𝑞 (𝛿) = 𝑇 (𝑞𝑠) ⋅ 𝐻𝑞in (𝛿) , if 𝛿 ∈ [0, 𝛿CC] , (34a)

𝐻𝑞 (𝛿) = 𝑇 (𝑞 (𝛿CC)) ⋅ 𝐻𝑞𝑐 (𝛿 − 𝛿CC) ,
if 𝛿 ∈ (𝛿𝐶𝐶, 𝛿CC + 𝛿𝐶] . (34b)

𝐻𝑞 (𝛿) = 𝑇 (𝑞 (𝛿CC + 𝛿𝐶)) ⋅ 𝑇−1 (𝑞out (0))⋅ 𝐻𝑞out (𝛿 − 𝛿CC − 𝛿𝐶) ,
if 𝛿 ∈ (𝛿CC + 𝛿𝐶, 2𝛿CC + 𝛿𝐶] , (34c)

where 𝑞𝑠 stands for a given arbitrary starting configuration
with zero curvature and 𝑞in(𝛿) and 𝑞out(𝛿) are given by
(23a), (23b), (23c), (23d), (27a), (27b), (27c), and (27d),
respectively. This can be treated as a “direct” approach for
generating a CC-turn or elementary path. One specifies the

starting configuration 𝑞𝑠, the maximal curvature 𝜅CC, and
the deflections 𝛿CC and 𝛿𝐶, and the end configuration 𝑞𝑒 =𝑞(2𝛿CC+𝛿𝐶) is obtained directly using (34a), (34b), and (34c).
Without loss of generality we can assume that 𝑞𝑠 = (0, 0, 0, 0).
In this case we get

𝐻𝑞 (𝛿CC) = 𝐻𝑞
in (𝛿CC) = 𝑇 (𝑞in (𝛿CC)) ⋅ 𝐻0, (35a)

𝐻𝑞 (𝛿CC + 𝛿𝐶) = 𝑇 (𝑞in (𝛿CC)) ⋅ 𝐻𝑞c (𝛿𝐶)= 𝑇 (𝑞in (𝛿CC)) ⋅ 𝑇 (𝑞𝑐 (𝛿𝐶))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇(𝑞(𝛿CC+𝛿𝐶))

⋅ 𝐻0, (35b)

𝐻𝑞𝑒 = 𝐻𝑞 (2𝛿CC + 𝛿𝐶)= 𝑇 (𝑞 (𝛿CC + 𝛿𝐶)) ⋅ 𝑇−1 (𝑞out (0))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇(𝑞𝑒)⋅ 𝐻𝑞out (𝛿CC) = 𝑇 (𝑞𝑒) ⋅ 𝐻0,

(35c)

because the endpoint of a standard out-type clothoid is
the origin, according to (27a), (27b), (27c), and (27d). The
components of𝑇 (𝑞𝑒) = 𝑇 (𝑞in (𝛿CC)) ⋅ 𝑇 (𝑞𝑐 (𝛿𝐶)) ⋅ 𝑇−1 (𝑞out (0)) (36)

have the following form:𝑇 (𝑞in (𝛿CC))
=
[[[[[[[[[[[[

cos 𝛿CC − sin 𝛿CC 0 0 𝑋 (2𝛿CC)𝜅CC
sin 𝛿CC cos 𝛿CC 0 0 𝑌 (2𝛿CC)𝜅CC0 0 1 0 𝛿CC0 0 0 1 00 0 0 0 1

]]]]]]]]]]]]
𝑇 (𝑞𝑐 (𝛿𝐶)) =

[[[[[[[[[[[
cos 𝛿𝐶 − sin 𝛿𝐶 0 0 sin 𝛿𝐶𝜅CC
sin 𝛿𝐶 cos 𝛿𝐶 0 0 1 − cos 𝛿𝐶𝜅CC0 0 1 0 𝛿𝐶0 0 0 1 00 0 0 0 1

]]]]]]]]]]]
.

(37)

In order to obtain 𝑇−1(𝑞out(0)), we express 𝑞out(0) first:
𝑞out (0) = (−𝑥in (𝛿CC)𝑦in (𝛿CC)−𝛿CC𝜅CC ) = ((

(
−𝑋(2𝛿CC)𝜅CC𝑌 (2𝛿CC)𝜅CC−𝛿CC𝜅CC

))
)

, (38)
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and it follows from (32) that

𝑇−1 (𝑞out (0)) = [[[[[[[[[
cos 𝛿CC − sin 𝛿CC 0 0 𝑡1,5
sin 𝛿CC cos 𝛿CC 0 0 𝑡2,50 0 1 0 𝛿CC0 0 0 1 00 0 0 0 1

]]]]]]]]]
, (39)

where𝑡1,5 = 𝑋 (2𝛿CC)𝜅CC cos 𝛿CC + 𝑌 (2𝛿CC)𝜅CC sin 𝛿CC,
𝑡2,5 = 𝑋 (2𝛿CC)𝜅CC sin 𝛿CC − 𝑌 (2𝛿CC)𝜅CC cos 𝛿CC. (40)

After multiplying the three matrices we get𝑇 (𝑞𝑒)
=
[[[[[[[[[[[[

cos (𝛿end) − sin (𝛿end) 0 0 𝐴 (2𝛿CC, 𝛿𝐶)𝜅CC
sin (𝛿end) cos (𝛿end) 0 0 𝐵 (2𝛿CC, 𝛿𝐶)𝜅CC0 0 1 0 𝛿end0 0 0 1 00 0 0 0 1

]]]]]]]]]]]]
, (41)

where 𝛿end = 2𝛿CC + 𝛿𝐶, (42)𝐴 (2𝛿CC, 𝛿𝐶) = 𝑋 (2𝛿CC) (1 + cos (2𝛿CC + 𝛿𝐶))+ 𝑌 (2𝛿CC) sin (2𝛿CC + 𝛿𝐶)+ sin (𝛿CC + 𝛿𝐶) − sin 𝛿CC, (43)

𝐵 (2𝛿CC, 𝛿𝐶) = 𝑋 (2𝛿CC) sin (2𝛿CC + 𝛿𝐶)+ 𝑌 (2𝛿CC) (1 − cos (2𝛿CC + 𝛿𝐶))− cos (𝛿CC + 𝛿𝐶) + cos𝛿CC. (44)

The end configuration of theCC-turn is given by the elements
in the last column of 𝑇(𝑞𝑒):𝑥𝑒 = 𝐴 (2𝛿CC, 𝛿𝐶)𝜅CC . (45a)

𝑦𝑒 = 𝐵 (2𝛿CC, 𝛿𝐶)𝜅CC (45b)𝜃𝑒 = 2𝛿CC + 𝛿𝐶 (45c)𝜅𝑒 = 0 (45d)

It is important to note that, in order to fully define a
CC-turn, two of the deflections 𝛿CC, 𝛿𝐶, and 𝛿end should be

given, together with the maximal curvature 𝜅CC. The third
deflection parameter is determined by (42).

The equations of an elementary path are similar to (45a),
(45b), (45c), and (45d); we only need to substitute 𝛿𝐶 = 0:𝑥𝑒 = 𝐴 (2𝛿CC, 0)𝜅CC = 𝐴 (2𝛿CC)𝜅CC , (46a)

𝑦𝑒 = 𝐵 (2𝛿CC, 0)𝜅CC = 𝐵 (2𝛿CC)𝜅CC , (46b)𝜃𝑒 = 2𝛿CC, (46c)𝜅𝑒 = 0, (46d)

where 𝐴 (2𝛿CC) = 𝑋 (2𝛿CC) (1 + cos (2𝛿CC))+ 𝑌 (2𝛿CC) sin (2𝛿CC) ,𝐵 (2𝛿CC) = 𝑋 (2𝛿CC) sin (2𝛿CC)+ 𝑌 (2𝛿CC) (1 − cos (2𝛿CC)) .
(47)

4.4. TTS Paths for Local Planning. Algorithms that generate
feasible local paths for a wheeled system—such as our car
model (5)—in the absence of obstacles are called local
planners or steering methods. The exact definition of these
is the following.

Definition 1 (steering method). Let us denote by Λ 𝑓 the set
of all feasible local paths 𝜆𝑓 regarding system equation 𝑞̇ =𝑓(𝑞, 𝑢). A steering method (or local planner module) is a
function

Steer : C ×C 󳨀→ Λ 𝑓, i.e., 𝜆𝑓 (⋅) = Steer (𝑞0, 𝑞1) (48)

such that 𝜆𝑓 (0) = Steer (𝑞0, 𝑞1) (0) = 𝑞0,𝜆𝑓 (𝑆𝜆) = Steer (𝑞0, 𝑞1) (𝑆𝜆) = 𝑞1. (49)

As already mentioned in Section 2, the most widely used
local planners for the simple kinematic car model (without
the requirement of curvature continuity) are based on the
optimal length Reeds–Shepp (RS) paths [27]. These local
paths consist of maximum five circular or straight segments
and have at most two cusps, where the curvature of circular
arcs is exactly ±𝜅max. If the continuous steering car model
(5) is used, the continuous curvature generalization proposed
in [31] can be applied. This approximates Reeds–Shepp paths
by replacing circular segments with CC-turns. It was shown
that although the resulting CCRS paths are not optimal,
they converge to the optimal RS paths when the allowed
sharpness of the clothoids tends to infinity. The CC-turns
in this approach consist of clothoids having the maximal
allowed sharpness and circle segments of maximal curvature.

In the sequel we are doing something similar: introduce
a new set of local paths for the continuous steering car. The
main ideas which motivated the invention of our approach
instead using the CCRS paths are the following:
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(i) The main goal is global planning in the presence
of obstacles. Most existing planning methods use a
concatenation of local paths, which has the conse-
quence that the result will be not optimal, even if the
parts were generated by an optimal planner. Even the
CCRS paths are suboptimal. Thus, having the final
application in our mind, we lifted the requirement of
optimality of our local paths.

(ii) Insteadminimizing the global path length, we had the
goal to achieve “natural” or “human-like” paths.What
this means is informally described in the following
points.

(iii) The RS (resp., CCRS) paths consist of up to five
circular (resp., CC-turn) and straight segments. We
show in the sequel that three path segments are
sufficient to connect any two configurations.

(iv) The RS (resp., CCRS) paths use circular segments
(resp., CC-turns) having the maximal allowed curva-
ture (the steering wheel is turned to the end position
in every curve). Our planner is not restricted to this.
Only the limit is taken into account, but smaller
curvatures are allowed.

(v) The last segment of RS (resp., CCRS) paths is always
circular (resp., CC-turn). We argue that this contra-
dicts the behavior of human drivers. Because the car
can only move forward or backward, in most cases
the more natural behavior is to arrive at a given
goal configuration by a straight movement. There are
a few exceptions, for example, the case of parallel
parking, but these can usually be transformed to
the mentioned case by reversing the roles of initial
and goal configurations. Consequently, we choose a
straight segment as the last section of our local paths.

To simplify notation in the sequel, we will denote local
paths as a concatenation of 𝑆, 𝑇, and 𝐸 letters, corresponding
straight segments, CC-turns, and elementary paths, respec-
tively. In our approach we use 𝑇𝑇𝑆 (as well as 𝐸𝐸𝑆) paths
(note that in our previous work [45] we used the notations𝑇∗𝑇𝑆 and 𝐸∗𝐸𝑆 where 𝑇∗ and 𝐸∗ represented “CC-turn or
straight segment” and “elementary path or straight segment,”
although we omit here the possibility of having a straight
segment as the first element because our experiments showed
that 𝑆𝑇𝑆 and 𝑆𝐸𝑆 paths are chosen very rarely by the
implemented planning algorithm). In the sequel we present
the construction of 𝐸𝐸𝑆 paths first (where we use only
elementary paths in place of CC-turns) and show that this
class of paths is sufficient to connect an arbitrary pair of
configurations. After that we generalize 𝐸 segments to CC-
turns.

4.4.1. Construction of EES Paths. Let us assume without
loss of generality that the path starts from a given initial
configuration 𝑞𝐼 = (𝑥𝐼, 𝑦𝐼, 𝜃𝐼, 0) and arrives at the origin as
goal configuration 𝑞𝐺 = (0, 0, 0, 0). Any query pair (𝑞𝐼, 𝑞𝐺)
can be transformed to this form by translation and rotation,
and the designed path can be transformed back. Let us denote
the intermediate configurations between the path segments

y
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Figure 4: EES path.

by 𝑞̃𝐼 and 𝑞̃𝐺. For every segment, 𝑖 denotes its index (1, 2
or 3) inside the path. A straight segment is parametrized
by its absolute length 𝑠𝑖 and direction 𝛾𝑖 and an elementary
path segment by its curvature 𝜅𝑖,CC and deflection 𝛿𝑖,CC at the
middle point between the CCin and CCout parts. To simplify
the notation, let us neglect the “CC” subscript from now on:
let 𝜅𝑖 = 𝜅𝑖,CC and 𝛿𝑖 = 𝛿𝑖,CC.

The scheme of an 𝐸𝐸𝑆 path (illustrated in Figure 4) is the
following: 𝑞𝐼 𝐸󳨀→

𝛿1,𝜅1
𝑞̃𝐼 𝐸󳨀→

𝛿2 ,𝜅2
𝑞̃𝐺 𝑆󳨀→

𝑠3 ,𝛾3
𝑞𝐺. (50)

The coordinates of 𝑞̃𝐼 can be obtained from 𝑞𝐼 by a
transformation belonging to the first elementary path

𝐻𝑞̃𝐼 = 𝑇 (𝑞𝐼) ⋅ 𝑇 (𝑞𝑒 (𝛿1, 𝜅1)) ⋅ 𝐻0, (51)

where𝑇 (𝑞𝑒 (𝛿1, 𝜅1))
=
[[[[[[[[[[[[

cos (2𝛿1) − sin (2𝛿1) 0 0 𝐴 (2𝛿1)𝜅1
sin (2𝛿1) cos (2𝛿1) 0 0 𝐵 (2𝛿1)𝜅10 0 1 0 2𝛿10 0 0 1 00 0 0 0 1

]]]]]]]]]]]]
,

𝑇 (𝑞𝐼) = [[[[[[[[[
cos (𝜃𝐼) − sin (𝜃𝐼) 0 0 𝑥𝐼
sin (𝜃𝐼) cos (𝜃𝐼) 0 0 𝑦𝐼0 0 1 0 𝜃𝐼0 0 0 1 00 0 0 0 1

]]]]]]]]]
.

(52)

By applying the matrix product we obtain𝑥̃𝐼 = 𝐴 (2𝛿1)𝜅1 cos (𝜃𝐼) − 𝐵 (2𝛿1)𝜅1 sin (𝜃𝐼) + 𝑥𝐼 (53a)

𝑦̃𝐼 = 𝐴 (2𝛿1)𝜅1 sin (𝜃𝐼) + 𝐵 (2𝛿1)𝜅1 cos (𝜃𝐼) + 𝑦𝐼 (53b)
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Let us define the auxiliary functions𝐶 (𝛽, 𝜓) = 𝐴 (𝛽) cos𝜓 − 𝐵 (𝛽) sin𝜓𝐷 (𝛽, 𝜓) = 𝐴 (𝛽) sin𝜓 + 𝐵 (𝛽) cos𝜓 (54)

and write (53a), (53b), (53c), and (53d) in a shorter form:𝑥̃𝐼 = 𝐶 (2𝛿1, 𝜃𝐼)𝜅1 + 𝑥𝐼 (55a)

𝑦̃𝐼 = 𝐷 (2𝛿1, 𝜃𝐼)𝜅1 + 𝑦𝐼 (55b)𝜃̃𝐼 = 2𝛿1 + 𝜃𝐼 (55c)𝜅̃𝐼 = 0. (55d)

Alternatively, we can get 𝑞̃𝐼 from 𝑞̃𝐺 = (𝑥̃𝐺, 0, 0, 0)
by “traveling backward” along the elementary path. This
corresponds to a normal 𝐸 segment with inverse deflection.
We can obtain 𝑞̃𝐼 this way by applying the transformation

𝐻𝑞̃𝐼 = 𝑇 (𝑞̃𝐺) ⋅ 𝑇 (𝑞𝑒 (−𝛿2, 𝜅2)) ⋅ 𝐻0, (56)

where 𝑇(𝑞𝑒(−𝛿2, 𝜅2)) is the same as (41) with parameters𝛿CC = −𝛿2 and 𝛿𝐶 = 0:𝑇 (𝑞𝑒 (−𝛿2, 𝜅2))
=
[[[[[[[[[[[[

cos (2𝛿2) sin (2𝛿2) 0 0 𝐴 (−2𝛿2)𝜅2− sin (2𝛿2) cos (2𝛿2) 0 0 𝐵 (−2𝛿2)𝜅20 0 1 0 −2𝛿20 0 0 1 00 0 0 0 1
]]]]]]]]]]]]

(57)

and 𝑇(𝑞̃𝐺) looks like
𝑇 (𝑞̃𝐺) = [[[[[[[[[

1 0 0 0 𝑥̃𝐺0 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1
]]]]]]]]]
. (58)

The result of the transformation is𝑥̃𝐼 = 𝐴 (−2𝛿2)𝜅2 + 𝑥̃𝐺 (59a)

𝑦̃𝐼 = 𝐵 (−2𝛿2)𝜅2 (59b)𝜃̃𝐼 = −2𝛿2 (59c)𝜅̃𝐼 = 0. (59d)

By comparing (55a), (55b), (55c), (55d), (59a), (59b),
(59c), and (59d) we can conclude that the path parameters 𝛿1,𝜅1, 𝛿2, 𝜅2, and 𝑥̃𝐺 = −𝛾3𝑠3 of an 𝐸𝐸𝑆 path fulfill the following
constraints: 𝐶 (2𝛿1, 𝜃𝐼)𝜅1 + 𝑥𝐼 = 𝐴 (−2𝛿2)𝜅2 − 𝛾3𝑠3 (60a)𝐷(2𝛿1, 𝜃𝐼)𝜅1 + 𝑦𝐼 = 𝐵 (−2𝛿2)𝜅2 (60b)2𝛿1 + 𝜃𝐼 = −2𝛿2. (60c)

One can conclude that in an 𝐸𝐸𝑆 planning problem only
one path segment can be parametrized freely; the others
are determined. In the sequel we will use 𝛿1 and 𝜅1 as free
parameters.

Let us pay some attention to the ranges of angle param-
eters in the above equations. The orientation parameter 𝜃𝐼 is
treated as being in the interval [−𝜋, 𝜋]/∼, where “/∼” means
that the two boundary values are identified. Similarly to the
geometric derivation of CC-turns, we introduce an upper
bound |𝛿end,𝑖| ≤ 𝜋 on the whole deflection of both elementary
paths, which results in 𝛿𝑖 ∈ [−𝜋/2, 𝜋/2]. In order to ensure
that 𝛿1, 𝛿2, and 𝜃𝐼 being in the given intervals fulfill the
constraint (60c), we have to choose the set carefully from
which 𝛿1 and 𝛿2 can be taken. Let us examine two cases:

(i) 𝜃𝐼 ∈ [0, 𝜋]: choosing 𝛿1 ∈ [−𝜋/2, 𝜋/2 − 𝜃𝐼/2] ⊆[−𝜋/2, 𝜋/2] results in𝛿1 + 𝜃𝐼2 = −𝛿2 ∈ [−𝜋2 + 𝜃𝐼2 , 𝜋2 ] ⊆ [−𝜋2 , 𝜋2 ] . (61)

(ii) 𝜃𝐼 ∈ [−𝜋, 0]: choosing 𝛿1 ∈ [−𝜃𝐼/2 − 𝜋/2, 𝜋/2] ⊆[−𝜋/2, 𝜋/2] results in𝛿1 + 𝜃𝐼2 = −𝛿2 ∈ [−𝜋2 , 𝜋2 + 𝜃𝐼2 ] ⊆ [−𝜋2 , 𝜋2 ] . (62)

These choices ensure both 𝛿1 and 𝛿2 being in [−𝜋/2, 𝜋/2] for
any values of 𝜃𝐼. We can write these conditions in a single
compact form:𝛿1, 𝛿2 ∈ 𝐼𝛿 (𝜃𝐼) = [−sgn𝑝 (𝜃𝐼) 𝜋2 , sgn𝑝 (𝜃𝐼) 𝜋2 − 𝜃𝐼2 ] , (63)

where sgn𝑝(⋅) is a special sign function with sgn𝑝(0) = 1:
sgn𝑝 (𝑥) = {{{sgn (𝑥) , if 𝑥 ̸= 01, if 𝑥 = 0 . (64)

An illustration of this set can be seen in Figure 5.
Up to now we have not taken the curvature bound into

account. It can be proven that an arbitrary configuration pair
can be connected by an 𝐸𝐸𝑆 path even if an upper bound on
the absolute curvature is given. The following Lemma states
this fact; the proof is elaborated in Appendix A.
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Figure 6:There is an infinite number of TTS solutions between two
configurations.

Lemma 2. In the absence of obstacles, any (𝑞𝐼, 𝑞𝐺) pair of
initial and goal configurations of a continuous steering car can
be connected by an 𝐸𝐸𝑆 path.

Furthermore, it turns out that infinitely many solutions
can be found even with bounded curvature, due to the
infinitely many choices of 𝛿1 and 𝜅1 parameters. This means
that 𝑞̃𝐼 can be chosen in infinitely many ways, as illustrated in
Figure 6.

4.4.2. From EES to TTS Paths. As we have already seen in
Section 4.3.4, elementary paths are special CC-turns with𝛿𝐶 = 0. It follows that the results for elementary paths used
in 𝐸𝐸𝑆 planning can be generalized to CC-turns as well.
The equations of an elementary path starting from any 𝑞̃𝐼
and arriving at the 𝑥-axis—the middle segment of an 𝐸𝐸𝑆
path—are given by (59a), (59b), (59c), and (59d). This can
easily be generalized to the case when the deflection of the
circular part is nonzero:𝑥̃𝐼 = 𝐴 (−2𝛿2,CC, −𝛿2,𝐶)𝜅2 + 𝑥̃𝐺 (65a)

𝑦̃𝐼 = 𝐵 (−2𝛿2,CC, −𝛿2,𝐶)𝜅2 (65b)

𝜃̃𝐼 = −2𝛿2,CC − 𝛿2,𝐶 (65c)𝜅̃𝐼 = 0, (65d)

where 𝛿2,CC and 𝛿2,𝐶 stand for the deflections of the clothoid
and the circular parts, respectively. The full deflection of the
CC-turn is 𝛿2,end = 2𝛿2,CC + 𝛿2,𝐶 = −𝜃̃𝐼. (66)

Let us introduce the relative amount of the circular part of a
CC-turn as 𝑅𝛿 = 𝛿𝐶𝛿end . (67)

Using this, we can express (65b) as𝑦̃𝐼 = 𝐵 ((1 − 𝑅𝛿,2) 𝛿2,end, 𝑅𝛿,2𝛿2,end)𝜅2 . (68)

Themaximal curvature and the sharpness of the CC-turn are
given by𝜅2 = 1̃𝑦𝐼

𝐵 ((1 − 𝑅𝛿,2) 𝛿2,end, 𝑅𝛿,2𝛿2,end) (69a)

𝛼2 = 𝜅222𝛿2,CC = 𝐵2 ((1 − 𝑅𝛿,2) 𝛿2,end, 𝑅𝛿,2𝛿2,end)𝑦̃2
𝐼 (1 − 𝑅𝛿,2) 𝛿2,end . (69b)

Note that if we fix the full deflection 𝛿2,end and change the
ratio 𝑅𝛿,2 only, then for a given 𝑞̃𝐼 the end configuration 𝑞̃𝐺
on the 𝑥-axis remains the same; only 𝜅2 and 𝛼2 are affected.
In other words, we can tune the shape of a CC-turn with 𝑅𝛿

without affecting the starting and final configurations. This
is illustrated in Figure 7, where clothoids are drawn with
solid black lines and the red dashed arcs represent circular
segments.

When 𝑅𝛿 grows, the curvature is decreasing but the
sharpness is increasing at the same time, independently from
the full deflection of the path segment. This property can be
examined in Figure 8, which shows surface and contour plots
of the (absolute) curvature and sharpness of a CC-turn (with
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steps of 0.1).

𝑦̃𝐼 = 1), depending on the full deflection and the relative
amount of the circular part.

It follows that if we already have obtained an 𝐸 segment
between any two configurations, we can reshape it to a
CC-turn having smaller curvature and higher sharpness by
tuning the 𝑅𝛿 parameter. With this, we can define a maximal
sharpness 𝛼max beyond the already treated 𝜅max constraint. If
the sharpness of the initial 𝐸 segment is less than 𝛼max, then
there exists an𝑅𝛿 value such that |𝛼| = 𝛼max.This is beneficial
because the length of the path segment is decreasing, as can
be seen in Figure 7.

If we have an 𝐸𝐸𝑆 path, we can do this reshaping for
every 𝐸 segment to obtain a 𝑇𝑇𝑆 path. However, if any of
the 𝐸 segments violates the 𝛼max constraint, then it is not
so straightforward. Fortunately it can be shown that a 𝑇𝑇𝑆
solution obeying the 𝛼max constraint exists in all cases. If the
second segment in the 𝐸𝐸𝑆 solution violates the sharpness
constraint, we can write using (59c) and (69b) and (A.3) in
Appendix A: 𝜅󸀠max = √𝛼max𝜃̃𝐼 (70)󵄨󵄨󵄨󵄨𝑦̃𝐼

󵄨󵄨󵄨󵄨 ≥ 𝐵 (𝜃̃𝐼)𝜅󸀠max
, (71)

where 𝜅󸀠max is theminimal value of the curvature upper bound
ensuring that the second elementary path will have |𝛼| ≤𝛼max. If we would like to obtain a 𝑇𝑇𝑆 path from an 𝐸𝐸𝑆
solution, then by recalling (55b) and (A.6) in Appendix A
we can state that 𝜅1 can be decreased arbitrarily in order to
fulfill condition (71) for the second segment and the maximal
sharpness constraint for the first segment at the same time.

The only drawback of using 𝑇𝑇𝑆 paths instead 𝐸𝐸𝑆
solutions is that the sharpness tuning requires an iterative

search of 𝑅𝛿 in the interval [0, 1]. This cannot be avoided,
because 𝑅𝛿 is in the argument of the 𝐵(⋅, ⋅) function in (69a)
and (69b), which does not have an inverse because of the
contained Fresnel integrals.

4.5. A Steering Method Based on EES Paths. A 𝑇𝑇𝑆 path
planner based on the conditions in proof of Lemma 2 and
their generalization in Section 4.4.2 is not a steering method
itself (in the sense of Definition 1), because it delivers not
only one solution for a query pair. Instead of this, it delivers
a parametrized class of solutions, which contains an infinite
number of 𝐸𝐸𝑆 (and 𝑇𝑇𝑆) paths from 𝑞𝐼 to 𝑞𝐺, fulfilling
the maximum curvature (and sharpness) constraint. This
property is useful in global planning problems (i.e., in the
presence of obstacles), because one can more likely find a
collision-free path from a solution class than from the one
and only solution of an exact local planner.

This does not mean that in the presence of obstacles
the existence of any collision-free (local) solution would be
guaranteed. For successful global planning explicit reasoning
about free space connectivity is necessary. As mentioned in
Section 3, we apply the framework of the Holonomic Path
Approximation Algorithm [11] for this purpose. A distinct
global planner delivers a preliminary geometric path, which
is iteratively subdivided and approximated by an appropriate
steeringmethod. To ensure the convergence of this algorithm,
the local planner has to generate such paths that get closer
to the original path as the local endpoints get closer to each
other. This is called the topological property [12] which is
formulated more precisely in Appendix B.

Therefore, if a collision-free geometric path is given and
we have an appropriate steering method that verifies the
topological property, then a complete (completeness means
that the algorithm does not fail to return a solution if
the problem is solvable) approximation algorithm can be
constructed (whichwas a footnote in themanuscript). Hence,
in order to design such a complete algorithm based on 𝑇𝑇𝑆
paths, we need a steering method which returns exactly one
from the class of 𝑇𝑇𝑆 paths and verifies the topological
property.

4.5.1. Definition of 𝑒𝑒𝑆 Paths. In the sequel we take only 𝐸𝐸𝑆
paths into account for the purpose of designing the exact
steering method. This choice will make possible proving the
topological property, because 𝐸𝐸𝑆 paths have closed form
expressions. In contrast to that, 𝑇𝑇𝑆 paths with a given
sharpness can only be obtained by iterative deriving from𝐸𝐸𝑆
solutions, as seen in Section 4.4.2.

More possibilities can be found to restrict the class of𝐸𝐸𝑆 paths to exactly one specific solution for every query
pair (𝑞𝐼, 𝑞𝐺). For example, we may choose the sign of 𝜅2 and
the equality in condition (A.4) in Appendix A and fix 𝛿1
to any chosen value except 0 and −𝜃𝐼 ± 𝜋. In this case the
remaining parameter 𝜅1 is determined unequivocally. This
would result in an 𝐸𝐸𝑆 path with |𝜅2| = 𝜅max and having
the intermediate orientation 𝜃̃𝐼 = 𝜃𝐼 + 2𝛿1 at the end of
the first 𝐸 segment. This approach has the problem that it
is hard to formulate any reasonable direct rule for choosing𝛿1 and the sign of 𝜅2 for a given query. Instead of this we
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Figure 8: Dependence of (a)-(b) maximal curvature and (c)-(d) sharpness of CC-turns on the full detection and relative amount of the
circular part (absolute values are depicted).

introduce the following approach. Let us choose 𝜅1 = −𝜅2
such that |𝜅1| = |𝜅2| is maximal. In this case we do not
have to specify any other parameters. The resulting 𝐸𝐸𝑆 path
has two 𝐸 segments with same maximal absolute curvature,
but having opposite signs (the steering wheel is turned from
right to left or reversely). This type of paths is denoted as 𝑒𝑒𝑆
paths in the sequel to emphasize that the resulting turning
radii (reciprocal of the curvature) are opposite, equal, and
minimal. The 𝑒𝑒𝑆 planning problem is formulated as follows:𝑞𝐼 𝐸󳨀→

𝛿1,𝜅1
𝑞̃𝐼 𝐸󳨀→

𝛿2 ,𝜅2
𝑞̃𝐺 𝑆󳨀→

𝑠3 ,𝛾3
𝑞𝐺 (72)

such that 𝑞𝐼 = (𝑥𝐼, 𝑦𝐼, 𝜃𝐼, 0) ,𝑞𝐺 = (0, 0, 0, 0) , (73)𝜅 fl 𝜅1 = −𝜅2, (74)|𝜅| ≤ 𝜅max, (75)|𝜅| 󳨀→ max. (76)
Using (74) we can reformulate (60a), (60b), and (60c) as𝑥𝐼 + 𝛾3𝑠3 + 𝐴 (2𝛿1 + 𝜃𝐼) + 𝐶 (2𝛿1, 𝜃𝐼)𝜅 = 0 (77a)

𝑦𝐼 + 𝐺(2𝛿1,𝜃𝐼)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝐵 (2𝛿1 + 𝜃𝐼) + 𝐷 (2𝛿1, 𝜃𝐼)𝜅 = 0 (77b)

𝛿2 = −𝛿1 − 𝜃𝐼2 . (77c)

The necessary and sufficient condition for existence of
this kind of 𝐸𝐸𝑆 paths is obtained by (75) and (77b):󵄨󵄨󵄨󵄨𝐺 (2𝛿1, 𝜃𝐼)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑦𝐼󵄨󵄨󵄨󵄨 ⋅ |𝜅| ≤ 󵄨󵄨󵄨󵄨𝑦𝐼󵄨󵄨󵄨󵄨 ⋅ 𝜅max. (78)
In the sequel we use some properties of the 𝐺(⋅, ⋅) function,
which are established in Appendix C.

Lemma 3. For any (𝑦𝐼, 𝜃𝐼) there exists 𝛿1 such that |𝐺(2𝛿1,𝜃𝐼)| ≤ |𝑦𝐼|𝜅max.

Proof. According to Properties C.6 and C.7 of the𝐺 function
we can state that for all 𝜃𝐼 there exist 𝛿1 values for both𝐺(2𝛿1, 𝜃𝐼) ̸= 0 and 𝐺(2𝛿1, 𝜃𝐼) = 0. Since 𝐺 is a continuous
function, this means that, for all 𝜃𝐼, |𝐺(2𝛿1, 𝜃𝐼)| can take an
arbitrarily small value.

4.5.2. The 𝑒𝑒𝑆 Steering Method. Based on the existence
condition (78) and the optimization criterion (76) we can
construct a steeringmethodwhich generates a single 𝑒𝑒𝑆 path
for any local planning query. We denote it as the 𝑒𝑒𝑆-planner.
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Let us examine the special case 𝑦𝐼 = 0 first, where the
existence condition (78) takes the form󵄨󵄨󵄨󵄨𝐺 (2𝛿1, 𝜃𝐼)󵄨󵄨󵄨󵄨 = 0. (79)

According to the Proof of Property C.7 in Appendix, we can
state that |𝐺(2𝛿1, 𝜃𝐼)| has a zero for all 𝜃𝐼 in the interval 𝛿1 ∈[−𝜃𝐼/2, 0]. Let us denote this 𝛿1 solution as 𝛿1,𝑧:𝛿1,𝑧 (𝜃𝐼) : {𝛿1 ∈ [−𝜃𝐼2 , 0] | 𝐺 (2𝛿1, 𝜃𝐼) = 0} (80)

In this case 𝜅 could be chosen arbitrarily, but the condition
(76) suggests the choice of 𝜅 = ±𝜅max.

If 𝑦𝐼 ̸= 0 then it follows that

𝜅 = −𝐺 (2𝛿1, 𝜃𝐼)𝑦𝐼 , (81)

and 𝛿1 which maximizes |𝜅| is defined by𝛿∗1 (𝜃𝐼) = arg max
𝛿1∈𝐼𝛿(𝜃𝐼)

{󵄨󵄨󵄨󵄨𝐺 (2𝛿1, 𝜃𝐼)󵄨󵄨󵄨󵄨} . (82)

Let us define 𝜅∗ as𝜅∗ (𝑦𝐼, 𝜃𝐼) = −𝐺 (2𝛿∗1 (𝜃𝐼) , 𝜃𝐼)𝑦𝐼 , (83)

which can be treated as the unbounded optimum of 𝜅. Since|𝐺| has a maximum at 𝛿∗1 and zero at 𝛿1,𝑧, an arbitrary |𝜅| ∈(0, |𝜅∗|] can be achieved by 𝛿1 ∈ (𝛿1,𝑧, 𝛿∗1 ]. It follows that if|𝜅∗(𝑦𝐼, 𝜃𝐼)| > 𝜅max, then a 𝛿1,max(𝑦𝐼, 𝜃𝐼) can be found between𝛿∗1 (𝜃𝐼) and 𝛿1,𝑧(𝜃𝐼) such that |𝜅| = 𝜅max:𝛿1,max (𝑦𝐼, 𝜃𝐼) :{𝛿1 ∈ (𝛿1,𝑧, 𝛿∗1 ] | 󵄨󵄨󵄨󵄨𝐺 (2𝛿1, 𝜃𝐼)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝐼󵄨󵄨󵄨󵄨 = 𝜅max} (84)

We can summarize the 𝑒𝑒𝑆 steering method as follows.
For a given 𝑞𝐼 we have to determine 𝛿1 and 𝜅 = 𝜅1 first:

Condition 𝛿1 𝜅1𝑦𝐼 = 0 𝛿1,𝑧 (𝜃𝐼) ±𝜅max𝑦𝐼 ̸= 0, 󵄨󵄨󵄨󵄨𝜅∗󵄨󵄨󵄨󵄨 ≤ 𝜅max 𝛿∗1 (𝜃𝐼) 𝜅∗ (𝑦𝐼, 𝜃𝐼)𝑦𝐼 ̸= 0, 󵄨󵄨󵄨󵄨𝜅∗󵄨󵄨󵄨󵄨 > 𝜅max 𝛿1,max (𝑦𝐼, 𝜃𝐼) sgn (𝜅∗) 𝜅max

(85)

The remaining path parameters 𝛿2, 𝜅2, and 𝛾3𝑠3 can be
determined using (77c), (74), and (77a), respectively.

We have proven that the above defined 𝑒𝑒𝑆 steering
method verifies the topological property which renders it
suitable for application in any approximation-based planning
approach. The topological property theoretically guarantees
convergence of the approximation process in any cases. This
advantageous fact is stated byTheoremB.2 inAppendix B and
the proof is given there in detail as well.
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Figure 9: Contour plot of the |𝐺| function.
4.5.3. Implementation Issues. It turns out by numerical exam-
ination of 𝐺(2𝛿1, 𝜃𝐼) that for any 𝜃𝐼 there is exactly one 𝛿1,𝑧
and 𝛿∗1 value; hence 𝛿1,max must be unique as well. Figure 9
shows a contour plot of the |𝐺| function, where the thick red
lines show the zeros and the thick black lines the maxima of|𝐺|. It can be seen that for every 𝜃𝐼 there is another zero 𝛿̂1,𝑧
outside the interval [−𝜃𝐼/2, 0], but 𝛿1,𝑧 inside the interval is
unique.

Unfortunately there are no closed form expressions for
calculating 𝛿1,𝑧, 𝛿∗1 , and 𝛿1,max values, because 𝐺 contains
Fresnel integrals with 𝛿1 in the argument. Thus a numerical
evaluation is neededwhich can be done by approximating the
Fresnel integrals, for example, by using precalculated lookup
tables for𝑋(𝛽) and 𝑌(𝛽). It is important to note that no two-
dimensional lookup table for 𝐺 is needed because we can
decompose it to one-dimensional factors and terms of 𝑋(𝛽),𝑌(𝛽) and trigonometric functions.

4.5.4. Remarks on Bounded Sharpness. In the above described
local planner we payed attention only to the upper bound
of the curvature. One could argue that the sharpness should
have an upper bound as well to achieve paths which can be
traversed by a givenminimal velocity. Indeed, as already seen
in (15), when a minimal traveling speed is required, then
the sharpness of the path should have a given upper bound.
The 𝐸 segments in the 𝐸𝐸𝑆 or 𝑒𝑒𝑆 have a sharpness of 𝛼 =𝜅2CC/2𝛿CC, which has the worst-case value 𝛼 = 𝜅2max/2𝛿CC. It
follows that the sharpness is unbounded if 𝛿CC approaches
zero, and we can only state that it is less than infinity, because𝛿CC = 0 means no motion. Hence the curvature is contin-
uous and the maximal allowed speed is greater than zero
everywhere.

Let us determine the traveling time along an 𝐸 segment
in case of |𝜅CC| = 𝜅max. For this purpose we can use the
velocity constraint (14) along the path and the following
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identities related to the𝛼, 𝛾𝑠, 𝛿, and 𝜅 parameters of a clothoid
[50]: 𝛾𝑠 = 2𝛿𝜅 ,𝛼 = 2𝛿𝑠2 . (86)

Based on these we obtain the length of an 𝐸 segment (twice
as long as a clothoid), the maximal allowed absolute velocity
and the minimal travel time along the segment:𝑠 (𝛿CC) = 4 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅max

,
Vmax (𝛿CC) = 𝜎max󵄨󵄨󵄨󵄨𝛼 (𝛿CC)󵄨󵄨󵄨󵄨 ,𝑡min (𝛿CC) = 𝑠 (𝛿CC)

Vmax (𝛿CC) = 4 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨𝜅max
⋅ 𝜅2max2 󵄨󵄨󵄨󵄨𝛿CC󵄨󵄨󵄨󵄨 𝜎max= 2𝜅max𝜎max

.
(87)

It turns out that the traveling time along such an 𝐸 segment is
finite and lower bounded by 2𝜅max/𝜎max, independently from𝛿CC. Thus we can state that the car can go along the planned
path in finite time if the number of path segments is finite.

4.6. The TTS Planning Algorithm. At the end of this section,
let us summarize how we can use 𝑇𝑇𝑆 paths and the𝑒𝑒𝑆 steering method in an approximation framework for
the purpose of generating collision-free local paths in the
presence of obstacles. A mixed algorithm was implemented,
which consists of two parts: the first building block is a
sampling-based method relying on general 𝑇𝑇𝑆 paths; the
second one is the exact 𝑒𝑒𝑆 steering method, as described
in Section 4.5.2. We will denote this mixed algorithm as the
TTS-planner in the sequel. It takes a number of samples from
the set of 𝑇𝑇𝑆 paths connecting 𝑞𝐼 and 𝑞𝐺 and fulfilling the
maximal curvature and sharpness constraints. Additionally, it
computes the unique 𝑒𝑒𝑆 solution between 𝑞𝐼 and 𝑞𝐺 as well.
From the resulting local path candidates the colliding ones
are excluded and the shortest is returned from the remaining
set. If every candidate is in collision, then the TTS-planner
tries to find new candidates by switching the roles of initial
and goal configurations. When no collision-free local path
candidate could be found, the TTS-planner reports failure,
and the approximation algorithm proceeds with subdividing
the global path. The reason of using this mixed local planner
approach is twofold. At one hand the 𝑒𝑒𝑆-planner part guar-
antees convergence of the approximation process, according
to its topological property. On the other hand, the sampling
part gives a good chance of generating good quality paths by
reducing the number of necessary subdivision steps during
approximation. In fact, the use of 𝑒𝑒𝑆 steering method alone
would be sufficient to ensure convergence, but the sampling
part gives a number of alternatives which contribute to path
quality and are beneficial when the 𝑒𝑒𝑆 solution collides.

(1) T. Init(𝑞init)(2) for all 𝑘 = 1 to 𝐾 do(3) 𝑞rand ←󳨀 RandomConfig()(4) 𝑞near ←󳨀 T.NearestNeighbor(𝑞rand)(5) if 𝑞new ←󳨀 T.Connect(𝑞rand, 𝑞near) then(6) T.AddVertex(𝑞new)(7) T.AddEdge(𝑞near, 𝑞new)(8) end if(9) end for(10) return T

Algorithm 1: The basic RRT construction algorithm [44].

5. Global Planning: The RTR-Planner

In Section 4.4 we argued that “human-like” driving prefers
moving along straight path segments. We designed the TTS-
planner with this assumption in mind; indeed it tries to find
a local path which arrives at the straight line defined by 𝑞𝐺
(or 𝑞𝐼). In order to obtain an effective approximation-based
planning solution, we need a global planner which facilitates
the local planning phase. Thus a preliminary global path is
required which is not necessarily feasible for the car, but can
be approximated easily with the TTS-planner.

For this purpose we decided not to use any general holo-
nomic planning algorithm; however the topological property
of our local planner ensures approximation convergence
for any collision-free paths. Instead of this, we looked for
a preliminary path which is “almost” feasible for the car.
The solution has been found by omitting the minimum
turning radius and designing a global planner which uses
only straight motion and turning-in-place primitives. The
resulting paths are directly applicable for differential drive
robots, which have similar motion model as cars except the
turning radius constraint. The planning method is based on
the Rapidly Exploring Random Trees (RRT) approach [8–10]
which is known for its fast convergence properties even in
high dimensional configuration spaces and widely used in
path planning applications.

Let us first summarize the basic RRT planning process
and after that we derive our RTR (rotate-translate-rotate)
approach.

5.1. Rapidly Exploring Random Trees. The basic RRT con-
struction process can be seen in Algorithm 1. The building of
the treeT starts from the initial configuration. RandomCon-
fig() returns a randomconfiguration 𝑞rand from the configura-
tion space C (sampling step). NearestNeighbor() determines
the nearest configuration 𝑞near in the tree, according to a
metric defined on the configuration space (vertex selection
step). It depends on the implementation if this function
can return only graph vertices or inner configurations of
edges as well. Connect() tries to connect 𝑞near to 𝑞rand by
simply interpolating between them (tree extension step). It
extends 𝑞near until it is connected to 𝑞rand or a collision is
detected. In the latter case 𝑞new will be the farthest collision-
free configuration towards 𝑞rand. In order to reach the goal
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(a) (b)

Figure 10: Illustration of RRT and RTR global planning. (a) RRT trees after 1000 iterations and (b) RTR trees and solution path after 65
iterations.

configuration, the random sampling can be biased to include𝑞goal sometimes in the random sequence, or a bidirectional
search [10] can be performed by growing two trees from both
the initial and goal configurations.

The RRT method can be inherently applied to nonholo-
nomic systems. Instead of a simple interpolation towards𝑞rand (which assumes free mobility in any directions) a
system-specific local planner should be applied in the Con-
nect() step. The original RRT version proposed in [8] rec-
ommended choosing an input and applying for a given time
quantum Δ𝑡 to obtain a Δ𝑞 which brings 𝑞near closer to 𝑞rand.
This was augmented in [9] for such systems where an explicit
local planning (steering) method is available to connect two
configurations. Actually we build our approach on this RRT-
Connect version.

For our purpose (i.e., for differential drive) the simplest
steering method is the following sequence of straight motion
and turning-in-place primitives: (1) turn to head the next
position, (2) move straight until it is reached, and (3)
turn to the desired orientation. If a collision occurs during
this motion sequence, the extension is stopped at the last
collision-free configuration. This simple method has the
advantage that it delivers an exact solution between two
configurations (no sampling of the input set is needed).
Furthermore the tree edges will be straight thus making the
nearest neighbor search easy, even if inner configurations
of edges are involved in the search. This latter property
helps to keep the number of tree vertices as low as possible,
although we experienced that a naive application of this
rotate-translate-rotate steering method together with RRT
has poor performance if narrow areas have to be crossed in
order to obtain a result. The reason is that in narrow places
the collision will occur most likely during the first rotation
primitive; hence no translation, that is, no effective extension
of the tree will be achieved. An example scenario with a

Table 1: Performance measures of RRT and RTR (based on 100
runs).

RRT RTR
Success Ratio 25% 100%
Avg. no. of iterations 882.5 65.4

narrow passage is depicted in Figure 10, with illustrative
results of RRT and the below described RTR planners. Both
algorithms have been run 100 times; in every run maximum
1000 iterations were allowed. We found that RRT had only
25% success rate and 882.5 iterations on average, while RTR
was successful in every trial with averagely 65.4 iterations (see
Table 1). We describe the operation of RTR-planner in the
sequel.

5.2. RT-Trees and Primitives. RTR-planner is similar to a bidi-
rectional RRT-Connect algorithm; however, it has differences
in the sampling, the vertex selection, and the extension steps
as well. It uses translation (T) and rotation (R) primitives for
building the trees. In the extension steps, only RT (rotate-
translate) sequences are used instead of the exact rotate-
translate-rotate steering method. For this reason, we denote
the constructed trees as RT-trees. The vertices of the trees
are configurations as usual and the edges are continua of
configurations. According to T and R motion primitives,
these are called Translational Configuration Intervals (TCIs)
and Rotational Configuration Intervals (RCIs). The process
of an RT-tree construction can be seen in Algorithm 2 and is
detailed in the sequel.

5.2.1. Sampling. The first difference to RRT can be found in
the sampling step. RandomPos() returns a random position𝑝𝐺 without orientation, denoted as the guiding position in
the sequel, instead of a configuration. It can be treated as
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(1) function RT CONSTRUCT(𝑞init)(2) T. Init(𝑞init)(3) for all 𝑘 = 1 to 𝐾 do(4) 𝑝𝐺 ←󳨀 RandomPos()(5) 𝑞near ←󳨀 T.NearestNeighbor(𝑝𝐺)(6) 𝑡𝑢𝑟𝑛𝐷𝑖𝑟 ←󳨀 MinTurnDir(𝑞𝑛𝑒𝑎𝑟, 𝑝𝐺)(7) 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ←󳨀 T.Extend(𝑞near, 𝑡𝑢𝑟𝑛𝐷𝑖𝑟)(8) if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 then(9) T.Extend(𝑞near, −𝑡𝑢𝑟𝑛𝐷𝑖𝑟)(10) end if(11) end for(12) return T(13) end function(14)(15) function T. Init(𝑞)(16) T.AddVertex(𝑞)(17) 𝑇𝐶𝐼 ←󳨀 TCIExtend (𝑞, “forward”)(18) T.AddVertex(𝑇𝐶𝐼.𝑞end)(19) T.AddEdge(𝑞, 𝑇𝐶𝐼)(20) 𝑇𝐶𝐼 ←󳨀 TCIExtend (𝑞, “backward”)(21) T.AddVertex(𝑇𝐶𝐼.𝑞end)(22) T.AddEdge(𝑞, 𝑇𝐶𝐼)(23) end function(24)(25) function T.Extend(𝑞, 𝑡𝑢𝑟𝑛𝐷𝑖𝑟)(26) [𝑅𝐶𝐼, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛] ←󳨀 RCIExtend(𝑞, 𝑡𝑢𝑟𝑛𝐷𝑖𝑟)(27) T.AddVertex(𝑅𝐶𝐼.𝑞end)(28) T.AddEdge(𝑞, 𝑅𝐶𝐼)(29) 𝑇𝐶𝐼 ←󳨀 TCIExtend (𝑅𝐶𝐼.𝑞end, “forward”)(30) T.AddVertex(𝑇𝐶𝐼.𝑞end)(31) T.AddEdge(𝑅𝐶𝐼.𝑞end, 𝑇𝐶𝐼)(32) 𝑇𝐶𝐼 ←󳨀 TCIExtend(𝑅𝐶𝐼.𝑞end, “backward”)(33) T.AddVertex(𝑇𝐶𝐼.𝑞end)(34) T.AddEdge(𝑅𝐶𝐼.𝑞end, 𝑇𝐶𝐼)(35) return collision(36) end function

Algorithm 2: Construction of an RT-tree.

a one-dimensional continuous set of configurations, from
which any element can serve as local goal in the tree extension
step.

5.2.2. Vertex Selection. T.NearestNeighbor() returns the con-
figuration in the existing tree which has the smallest position
distance to 𝑝𝐺. This step uses a simple Euclidean metric;
hence no special configuration space metrics are needed.

5.2.3. Extension. The main difference to the RRT method
can be found in the tree extension step. On the one hand,
translation is always performed in both forward and back-
ward directions. Additionally, the translation is not stopped
when 𝑝𝐺 is reached, but continued until the first collision
in both directions (this is the functionality of TCIExtend(),
called by both T.Init() and T.Extend() functions). On the
other hand, an important difference is the fact that an R-T
sequence will always be planned, even if a collision occurs
in the rotation phase. The RTR-planner balances between
reaching guiding positions and extending the tree. If 𝑝𝐺

pG

Figure 11: Illustration of the tree extension procedure if the direc-
tion to 𝑝𝐺 is blocked.

cannot be reached due to a collision, then two things can be
done:

(1) If the collision occurred during the T primitive, then
the iteration is finished (because the tree has been
extended).

(2) If the collision occurred during the R primitive,
then TCI EXTEND is performed in both forward
and backward directions at the colliding orientation
(first extension), and the rotation is tried again in
the other turning direction as well. After the second
rotation, independently from its success or collision,
TCI EXTEND is called again (second extension). An
example of this procedure can be seen in Figure 11.

This extension strategy causes a more aggressive free
space exploration than in case of the basic RRT method.

5.3. Connecting RT-Trees. As the RTR-planner builds two
RT-trees—from both the initial and goal configurations—in
order to obtain a final path, the two trees have to be
connected. This is attempted in every iteration. The newly
added TCIs are checked against every TCI in the other tree,
starting from its root. If an intersection is found and if a
collision-free RCI can be put between the intersecting TCIs
to connect them, then the two trees can be merged and the
path determined easily by tracing the trees back to their roots.

6. Simulation Results

The RTR + TTS planning algorithm was tested extensively
in simulations and compared to other similar approaches
in terms of effectiveness and path quality. To two other
algorithms were investigated:

(i) RRT-Connect (CCRS). Bidirectional RRT using the
CCRS steering method as local planner (direct one-
step approach, no approximation needed).

(ii) RTR + CCRS. The RTR-planner is used for generating
a preliminary global path, followed by an approxima-
tion phase using CCRS paths.

The following scenarios have been used for testing:
(i) A wide environment with few obstacles (can be

treated as an easy planning task, see Figure 12).
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(a) RRT-Connect (CCRS) (b) RTR + CCRS (c) RTR + TTS (proposed method)

Figure 12: Path planning in a wide environment.

(a) RRT-Connect (CCRS) (b) RTR + CCRS (c) RTR + TTS (proposed method)

Figure 13: Path planning for parallel parking.

(a) RTR + CCRS (b) RTR + TTS (proposed method)

Figure 14: Crossing a narrow corridor.

(ii) A simple parallel parking scenario (a well known
problem for path planning algorithms, see Figure 13).

(iii) Driving through a narrow corridor and parking next
to the wall (can be treated as a difficult planning task,
see Figure 14).

(iv) Crossing three perpendicular narrow corridors with
bigger free areas at the corners (can be treated as a
very difficult planning task, see Figure 15).

The simulated car is 4m long and 2m wide with 4.42m
minimal turning radius.

To obtain practical results, we constrained the maximum
iteration count of the tree building process to 10000 in every
algorithm and applied a lower bound of path subdivision at
the approximation phase. Every algorithm has been run 100
times in every scenario, and the average results are shown in
Figure 16. The performance and path quality is measured by
the following metrics:

(i) Success Ratio. Percentage of successful runs.

(ii) Number of Cusps. The number of reversals along
the path. A good path contains as few reversals as
possible.

(iii) Steering Amount. The absolute integral of the path
curvature. It gives the amount of turning along the
path. A path with less sharp turns or with more
straight segments is more comfortable than a path
requiring much turning along the way.

(iv) Travel Time. The time of driving along the resulting
path is estimated as follows. A traveling speed func-
tion with Vmax = 5m/s and Vmin = 1m/s is assigned
to the path, which is inversely proportional to the
actual path curvature. The cusps are penalized with0.5 s “reversing time.” Those paths are better, which
require less time to travel along.

Numerical results are listed in Figure 16, while illustrative
examples can be examined in Figures 12–15.

As expected, the “easy” path planning task in wide
environment can be flawlessly solved by all selected algorithm
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(a) RTR + CCRS (b) RTR + TTS (proposed method)

Figure 15: Crossing three narrow corridors.
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Figure 16: Summary of the simulation results.

combinations (Figure 12).The path quality measures are sim-
ilar (first column in Figure 16); however the proposed RTR
+ TTS-planner combination results in the most comfortable
and human-like paths with respect to steering amount and
travel time.

Similarly, the parallel parking task is solvable as well by
every tested algorithm (Figure 13).The TTS-based local plan-
ner obtains the highest quality paths. This is not surprising
because the most “natural” parallel parking maneuver is a𝑇𝑇𝑆 path itself. The reason for obtaining more complicated
paths with CCRS-based methods is that the CCRS planner
does not have the “natural” solution amongst its local path
candidates; hence it relies stronger on the global planning
phase. During parallel parking we want to achieve a lateral
shift to a narrow place which is quite unnatural for the
car; this results in many approximation steps for the RTR

+ CCRS planner, producing an enormous number of small
movements. The result is much better if the CCRS local
planner is applied directly in the RRT-Connect planning
phase, because in this case the unnatural approximation is
avoided. However, the RTR + TTS-planner outperforms this
as well (see the second column in Figure 16).

As we move to more complicated planning challenges
in environments containing narrow corridors, sampling-
based planners need more iterations to find a solution,
resulting in lower success rates (because the number of
iterations is limited). Those global planners which tend to
use mainly straight movements are more successful than
others. In the scenario with one corridor the direct RRT-
Connect method completely fails since it uses curved local
paths to connect configuration samples (for this reason only
RTR + CCRS and RTR + TTS solutions are depicted in
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Figure 14). Approximation methods are better suited to such
environments and it can be seen in the third column of 14
that the TTS local planner results in higher success ratios
and better quality paths. The effectiveness of RTR as global
planner originates from the aggressive extension step and
from the fact that it contains only straight forward and
backward translation movements. Because 𝑇𝑇𝑆 paths are
designed to arrive at straight lines, they are well suited for
the approximation of RTR paths, resulting in less subdivision
steps (efficiency) and simpler path geometry (quality).

The effectiveness of the RTR global planner canmostly be
examined in the last scenario, where three narrow corridors
have to be passed (Figure 15). Comparing the approximation
result using CCRS and TTS local planners, we can find a
much higher efficiency and much better path quality in case
of TTS. Furthermore, we can see the different philosophies
behind the two local planners; namely, CCRS paths strive
to have the maximal allowed curvature, while 𝑇𝑇𝑆 paths
are not restricted to this. In the larger “turning spaces”
between corridors, the TTS-planner generates less sharp
turns and needs less reversals, which increases the comfort of
passengers in the car. The direct RRT-Connect method with
CCRS local planner completely fails, similarly to the previous
example. As can be seen in the last column of Figure 16,
the RTR + TTS-planner significantly outperforms the other
algorithms.

7. Conclusions

In this paper we presented a global planning method for
car-like vehicles, producing paths with continuous curvature.
A comparative analysis with possible alternatives was per-
formed as well and we could see that both components (RTR
and TTS) of the two-phase planning approach contribute to
the effectiveness and path quality of the resulting algorithm.
The (preliminary) RTR path planner is capable of designing
paths consisting of straight movements and turning-in-place.
We apply the TTS local planner to the RTR path in a second
approximation phase, in order to obtain a final path obeying
the bounded and continuous curvature conditions.The TTS-
planner uses straight segments, CC-turns, and elementary
paths in order to generate a feasible and human-like solution
even in cluttered and narrow environments. We gave an
overview of how to build CC-turns and elementary paths;
the class of curvature and sharpness bounded 𝐸𝐸𝑆 and 𝑇𝑇𝑆
paths were introduced, and existence conditions were given
for them. An exact steering method: the 𝑒𝑒𝑆-planner was
presented as well, which delivers a unique 𝐸𝐸𝑆 solution for
a planning query and verifies the topological property. Sim-
ulation studies were presented to illustrate that the proposed
RTR + TTS planning algorithm can be applied universally in
less and more difficult situations and the obtained paths are
quite “natural.”

We continue this work in the future by implementing the
proposed algorithm on our physical testbed [52, 53] utilizing
small-sized model cars and later on a real vehicle to per-
form real-life tests and performance measurements. Further
research includes the investigation of possible applications
in previously unknown and changing environments, and the

interaction possibilities of this planning method with online
map building algorithms.

Appendix

A. Existence Conditions for EES Paths

Lemma 2 stated that, in the absence of obstacles, any (𝑞𝐼, 𝑞𝐺)
pair of initial and goal configurations of a continuous steering
car can be connected by an 𝐸𝐸𝑆 path. Here we give its proof,
where we use some properties of 𝐵(⋅) and 𝐷(⋅, ⋅) functions,
which are established in Appendix C.

Proof of Lemma 2. Let us apply the curvature bound to 𝜅2
first: 󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 ≤ 𝜅max. (A.1)

After substituting (59b) it gets the form󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐵 (𝜃̃𝐼)𝑦̃𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜅max. (A.2)

Using the fact that 𝐵(⋅) is nonnegative in the interval of
interest (cf. Property C.3 in Appendix C) we can rearrange
this to 󵄨󵄨󵄨󵄨𝑦̃𝐼

󵄨󵄨󵄨󵄨 ≥ 𝐵 (𝜃̃𝐼)𝜅max
= 󵄨󵄨󵄨󵄨󵄨Δ𝑦2,min (𝜃̃𝐼)󵄨󵄨󵄨󵄨󵄨 , (A.3)

which means that, for a given 𝜃̃𝐼 = −2𝛿2, a valid 𝐸𝑆 subpath
exists if and only if 𝑞̃𝐼 is farther from the 𝑥-axis than the
minimal possible change in the 𝑦-coordinate determined by
the necessary deflection and the given curvature constraint.

We can obtain the necessary and sufficient conditions for
the existence of 𝐸𝐸𝑆 paths by substituting (55a), (55b), (55c),
and (55d) into (A.3):󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝐼 + 𝐷 (2𝛿1, 𝜃𝐼)𝜅1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≥ 𝐵 (2𝛿1 + 𝜃𝐼)𝜅max

, (A.4)

alternatively written as󵄨󵄨󵄨󵄨𝑦𝐼 + Δ𝑦1 (𝜃𝐼, 𝛿1, 𝜅1)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨Δ𝑦2,min (𝜃𝐼, 𝛿1)󵄨󵄨󵄨󵄨 , (A.5)

together with the obvious other condition |𝜅1| ≤ 𝜅max.
According to Property C.5 in Appendix C,𝐷(2𝛿1, 𝜃𝐼) = 0

only if 𝛿1 = 0 or 𝛿1 = −𝜃𝐼 ± 𝜋. This means that, for any 𝜃𝐼
and 𝛿1 ∉ {0, −𝜃𝐼±𝜋}, the Δ𝑦1 term is nonzero and a 𝜅1 can be
found such that (A.5) and the curvature bound are fulfilled,
because

lim
𝜅1→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷 (2𝛿1, 𝜃𝐼)𝜅1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = ∞. (A.6)

We have seen that for any query pair of the form (𝑞𝐼, 0)
a class of 𝐸𝐸𝑆 paths—parametrized by (𝛿1, 𝜅1)—is available.
A more general query pair (𝑞𝐼, 𝑞𝐺) can be transformed to the
form (𝑞󸀠𝐼, 0) by the inverse transformation 𝑇−1(𝑞𝐺), and the
resulting path can be transformed back by 𝑇(𝑞𝐺).
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Figure 17: Illustration of topological property forC = R2.

B. Topological Property of
the 𝑒𝑒𝑆 Steering Method

The topological property of steering methods is defined as
follows [12].

Definition B.1 (topological property). A steering method
Steer(𝑞0, 𝑞1) verifies the topological property if∀𝜖 > 0,∃𝜂 > 0,∀𝑞0, 𝑞1 ∈ C𝑑C (𝑞0, 𝑞1) < 𝜂 󳨐⇒ 𝑑C (𝑞0, Steer (𝑞0, 𝑞1) (𝑠)) < 𝜖,∀𝑠 ∈ [0, 𝑆𝜆] ,

(B.1)

where 𝑑C is any metric defined on the configuration space
C and 𝑆𝜆 is the total length of the of the path returned by
Steer(𝑞0, 𝑞1).

This means that, for every nonzero 𝜖, 𝜂 can be found
such that if 𝑞1 is in an 𝜂-neighborhood of 𝑞0, then the local
path generated by Steer does not exit the 𝜖-neighborhood
of 𝑞0. When approximating a global path and having 𝑞0 as
an intermediate point on it which has a collision-free 𝜖-
neighborhood, then we can find another intermediate point𝑞1 along the path in the 𝜂-neighborhood of 𝑞0 such that
the feasible local path Steer (𝑞0, 𝑞1) is collision-free (see
Figure 17). Hence if the global path has nonzero clearance,
then the topological property ensures that a feasible path
can be constructed along it using a sequence of local paths
generated by the steering method.

We will show in the sequel that the 𝑒𝑒𝑆 steering method
has this advantageous property. But before that, a metric 𝑑C
has to be defined over C. The most important metrics over
the 𝑛-dimensional Euclidean space R𝑛 belong to the family
of 𝐿𝑝 metrics [6]:

𝐿𝑝 (𝑟, 𝑟󸀠) = ( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟󸀠𝑖 󵄨󵄨󵄨󵄨󵄨𝑝)1/𝑝 , 𝑟, 𝑟󸀠 ∈ R
𝑛. (B.2)

A special 𝐿𝑝 metric is the 𝐿∞ metric which can be obtained
from (B.2) if 𝑝 → ∞:𝐿∞ (𝑟, 𝑟󸀠) = max

1≤𝑖≤𝑛
{󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟󸀠𝑖 󵄨󵄨󵄨󵄨󵄨} . (B.3)

The configuration space of the continuous steering car is
not an Euclidean space but a manifold C = R2 × S1 ×[−𝜅max, 𝜅max], where S1 stands for the unit circle which is
homeomorphic to [−𝜋, 𝜋]/∼. Because of the identification of−𝜋 and 𝜋, special care must be taken when the “distance” of
two angles has to be measured. An appropriate metric for S1

can be the following [6]:𝑑S1 (𝜃, 𝜃󸀠) = min {󵄨󵄨󵄨󵄨󵄨𝜃 − 𝜃󸀠󵄨󵄨󵄨󵄨󵄨 , 2𝜋 − 󵄨󵄨󵄨󵄨󵄨𝜃 − 𝜃󸀠󵄨󵄨󵄨󵄨󵄨} . (B.4)

As stated in [6], metric spaces are extendable by Cartesian
product and a new metric can be defined for the extended
space using the original metrics. Since our configuration
space C is an extension over R2 and S1, we can choose 𝐿∞

metric for R2, 𝑑S1 for S1, and 𝐿∞ again over these:𝑑C (𝑞0, 𝑞1)= 𝐿∞ (𝐿∞ ((𝑥0, 𝑦0) , (𝑥1, 𝑦1)) , 𝑑S1 (𝜃0, 𝜃1)) , (B.5)

which leads to𝑑C (𝑞0, 𝑞1) = max {󵄨󵄨󵄨󵄨𝑥0 − 𝑥1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑦0 − 𝑦1󵄨󵄨󵄨󵄨 ,
min {󵄨󵄨󵄨󵄨𝜃0 − 𝜃1󵄨󵄨󵄨󵄨 , 2𝜋 − 󵄨󵄨󵄨󵄨𝜃0 − 𝜃1󵄨󵄨󵄨󵄨}} . (B.6)

Note that we have neglected one dimension of the con-
figuration space (the [−𝜅max, 𝜅max] part) in the metric. This is
valid because the curvatures of 𝑞𝐼 and 𝑞𝐺 are always 0; thus
the “curvature distance” of these is zero as well. Furthermore,
note that in this metric Euclidean distances are compared to
angles, which is a common problem in motion planning. It
is hard to define a metric over C that can avoid this issue.
Nevertheless, the above defined metric is appropriate for
proving the following theorem.

Theorem B.2. The 𝑒𝑒𝑆 steering method verifies the topological
property.

Proof. Since the goal configuration is at the origin by assump-
tion (without loss of generality), the metric (B.6) can be
written in the following form:𝑑C (𝑞 (𝑠)) = max {|𝑥 (𝑠)| , 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 , |𝜃 (𝑠)|} , (B.7)

where 𝑞(𝑠) is a shorthand for Steer (0, 𝑞𝐼)(𝑠). The total length
of an 𝑒𝑒𝑆 path is𝑆𝜆 = 𝑠1 + 𝑠2 + 𝑠3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 4𝛿1𝜅 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 4𝛿2𝜅 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑠3, (B.8)

where 𝑠1, 𝑠2, and 𝑠3 are the corresponding path segment
lengths, according to (86). It is obvious that|𝑥 (𝑠)| ≤ 𝑠 ≤ 𝑆𝜆, (B.9)󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 ≤ 𝑠 ≤ 𝑆𝜆, (B.10)|𝜃 (𝑠)| ≤ 󵄨󵄨󵄨󵄨2𝛿1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨2𝛿2󵄨󵄨󵄨󵄨 (B.11)
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for all 𝑠 ∈ [0, 𝑆𝜆]. After multiplying (B.11) with 2/|𝜅| we get2 |𝜃 (𝑠)||𝜅| ≤ 𝑠1 + 𝑠2 ≤ 𝑆𝜆, (B.12)

which results in |𝜃 (𝑠)| ≤ 𝑆𝜆 |𝜅|2 ≤ 𝑆𝜆 𝜅max2 . (B.13)

Looking at (B.7) and (B.9)–(B.13) we can state that𝑑C (𝑞 (𝑠)) ≤ 𝑆𝜆 ⋅max {1, 𝜅max2 } . (B.14)

With this, the statement to be proven is equivalent to𝑑C (𝑞𝐼) < 𝜂 󳨐⇒ 𝑆𝜆 ⋅max {1, 𝜅max2 } < 𝜖, (B.15)

which holds when

lim
𝑞𝐼→0

𝑆𝜆 = 0. (B.16)

According to (83), 𝑞𝐼 → 0 means that |𝜅∗| → ∞; hence|𝜅| → 𝜅max. It follows that

lim
𝑞𝐼→0

𝑆𝜆 = 󵄨󵄨󵄨󵄨4𝛿1󵄨󵄨󵄨󵄨𝜅max
+ 󵄨󵄨󵄨󵄨4𝛿2󵄨󵄨󵄨󵄨𝜅max

+ 𝑠3. (B.17)

Let us define the function𝐹 (𝑦𝐼, 𝜃𝐼, 𝛿1) fl 𝑦𝐼 + 𝐺 (2𝛿1, 𝜃𝐼)𝜅 (B.18)

for any fixed 𝜅. According to (77b) we know that for any 𝑒𝑒𝑆
path 𝐹 (𝑦𝐼, 𝜃𝐼, 𝛿1) = 0. (B.19)

Let us examine the behavior of𝐹(⋅) in the vicinity of (𝑦𝐼, 𝜃𝐼) =(0, 0):
lim

(𝑦𝐼,𝜃𝐼)→(0,0)
𝐹 (𝑦𝐼, 𝜃𝐼, 𝛿1) = 0 + 𝐺 (2𝛿1, 0)±𝜅max= ±2𝐵 (2𝛿1)𝜅max

, (B.20)

where we applied Property C.4 in Appendix C. This implies
together with (B.19) ±2𝐵 (2𝛿1)𝜅max

= 0. (B.21)

Property C.3 in Appendix C states that𝐵 (2𝛿1) = 0 ⇐⇒ 𝛿1 = 0, (B.22)

which implies

lim
(𝑦𝐼,𝜃𝐼)→(0,0)

𝐹 (𝑦𝐼, 𝜃𝐼, 𝛿1) = 0 ⇐⇒ 𝛿1 󳨀→ 0. (B.23)

In other words, in the neighborhood of (𝑦𝐼, 𝜃𝐼) = (0, 0) an 𝑒𝑒𝑆
path can only exist iff 𝛿1 → 0.

To sum it up, we now that if 𝑞𝐼 → 0, then|𝜅| 󳨀→ 𝜅max,𝛿1 󳨀→ 0,𝛿2 = −𝛿1 − 𝜃𝐼2 󳨀→ 0. (B.24)

Furthermore, based on (77a) we get

ＦＣＧ
q→0

s3 = ＦＣＧ maxq→0


xI +

A (21 + I) + C(21, I)

 


= 0,

0 0
0 (B.25)

where we used (B.23) and Property C.1 in Appendix C.
Finally, we can conclude that

ＦＣＧ
q→0

S =

41



+

42



+ s3 = 0,

0 0
0

max max
(B.26)

which proves (B.15); thus the requirement for the topological
property is fulfilled.

C. Auxiliary Functions

Some auxiliary functions are used during deriving the 𝐸𝐸𝑆
and 𝑒𝑒𝑆 paths:

𝑋(𝛽) = sgn (𝛽)√𝜋 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨 ⋅ 𝐶𝐹(√ 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨𝜋 ) (C.1)

𝑌 (𝛽) = √𝜋 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨 ⋅ 𝑆𝐹(√ 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨𝜋 ) (C.2)

𝐴 (𝛽) = 𝑋 (𝛽) (1 + cos𝛽) + 𝑌 (𝛽) sin𝛽 (C.3)𝐵 (𝛽) = 𝑋 (𝛽) sin𝛽 + 𝑌 (𝛽) (1 − cos𝛽) (C.4)𝐶 (𝛽, 𝜓) = 𝐴 (𝛽) cos𝜓 − 𝐵 (𝛽) sin𝜓 (C.5)𝐷(𝛽, 𝜓) = 𝐴 (𝛽) sin𝜓 + 𝐵 (𝛽) cos𝜓 (C.6)𝐺 (𝛽, 𝜓) = 𝐵 (𝛽 + 𝜓) + 𝐷 (𝛽, 𝜓) . (C.7)

Because all of these contain Fresnel integrals, it is hard
to solve equations including these functions if the unknown
variable is in the argument. However, some function prop-
erties can be specified including parity, zeros, and specific
values.These properties are useful when dealing with expres-
sions containing them.

Property C.1. The functions𝑋(𝛽), 𝑌(𝛽), 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽, 𝜓),
and𝐷(𝛽, 𝜓) have zero value at 𝛽 = 0.
Proof. For 𝑋(𝛽) and 𝑌(𝛽) the value at 𝛽 = 0 can be
obtained by substitution: all factors are zero. It follows from
the definitions that 𝑋(0) and 𝑌(0) make every term zero in
the other functions as well.
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Table 2: Signs of the terms of 𝐵(𝛽).𝛽 𝑋(𝛽) sin𝛽 𝑌(𝛽) 1 − cos𝛽 𝐵(𝛽)−𝜋 − 0 + + +(−𝜋, 0) − − + + +0 0 0 0 0 0(0, 𝜋) + + + + +𝜋 + 0 + + +
Property C.2. 𝑋(𝛽) and 𝐴(𝛽) are odd, while 𝑌(𝛽) and 𝐵(𝛽)
are even functions. Additionally, sgn(𝑋(𝛽)) = sgn(𝛽) and𝑌(𝛽) ≥ 0.
Proof. It follows from the definition of Fresnel sine and cosine
integrals (18a) and (18b) that they are odd functions and
their signs are the same as the sign of their arguments. In
the definitions of 𝑋(𝛽) and 𝑌(𝛽), the arguments of 𝐶𝐹 and𝑆𝐹 depend on the absolute value of 𝛽, which results in even
functions with nonnegative values. The multiplication factor√𝜋|𝛽| is even as well, while the sgn(⋅) function is odd. We
know that the product of two functions is even if the parities
of factors are the same. Similarly, if the parities differ, then the
resulting function is odd. Based on these, it is obvious that𝑋(𝛽) is odd with sgn(𝑋(𝛽)) = sgn(𝛽) and 𝑌(𝛽) is even and
nonnegative.

Given that the sine function is odd and cosine is even and𝑋(0) = 𝑌(0) = 0, it can be easily seen that both terms in
the definition of 𝐴(𝛽) are odd; thus 𝐴(𝛽) itself is odd as well.
Similarly, both terms in 𝐵(𝛽) are even; thus 𝐵(𝛽) itself is even
as well.

Property C.3. In the range 𝛽 ∈ [−𝜋, 𝜋],𝐵(𝛽) is positive except
at 𝛽 = 0, where it has zero value.
Proof. Let us see the sign of terms of 𝐵(𝛽) in different subsets
of range 𝛽 ∈ [−𝜋, 𝜋], as listed in Table 2. It can be seen that𝐵(𝛽) is a sum of positive or zero-valued terms. Only𝑋(𝛽) and
sin𝛽 can be negative, but in all such cases the product of them
is positive or zero. The table shows that𝐵 (𝛽) = 0 ⇐⇒ 𝛽 = 0, (C.8)𝐵 (𝛽) > 0 ⇐⇒ 𝛽 ̸= 0. (C.9)

Property C.4. 𝐷(𝛽, 𝜓) has the following specific values:𝐷(𝛽, 0) = 𝐵 (𝛽) (C.10)𝐷(−𝛽, 𝛽) = 𝐷 (𝛽, −𝛽) = −𝐵 (𝛽) . (C.11)

Proof. (C.10) can be verified easily by substituting 𝜓 = 0
into (C.4). Before looking at the second equation, let us
reformulate the definition of𝐷(𝛽) as follows:𝐷(𝛽, 𝜓) = 𝑋 (𝛽) (sin𝜓 + sin (𝛽 + 𝜓))+ 𝑌 (𝛽) (cos𝜓 − cos (𝛽 + 𝜓)) . (C.12)

We used here the definitions of 𝐴(𝛽) and 𝐵(𝛽) and trigono-
metric addition rules. In both cases of (C.11) we get𝐷(−𝛽, 𝛽) = 𝐷 (𝛽, −𝛽)= −𝑋 (𝛽) sin𝛽 + 𝑌 (𝛽) (cos𝛽 − 1) , (C.13)

which is obviously equal to −𝐵(𝛽).
Property C.5. The function 𝐷(𝛽, 𝜓) has zeros only at 𝛽 = 0
and 𝛽 = −2𝜓 + 2𝜋𝑘, 𝑘 ∈ Z in the range 𝛽 ∈ [−𝜋, 𝜋].
Proof. The first condition for 𝐷(𝛽, 𝜓) being zero was already
stated by Property C.1. The second condition can be verified
easily by substitution to (C.12). Furthermore, we have to
check whether 𝐷(𝛽, 𝜓) has zeros elsewhere. Let us assume
that 𝛽 ̸= 0 and 𝛽 ̸= −2𝜓 + 2𝜋𝑘, but 𝐷(𝛽, 𝜓) = 0. In this
case the following equality would be true:𝑋(𝛽) (sin𝜓 + sin (𝛽 + 𝜓))= −𝑌 (𝛽) (cos𝜓 − cos (𝛽 + 𝜓)) . (C.14)

Let us introduce a new variable𝛼 fl 𝛽 + 2𝜓 − 2𝜋𝑘 ̸= 0 (C.15)

according to our assumption 𝛽 ̸= −2𝜓 + 2𝜋𝑘. After
substituting 𝜓 = 𝛼/2 − 𝛽/2 + 𝜋𝑘 into (C.14) we get𝑋(𝛽) [sin(𝛼2 − 𝛽2 + 𝜋𝑘) + sin(𝛼2 + 𝛽2 + 𝜋𝑘)]= −𝑌 (𝛽)⋅ [cos(𝛼2 − 𝛽2 + 𝜋𝑘) − cos(𝛼2 + 𝛽2 + 𝜋𝑘)] . (C.16)

By applying trigonometric addition rules we can reformulate
it: 𝑋(𝛽) ⋅�������2 sin(𝛼2 + 𝜋𝑘) ⋅ cos 𝛽2= −𝑌 (𝛽) ⋅�������2 sin(𝛼2 + 𝜋𝑘) ⋅ sin 𝛽2 . (C.17)

The 2 sin(𝛼/2 + 𝜋𝑘) terms can be canceled because they are
nonzero according to (C.15).The equality should hold for the
signs as well:

sgn (𝑋 (𝛽)) sgn(cos𝛽2)= − sgn (𝑌 (𝛽)) sgn(sin𝛽2) , (C.18)
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which evaluates to

sgn (𝛽) = − sgn (𝛽) , if 𝛽 ∈ (−𝜋, 𝜋) \ 0,0 = 1, if 𝛽 = −𝜋,0 = −1, if 𝛽 = 𝜋. (C.19)

Because all of these are contradictions, the assumption that𝐷(𝛽, 𝜓) has zeros elsewhere than 𝛽 = 0 and 𝛽 = −2𝜓 + 2𝜋𝑘
was wrong.

Property C.6. In the range 𝛽 ∈ [−𝜋, 𝜋] and 𝜓 ∈ [−𝜋, 𝜋], for
all 𝜓 there exists 𝛽 such that 𝐺(𝛽, 𝜓) ̸= 0.
Proof. First let us see the case 𝜓 = 0. Using (C.7) and (C.10)
we get 𝐺 (𝛽, 0) = 2𝐵 (𝛽) . (C.20)

According to (C.9) we can state that 𝐺(𝛽 ̸= 0, 𝜓 = 0) ̸= 0.
We can check this for 𝜓 ̸= 0 as well. For example, let us

choose 𝜓 = −𝛽. Using (C.7) and (C.11) we arrive at𝐺 (𝛽, −𝛽) = −𝐵 (𝛽) . (C.21)

Because 𝛽 = −𝜓 ̸= 0, based on (C.9) we can state again that
in case of 𝜓 ̸= 0 a 𝛽 can be found such that 𝐺(𝛽, 𝜓) ̸= 0.
Property C.7. In the range 𝛽 ∈ [−𝜋, 𝜋] and 𝜓 ∈ [−𝜋, 𝜋], for
all 𝜓 there exists 𝛽 such that 𝐺(𝛽, 𝜓) = 0.
Proof. Let us look again at the case 𝜓 = 0 first. Based on
(C.20) and (C.8) we can state that 𝐺(0, 0) = 0.

In the case 𝜓 ̸= 0 let us examine two specific values for 𝛽:
(i) If 𝛽 = 0, then, using (C.7) and Properties C.1 and C.3,

we get 𝐺 (0, 𝜓) = 𝐵 (𝜓) > 0. (C.22)

(ii) If 𝛽 = −𝜓, then, using (C.7) and (C.11) and
Property C.3, we get𝐺 (0, 𝜓) = −𝐵 (𝜓) < 0. (C.23)

It follows that for all 𝜓 there exists a 𝛽 ∈ (−𝜓, 0) such that𝐺(𝛽, 𝜓) = 0.
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[43] P. Zips, M. Böck, and A. Kugi, “Optimisation based path
planning for car parking in narrow environments,” Robotics and
Autonomous Systems, 2015.

[44] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-
domain RRTs: efficient exploration by controlling the sampling
domain,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3856–3861, Barcelona, Spain,
April 2005.

[45] D. Kiss and D. Papp, “Effective navigation in narrow areas:
A planning method for autonomous cars,” in Proceedings
of the 2017 IEEE 15th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), pp. 000423–
000430, Herl’any, Slovakia, January 2017.

[46] D. Kiss and G. Tevesz, “A steering method for the kinematic
car using C*CS paths,” in Proceedings of the 15th International
Carpathian Control Conference, ICCC 2014, pp. 227–232, May
2014.
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