
Research Article
A Good Earthquake Concave Behaviour of a Seismic Isolator
Which Supports a Metallic Roof

Iancu Dursu,1 Ionel Rovenua,2 and Nicolae Daniel Stoica1

1Technical University of Civil Engineering, Bucures,ti, Romania
2Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Correspondence should be addressed to Ionel Rovenţa; ionelroventa@yahoo.com
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We combine some important theoretical mathematical results with practical aspects from engineering in a nice framework of 𝐾-
spiders, which forms a space with global nonpositive curvature. Some concavity properties into such framework are derived. As an
application, we consider a mathematical model for an engineering problem. More precisely, we are trying to model the behaviour
of tension forces appearing in a metallic roof supported on seismic isolators. In fact, we are looking to find the properties of good
seismic isolators in order to reduce the destructive power of an earthquake.The answer consists of a concave behaviour in terms of
the displacements on the 3D axes of the Cartesian system.

1. Introduction and Convexity Properties in
Global NPC Spaces

Theaim of this paper is to use some nicemathematical results
in the framework of modelling some practical engineering
problems.More precisely, since the convex/concave functions
defined on trees can model the tension forces in an arbores-
cent network and the flows from communication networks,
it is interesting to study which classical inequalities hold true
in this framework. Our aim is to study some properties of
a concave function defined on a 𝐾-spider, which is a tree
endowed with a special metric.

The spaces with global nonpositive curvature (abbrevi-
ated, global NPC spaces) are defined as follows.

Definition 1. A global NPC space is a complete metric space
𝐸 = (𝐸, 𝑑) for which the following inequality holds true: for
each pair of points 𝑥0, 𝑥1 ∈ 𝐸 there exists a point 𝑦 ∈ 𝐸 such
that, for all points 𝑧 ∈ 𝐸,

𝑑2 (𝑧, 𝑦) ≤ 1
2𝑑
2 (𝑧, 𝑥0) + 1

2𝑑
2 (𝑧, 𝑥1) − 1

4𝑑
2 (𝑥0, 𝑥1) . (1)

These spaces are also named as the Cat [0] spaces. See
[1]. It is well-known that in a global NPC space, each pair of

points 𝑥0, 𝑥1 ∈ 𝐸 can be connected by a unique geodesic (a
rectifiable curve 𝛾: [0, 1] → 𝐸 such that the length of 𝛾|[𝑠,𝑡] is𝑑(𝛾(𝑠), 𝛾(𝑡)) for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 1). Moreover, this geodesic is
unique. It can be easily proved that the point 𝑦 from above is
themidpoint of 𝑥0 and 𝑥1 and has the property

𝑑 (𝑥0, 𝑦) = 𝑑 (𝑦, 𝑥1) = 1
2𝑑 (𝑥0, 𝑥1) . (2)

There are many examples of global NPC spaces: Hilbert
spaces (its geodesics are the line segments), the upper half-
plane H = {𝑧 ∈ C : Im 𝑧 > 0}, endowed with the Poincaré
metric (the geodesics are the semicircles in H perpendicular
to the real axis and the straight vertical lines ending on the
real axis), and Riemannian manifolds with complete, simply
connected, and of nonpositive sectional curvature.

Besides manifolds, other important examples of global
NPC spaces are the Bruhat-Tits buildings (in particular, the
trees). See [1].More details on globalNPC spaces are available
in [2–5]. In the following sentences we define the basic
convexity notions in a global NPC space.

Definition 2. A set 𝐶 ⊂ 𝐸 is called 𝑐𝑜𝑛V𝑒𝑥 if 𝛾([0, 1]) ⊂ 𝐶 for
each geodesic 𝛾: [0, 1] → 𝐶 joining 𝛾(0), 𝛾(1) ∈ 𝐶.
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A function 𝜑: 𝐶 → R is called concave if the function
𝜑 ∘ 𝛾 : [0, 1] → R is concave for each geodesic 𝛾 : [0, 1] →
𝐶, 𝛾(𝑡) = 𝛾𝑡, that is;

𝜑 (𝛾𝑡) ≥ (1 − 𝑡) 𝜑 (𝛾0) + 𝑡𝜑 (𝛾1) , (3)

for all 𝑡 ∈ [0, 1]. If −𝛾 is concave we say that 𝛾 is convex.

Note that the functions −𝑑2(𝑧, ⋅) are concave (more
precisely, uniformly concave). Moreover, one can prove that
the distance function −𝑑 is concave in each of its variables
(and also with respect to both variables).

In what follows P1(𝐸) means the set of all Borel proba-
bility measures 𝜇 on 𝐸 with separable support, which verify
the condition ∫

𝐸
𝑑(𝑥, 𝑦)𝑑𝜇(𝑦) < ∞, ∀𝑥 ∈ 𝐸. The set P2(𝐸)

is given by the family of all square integrable probability
measures with separable support; that is, ∫

𝐸
𝑑2(𝑥, 𝑦)𝑑𝜇(𝑦) <

∞.
We define the barycenter of a measure 𝜇 ∈ P1(𝐸) as the

unique point 𝑧 ∈ 𝐸 which minimizes the uniformly convex
function:

𝐹𝑦 (𝑥) = ∫
𝐸
[𝑑2 (𝑧, 𝑥) − 𝑑 (𝑦, 𝑥)] 𝑑𝜇 (𝑥) . (4)

We can remark that this minimizer is independent of
𝑦 ∈ 𝐸 and it denotes 𝑏(𝜇). In the case of a square integrable
measure Sturm [5] proves that the barycenter can be also seen
as

𝑏 (𝜇) = argmin
𝑧∈𝐸

∫
𝐸
𝑑2 (𝑧, 𝑥) 𝑑𝜇 (𝑥) . (5)

The main idea in a global NPC spaces is the fact that, in
general, the minimizer may fail to exist or is not unique, but
the existence and the uniqueness of a barycenter always hold
for NPC spaces, since the metric is uniformly convex.

Note that if the support of 𝜇 is included in a convex closed
set 𝐾, then 𝑏(𝜇) ∈ 𝐾.
Definition 3. Given 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛 and some positive
real weights 𝜆 = (𝜆1, . . . , 𝜆𝑛) with ∑𝑛𝑖=1 𝜆𝑖 = 1, we define

M𝑛 (𝜆, 𝑥) fl argmin
𝑧∈𝐸

𝑛

∑
𝑖=1

𝜆𝑖𝑑2 (𝑧, 𝑥𝑖) . (6)

Remark 4. If we consider 𝜇 = ∑𝑛𝑖=1 𝜆𝑖𝛿𝑥𝑖 then

𝑏 (𝜇) = argmin
𝑧∈𝐸

∫
𝐸
𝑑2 (𝑧, 𝑥) 𝑑𝜇 (𝑥) = M𝑛 (𝜆, 𝑥) . (7)

Note that, for each 𝑥0, 𝑥1 ∈ 𝐸, the point 𝑦 ∈ 𝐸 and the
point 𝑦󸀠 = (𝑥1 + 𝑥2)/2 are the same.

We recall also a result of Lawson and Lim [6]which shows
that, for each 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐸𝑛 and
some positive real weight 𝜆 = (𝜆1, . . . , 𝜆𝑛) with ∑𝑛𝑖=1 𝜆𝑖 = 1,
we have

𝑑 (M𝑛 (𝜆, 𝑥) ,M𝑛 (𝜆, 𝑦)) ≤
𝑛

∑
𝑖=1

𝜆𝑖𝑑 (𝑥𝑖, 𝑦𝑖) , (8)

where 𝜇 = ∑𝑛𝑖=1 𝜆𝑖𝛿𝑥𝑖 and ] = ∑𝑛𝑖=1 𝜆𝑖𝛿𝑦𝑖 are two finitely
supported probability measures. Interesting connections and
applications obtained into this field can be found in [4, 7].

The outline of the paper is the following: Section 1 is
devoted to some preliminaries on the convexity/concavity
properties in metric spaces of global nonpositive curvature.
In Section 2 we study a characterization of concave functions
defined on a𝐾-spider andwe are dealingwith the localization
of minimum and maximum of a concave function defined
on a 𝐾-spider. In Section 3 we present a nice engineering
application in the area of the behaviour of tension forces
appearing in a metallic roof supported on seismic isolators.

2. Extremum Points and Convexity/Concavity
Properties on 𝐾-Spiders

The aim of section is the study of the minimizers and
maximizers of a convex function defined on a 𝐾-spider.

We consider 𝐾 an arbitrary set and let 𝑁𝑖 = {(𝑖, 𝑟) : 𝑟 ∈
R}, ∀𝑖 ∈ 𝐾.We define the 𝐾-spider (𝑁, 𝑑) as

𝑁 = {(𝑖, 𝑟) : 𝑖 ∈ 𝐾, 𝑟 ∈ R}
∼ ,

where (𝑖, 0) ∼ (𝑗, 0) (𝑖, 𝑗 ∈ 𝐾) ,
(9)

with the corresponding distance given by

𝑑 ((𝑖, 𝑟) , (𝑗, 𝑠)) = {
{
{

|𝑟 − 𝑠| , if 𝑖 = 𝑗
|𝑟| + |𝑠| , otherwise. (10)

The intersection of each of the two sets 𝑁𝑖 and 𝑁𝑗, with𝑖 ̸= 𝑗, is given by the origin 𝑜 fl (𝑖, 0) = (𝑗, 0). The 𝐾-
spider 𝑁 depends only on the cardinality of 𝐾. If the set
𝐾 = {1, 2, . . . , 𝑘} the 𝐾-spider is called 𝑘-spider. The tripod
is a 3-spider. Note also that the sets 𝑁𝑖 can be seen as closed
subsets of 𝑁. More details on graph theory can be found in
[8, 9].

Proposition 5 (see [5]). Each 𝐾-spider (𝑁, 𝑑) endowed with
the metric given by (10) is a global NPC space.

We introduce that the notion of convex hull is introduced
via the formula

co 𝐹 =
∞

⋃
𝑛=0

𝐹𝑛, (11)

where 𝐹0 = 𝐹 and for 𝑛 ≥ 1 the set 𝐹𝑛 consists of all points in𝐸 which lie on geodesics which start and end in 𝐹𝑛−1.
A simple consequence is that the convex hull of subset of a

𝐾-spider𝑁 is also a𝐾-spider included in𝑁. Based on the fact
that the closed convex hull of every nonempty finite family of
points of 𝐸 has the fixed point property in [4] the Schauder
fixed point theorem has been proved.

Definition 6. We say that 𝑥 ∈ 𝐴 is an extremal point for the
convex set𝐴 ⊂ 𝑁 if 𝑥 does not belong to the interior of some
geodesic segment with the ends in 𝐴.
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Naturally, Minkowski’s theorem can be easily extended in
the framework of global NPC spaces; that is, each point from
a closed convex set can be written as a convex combination
of extremal points. More precisely, we can say that each point
belonging to a convex set belongs to the convex hull of the
extremal points. For more details, see [10].

We are now in position to prove our first result of this
section. See also [11], for some other dual results and more
details.

Theorem 7. Let (𝑁, 𝑑) be a 𝐾-spider and let 𝑓: 𝐴 → R be a
continuous concave function defined on a closed convex subset
𝐴 ⊂ 𝑁. Then 𝑓 attains its infimum in an extremal point. As a
consequence, if 𝑓 attains its infimum in an interior point, then
𝑓 is a constant function.

Proof. Firstly, let us consider a point 𝑥𝑚 ∈ 𝐴 such that

𝑓 (𝑥𝑚) = inf
𝑥∈𝐴

𝑓 (𝑥) . (12)

ApplyingMinkowski’s theoremwe infer the existence of some
extremal points 𝑒1, . . . , 𝑒𝑛 of the set𝐴 and 𝜆𝑖 > 0, 𝑖 = 1, . . . , 𝑛,
with ∑𝑛𝑖=1 𝜆𝑖 = 1 such that

𝑥𝑚 = argmin
𝑧∈𝐴

𝑛

∑
𝑖=1

𝜆𝑖𝑑2 (𝑧, 𝑒𝑖) . (13)

Secondly, by using Jensen’s inequality we obtain that

𝑓 (𝑒𝑘) ≥ 𝑓 (𝑥𝑚) ≥
𝑛

∑
𝑖=1

𝜆𝑖𝑓 (𝑒𝑖) ≥ max
𝑖=1,...,𝑛

𝑓 (𝑒𝑖)

(𝑘 = 1, . . . , 𝑛) .
(14)

Finally, we have that 𝑓(𝑥𝑚) = min𝑖=1,...,𝑛 𝑓(𝑒𝑖) and the
proof is finished.

The following results are devoted to the minimizing
properties of a convex function defined on a 𝐾-spider.

Theorem 8. Let 𝑓: 𝐴 → R be a concave function defined on a
convex subset 𝐴 ⊂ 𝑁 of a𝐾-spider (𝑁, 𝑑). If 𝑥𝑀 ∈ 𝐴 is a local
maximum for the function 𝑓 then 𝑥𝑀 is a global maximum of
𝑓; that is,

𝑓 (𝑥𝑀) = sup
𝑥∈𝐴

𝑓 (𝑥) . (15)

Proof. Thedefinition of𝑥𝑀 as a point of localmaximumgives
the existence of a radius 𝑟 > 0 such that

𝑓 (𝑥𝑀) ≥ 𝑓 (𝑥)
(𝑥 ∈ 𝐵𝑟 (𝑥𝑀) = {𝑥 ∈ 𝐴 | 𝑑 (𝑥, 𝑥𝑀) ≤ 𝑟}) . (16)

Let 𝑥 ∈ 𝐴 \ 𝐵𝑟(𝑥𝑀); for any point 𝑥 ̸= 𝑥𝑀, 𝑥 ∈ 𝐵𝑟(𝑥𝑀) ∩
co{𝑥, 𝑥𝑀} there exists 𝜆 ∈ (0, 1) such that

𝑥 = argmin
𝑧∈𝑁

((1 − 𝜆) 𝑑2 (𝑧, 𝑥) + 𝜆𝑑2 (𝑧, 𝑥𝑀)) . (17)

Jensen’s inequality gives that

𝑓 (𝑥𝑀) ≥ 𝑓 (𝑥) ≥ (1 − 𝜆) 𝑓 (𝑥) + 𝜆𝑓 (𝑥𝑀) , (18)

and we deduce that 𝑓(𝑥𝑀) ≥ 𝑓(𝑥) and the proof is finished.

We end this section by recalling a problem consisting in
finding the conditions which need to be satisfied by three
convex functions defined on each arm of a 3-spider in order
to obtain a convex function defined on the entire 3-spider.

We consider a 3-spider 𝑁, with the arms given by
𝑁1, 𝑁2, 𝑁3 and let 𝑓:𝑁 → R be a convex function. The
restrictions of 𝑓 to each arm are convex functions, denoted
by 𝑓1, 𝑓2, 𝑓3. Let us consider 𝑓1, 𝑓2, 𝑓3: [0,∞) → R convex
functions which satisfy the properties

𝑓󸀠1𝑑 (0) + 𝑓󸀠3𝑑 (0) ≥ 0,
𝑓󸀠1𝑑 (0) + 𝑓󸀠2𝑑 (0) ≥ 0,
𝑓󸀠2𝑑 (0) + 𝑓󸀠3𝑑 (0) ≥ 0.

(19)

Without loosing the generality we can suppose that
𝑓1(0) = 𝑓2(0) = 𝑓3(0) = 0. In [12] was proved that
conditions (19) (which are equivalent with the property that
the functions𝑓1+𝑓2,𝑓1+𝑓3,𝑓2+𝑓3 are nondecreasing) imply
that 𝑓 is convex on the entire 3-spider.

3. An Application for the Best Earthquake
Concave Behaviour of a Seismic Isolator
Which Support a Metallic Roof

As an application we consider a mathematical model for an
engineering problem. More precisely, we are trying to model
the behaviour of tension forces appearing in a metallic roof
supported on seismic isolators. In fact, we are looking to find
the properties of a good seismic isolators in order to reduce
the destructive power of an earthquake.

The answer consists of a concave behaviour in terms of
the displacements on the 3D axes. The reason for which we
choose to consider a concave function in order to describe
good behaviour of the seismic isolators is the following:
the concavity geometric properties says that the graph of a
concave function is under the tangent line on each point
belonging to the graph (see Figure 1). For example, if we
consider the concave function 𝑓(𝑥) = 𝑐𝑥𝛼, 𝑥 > 0, 𝛼 ∈
(0, 1), 𝑐 > 0, Figure 1 shows that for small numbers 𝑥
the function has almost no effect, but for large numbers
(displacements of an earthquake) we can reduce drastically
the largest displacements under the action of a concave
function 𝑓. The entering data in the function are depending
on the earthquake displacements over the 3D axes of a
Cartesian system in R3. Of course, the angles between the
seismic isolators and the axes of the Cartesian system are
very important. In fact, the resultant forces appearing in the
seismic isolator are determined by the sum of the projections
of the displacements over the direction of the seismic isolator.

Once we have established the usefulness of a good
concave behaviour of the seismic isolators we can proceed
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Figure 1: The graph of a concave function.
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Figure 2: The tension forces acting in a single point.

to model the action of an earthquake in a single point of a
metallic roof. In the following we describe the mathematical
model of the forces acting in a single point.

In Figure 2 from below we draw the initial state of the
tension forces acting in a point 𝐹 which are connected with
three other points by some arms. Let us consider𝐹1, 𝐹2, 𝐹3 the
forces acting in each of the three arms.

We assume that the point is supported on a seismic
isolator with a concave behaviour. Let 𝑓: R+ → R+ be a
concave function.

We consider now a seismic isolator fixed with the two
ends in𝑂 and 𝐹, which forms an angle 𝛼with the plane 𝑥𝑂𝑦.
We denote by 𝛼1, 𝛼2, 𝛼3 the angles between the direction of
the seismic isolator with each of the three positive senses of
the axes 𝑂𝑥,𝑂𝑦,𝑂𝑧. We denote also by 𝛽1, 𝛽2, 𝛽3 the angles
between the direction of the seismic isolator with each of
the three arms. Let us consider the displacements under
the action of an earthquake in the point 𝑂 in each of the


1


2

 3


1


2

3

F

O Y

Z

X

→
F1

→F
2

→ F
3

C
1
(t)

C2(t)

C
3
(t
)

Figure 3: The resultant tension forces.

directions𝑂𝑥,𝑂𝑦,𝑂𝑧 at the moment of time 𝑡 > 0, described
by the functions 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡).

Hence, the seismic isolator receive, as entering data in the
starting point 𝑂, the displacement functions 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡)
and after “a good concave behaviour” of the seismic isolator,
we obtain at the ending point 𝐹 the displacement field into
the direction of the seismic isolator, as a tension force given
by

𝐹 (𝑡) = smn (𝑡)
⋅ 𝑓 (󵄨󵄨󵄨󵄨𝑐1 (𝑡) cos𝛼1 + 𝑐2 (𝑡) cos𝛼2 + 𝑐3 (𝑡) cos𝛼3󵄨󵄨󵄨󵄨) ,

(20)

where smn(𝑡) = sgn(𝑐1(𝑡) cos𝛼1 + 𝑐2(𝑡) cos𝛼2 + 𝑐3(𝑡) cos𝛼3)
and sgn(𝑎) = 1, if 𝑎 ≥ 0, and sgn(𝑎) = −1, if 𝑎 < 0.

Now, taking into account the angles between the seismic
isolator and the arms starting from the point 𝐹 and the initial
forces 𝐹1, 𝐹2, 𝐹3, we obtain the following resultant tension
forces (as we can see in Figure 3):

𝐹1 󳨀→ 𝐹1 + 𝐹 (𝑡) cos𝛽1,
𝐹2 󳨀→ 𝐹2 + 𝐹 (𝑡) cos𝛽2,
𝐹3 󳨀→ 𝐹3 + 𝐹 (𝑡) cos𝛽3.

(21)



Mathematical Problems in Engineering 5

H

H

Y

Z

Y

Z

X

X E

G

F

M Y

Z

X

G

OO

C
1
(t)

C2(t)

C
3
(t
)

Y

Z

X

F

O

C
1
(t)

C2(t)

C
3
(t
)

E

O

C
1
(t
)

C2(t)

C
3
(t
)

4
1

4
2 4

3

4
1

4
2

4
3

→
H1

→H
2

→ H
3

C
1
(t)

C2(t)

C
3
(t
)

→
E1

→E
2

→ E
3

1
1

1
2 1

3

1
1

1
2

1
3

2
1

2
2

2
3

2
1

2
2

2
3

3
1

3
2

3
3

3
1

3
2

3
3

→
H1

→
H

2

→H
3

→E
1

→
E2

→
E3

←
F1

← F
1

←F2

←
F
2

← F
3

←
F3

←
G1

←
G1

←
G2

←G 2

← G
3

← G
3

Figure 4: A simple model of a metallic roof.

In order to extend our idea to a more complex case of a
metallic roof we can consider a model with 4 points (𝐸, 𝐹, 𝐺,
and𝐻) where the seismic isolators act (see Figure 4). We can
do all the computation in order to compute all the tension
forces in the roof arms. Our aim is to compute the points with
maximal tension forces and to see the dependence of tension
forces in terms of the angles between the seismic isolators and
the roof and between the arms of the roof. Since we know
the maximal tension forces which can be supported by the
arms, the second aim is to choose the best angles and the best
concave behaviour of the seismic isolators under the action
of an earthquake. Of course, the final aim is to minimize the
maximum of the tension forces in the metallic roof.

Firstly, we need to remark that the earthquake produces
the same displacements along the same axes for each of
the points 𝐸, 𝐹, 𝐺,𝐻 described by the same displacement
functions 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡), 𝑡 > 0.

Hence, we consider 4 seismic isolators which support the
roof at the points𝐸, 𝐹, 𝐺,𝐻.Wedenote by𝛼𝑖1, 𝛼𝑖2, 𝛼𝑖3 the angles
between the direction of the seismic isolators and each of the
three positive senses of the taxes𝑂𝑥,𝑂𝑦,𝑂𝑧 and by 𝛽𝑖1, 𝛽𝑖2, 𝛽𝑖3

the angles between the direction of the seismic isolators and
each of the three arms. The index 𝑖 = 1, . . . , 4 used for
the angles, denotes the corresponding angles for the seismic
isolator fixed in 𝐸, 𝐹, 𝐺, and𝐻, respectively.

In a similar way, we compute the resultant forces acting
on each arms starting from 𝐸, 𝐹, 𝐺, and 𝐻, at each moment
of time, and we obtain the following estimates:

𝐸1 󳨀→ 𝐸1 + 𝐸 (𝑡) cos𝛽11 ,
𝐸2 󳨀→ 𝐸2 + 𝐸 (𝑡) cos𝛽12 ,
𝐸3 󳨀→ 𝐸3 + 𝐸 (𝑡) cos𝛽13 ,
𝐹1 󳨀→ 𝐹1 + 𝐹 (𝑡) cos𝛽21 ,
𝐹2 󳨀→ 𝐹2 + 𝐹 (𝑡) cos𝛽22 ,
𝐹3 󳨀→ 𝐹3 + 𝐹 (𝑡) cos𝛽23 ,
𝐺1 󳨀→ 𝐺1 + 𝐺 (𝑡) cos𝛽31 ,
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𝐺2 󳨀→ 𝐺2 + 𝐺 (𝑡) cos𝛽32 ,
𝐺3 󳨀→ 𝐺3 + 𝐺 (𝑡) cos𝛽33 ,
𝐻1 󳨀→ 𝐻1 + 𝐻 (𝑡) cos𝛽41 ,
𝐻2 󳨀→ 𝐻2 + 𝐻 (𝑡) cos𝛽42 ,
𝐻3 󳨀→ 𝐻3 + 𝐻 (𝑡) cos𝛽43 ,

(22)

where

𝐸 (𝑡) = smn1 (𝑡)
⋅ 𝑓 (󵄨󵄨󵄨󵄨󵄨𝑐1 (𝑡) cos𝛼11 + 𝑐2 (𝑡) cos𝛼12 + 𝑐3 (𝑡) cos𝛼13󵄨󵄨󵄨󵄨󵄨) ,

smn1 (𝑡)
= sgn (𝑐1 (𝑡) cos𝛼11 + 𝑐2 (𝑡) cos𝛼12 + 𝑐3 (𝑡) cos𝛼13) ,

𝐹 (𝑡) = smn2 (𝑡)
⋅ 𝑓 (󵄨󵄨󵄨󵄨󵄨𝑐1 (𝑡) cos𝛼21 + 𝑐2 (𝑡) cos𝛼22 + 𝑐3 (𝑡) cos𝛼23󵄨󵄨󵄨󵄨󵄨) ,

smn2 (𝑡)
= sgn (𝑐1 (𝑡) cos𝛼21 + 𝑐2 (𝑡) cos𝛼22 + 𝑐3 (𝑡) cos𝛼23) ,

𝐺 (𝑡) = smn3 (𝑡)
⋅ 𝑓 (󵄨󵄨󵄨󵄨󵄨𝑐1 (𝑡) cos𝛼31 + 𝑐2 (𝑡) cos𝛼32 + 𝑐3 (𝑡) cos𝛼33󵄨󵄨󵄨󵄨󵄨) ,

smn3 (𝑡)
= sgn (𝑐1 (𝑡) cos𝛼31 + 𝑐2 (𝑡) cos𝛼32 + 𝑐3 (𝑡) cos𝛼33) ,

𝐻 (𝑡) = smn4 (𝑡)
⋅ 𝑓 (󵄨󵄨󵄨󵄨󵄨𝑐1 (𝑡) cos𝛼41 + 𝑐2 (𝑡) cos𝛼42 + 𝑐3 (𝑡) cos𝛼43󵄨󵄨󵄨󵄨󵄨) ,

smn4 (𝑡)
= sgn (𝑐1 (𝑡) cos𝛼41 + 𝑐2 (𝑡) cos𝛼42 + 𝑐3 (𝑡) cos𝛼43) ,

(23)

and sgn(𝑎) = 1, if 𝑎 ≥ 0 and sgn(𝑎) = −1, if 𝑎 < 0.
Now, by adding the tension forces with act in different

senses on each arm, we obtain the total tension forces in each
arm.The unique point of maximal tension forces can be now
easily computed by taking into account the estimates from
above. For example, if we want to compute the tension force
at the time 𝑡 > 0 in the arm 𝐸𝐹 we need to estimate the value
of the following expression:

𝐸3 + 𝐸 (𝑡) cos𝛽13 + 𝐹3 + 𝐹 (𝑡) cos𝛽23 . (24)

In order to avoid the fact that the above expression is
bigger than the maxim tension force which can be supported
by the metallic arm 𝐸𝐹, we need to manage all the angles

and the concave function 𝑓. This problem is now purely
mathematics and differential calculus can be used to find the
best angles, depending onwhich concave functionwe choose,
in order to minimize the tension forces appearing in the arm
𝐸𝐹.

We recall that the properties and existence results for
the points of maximum/minimum tension forces in a very
complex roof is based onTheorems 7 and 8.

Another interesting aim is to minimize the total tension
forces in the roof. More precisely, another idea can be to
choose in a smart way all the angles in order to reduce all the
amount of tension forces. This can be done, by considering
minimizing problems in each part (subset) of the roof and of
course, in the entire roof.
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