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An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses
the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating
polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces
significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade
the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the
examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that
the adaptive mesh iteration method has many advantages.

1. Introduction

There are general two kinds of methods to solve the optimal
control problems, indirect method and direct method [1–
3]. The indirect method uses the Pontryagin minimum
principle and the first-order optimal necessary conditions to
convert the optimal problem to two ormore points boundary
value problem. This method could obtain the exact optimal
solution.The advantages of the indirectmethod are obtaining
the high precision solution, satisfying the optimality of the
first-order necessary conditions. The disadvantages are the
small convergence radius and highly sensitive costate which
is difficult to estimate. In recently years, direct methods have
been widely applied for the numerical solution of nonlinear
optimal control problems [4, 5]. The state and control are
discretized at a series of suitable points in a direct method,
then the continuous-time optimal control is converted into a
finite dimensional nonlinear programming problem (NLP),
and the next procedure is using the NLP solver software to
solve the NLP [6].

Among the popular direct methods are the pseudospec-
tral method and Hermite-Simpson method [7, 8]. The

pseudospectral method has the advantage of high rate of
convergence [9–11], so this paper develops the theory about
the Legendre pseudospectral method. There are also some
considerable interest in developing theory related toHermite-
Simpson method due to its reasonable accuracy with highly
sparse Hessian and constraint Jacobians matrix. Williams
provides a framework for arbitrary order and arbitrary
number of intervals for implementation on digital computers
[12]. That method allows the trading of the mesh points
within each interval with the number of intervals; thus, better
accuracy can be achieved by increasing mesh points for
smooth problems, while increasing the number of intervals to
achieve better accuracy for nonsmooth problems. However, it
is a fact that smooth regions and nonsmooth regions together
exist in one solution of the problem, so it is difficult to trade
the number ofmesh points with the number ofmesh intervals
when solving a complicated problem. Motived by the desire
to trade the number of mesh points with the number of mesh
intervals, both the number of mesh points within each mesh
interval and the number of mesh intervals are allowed to
vary in the method described in this paper. Furthermore,
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the method also can improve computational efficiency by
reducing the size of the mesh.

2. Trajectory Optimization Problems

Without loss of generality, consider the following optimal
control problems with inequality path constraints:

𝐽 = 𝑀(𝑥 (−1) , 𝑡0, 𝑥 (+1) , 𝑡𝑓)
+ 𝑡𝑓 − 𝑡02 ∫+1

−1
𝐿 (𝑥 (𝜏) , 𝑢 (𝜏) , 𝑡 (𝜏, 𝑡0, 𝑡𝑓)) 𝑑𝜏, (1)

subject to the constraints𝑑𝑥𝑑𝜏 = 𝑡𝑓 − 𝑡02 𝑓 (𝑥 (𝜏) , 𝑢 (𝜏) , 𝑡 (𝜏, 𝑡0, 𝑡𝑓)) ,
𝐶 (x (𝜏) , u (𝜏) , 𝑡 (𝜏, 𝑡0, 𝑡𝑓)) ≤ 0,
𝐵 (x (−1) , 𝑡0, x (−1) , 𝑡𝑓) ≤ 0,

(2)

where the term 𝑥(𝜏) ∈ 𝑅𝑛𝑥 denotes the state and the term𝑢(𝜏) ∈ 𝑅𝑛𝑢 denotes the control. In (1)-(2), the time domain𝜏 ∈ [−1, +1] is transformed from the time domain 𝑡 ∈ [𝑡0, 𝑡𝑓]
by the following affine transformation [12]:

𝜏 = 2𝑡𝑡𝑓 − 𝑡0 −
𝑡𝑓 + 𝑡0𝑡𝑓 − 𝑡0 ,

𝑡 = 𝑡 (𝜏) = 12 (𝜏 (𝑡𝑓 − 𝑡0) + 𝑡0 + 𝑡𝑓) ,
(3)

where the terms 𝑡0 and 𝑡𝑓 represent initial time and terminal
time, respectively.The basic idea of the approach in this paper
is based on interpolating functions for state and costate on
Legendre-Gauss-Lobatto (LGL) quadrature nodes [4, 7]. As
the LGL nodes points are distributed over the interval [−1, 1],
so it will be useful to transform the time domain.

3. Adaptive Mesh Iteration Methodology

3.1. Numerical Discretization. The domain 𝜏 ∈ [−1, +1]
is divided into 𝐾 mesh subintervals 𝑆𝑘 when using mesh
refinement. Then we have

𝐾⋃
𝑘=1

𝑆𝑘 = [−1, + 1] , 𝑆𝑘 = [𝑇𝑘−1, 𝑇𝑘] . (4)

The mesh points have the property −1 = 𝑇0 < 𝑇1 < ⋅ ⋅ ⋅ <𝑇𝑘 = +1. The state in the subintervals 𝑆𝑘 is approximated by
the Hermite interpolating polynomial with nth order [11]

x (𝜏) = a0 + a1𝜏 + ⋅ ⋅ ⋅ + a𝑛𝜏𝑛, 𝜏 ∈ [−1, +1] . (5)
Then the cost function is approximated by Gauss-Lobatto

quadrature rule as follows:

𝐽 ≈ 𝑀(x(1)1 , 𝑡0, x(𝐾)𝑁 , 𝑡𝑓)
+ 𝑡𝑓 − 𝑡02

𝐾∑
𝑘=1

ℎ𝑖2
𝑁𝑘∑
𝑗=1

𝜔(𝑘)𝑗 𝐿 (x(𝑘)𝑗 , u(𝑘)𝑗 , 𝑡 (𝜏(𝑘)𝑖 )) , (6)

where the term 𝜔(𝑘)𝑗 is the same as 𝜔𝑗 in [12].

3.2. Approximation of Solution Error. The estimate method
for the relative error is similar to the error estimate obtained
for numerically solving a different equation through using
the modified Euler Runge-Kutta scheme [13, 14]. Suppose the
NLP on mesh 𝑆𝑘, 𝑘 = 1, . . . , 𝐾, with 𝑁𝑘 HLGL points has
been solved. The ensuing mesh with 𝑀𝑘 = 𝑁𝑘 + 1 HLGL
points (𝜏(𝑘)1 , . . . , 𝜏(𝑘)𝑀𝑘), where 𝜏(𝑘)1 = 𝜏(𝑘)1 = 𝑇𝑘−1 and 𝜏(𝑘)𝑀𝑘 = 𝑇𝑘.
Assume further that (𝑥(𝜏(𝑘)1 ), . . . , 𝑥(𝜏(𝑘)𝑀𝑘)) are the values of the
state approximation at (𝜏(𝑘)1 , . . . , 𝜏(𝑘)𝑀𝑘). We then have

x̂(𝑘) (𝜏(𝑘)𝑗 ) = x̂(𝑘) (𝜏𝑘−1) + 𝑡𝑓 − 𝑡02
⋅ 𝑀𝑘∑
𝑙=1

(ℎ𝑙2 𝑓 (x̂(𝑘)) (𝜏(𝑘)𝑗 ) , 𝑢(𝑘) (𝜏(𝑘)𝑗 ) , 𝑡 (𝜏(𝑘)𝑖 , 𝑡0, 𝑡𝑓)) ,
𝑗 = 1, . . . ,𝑀𝑘.

(7)

The absolute error and the relative error approximations
at (𝜏(𝑘)1 , . . . , 𝜏(𝑘)𝑀𝑘) of the state are defined, respectively, as
𝐸(𝑘)𝑖 (𝜏(𝑘)𝑙 ) = 󵄨󵄨󵄨󵄨󵄨x̂(𝑘)𝑖 (𝜏(𝑘)𝑙 ) − x(𝑘)𝑖 (𝜏(𝑘)𝑙 )󵄨󵄨󵄨󵄨󵄨 ,
𝑒(𝑘)𝑖 (𝜏(𝑘)𝑙 ) = 𝐸(𝑘)𝑖 (𝜏(𝑘)

𝑙
)

1 +max𝑗∈[1,...,𝑁𝑘+1], 𝑘∈[1,...,𝐾]
󵄨󵄨󵄨󵄨󵄨x(𝑘)𝑖 (𝜏(𝑘)

𝑙
)󵄨󵄨󵄨󵄨󵄨 ,𝑙 = 1, . . . ,𝑀𝑘, 𝑖 = 1, . . . , 𝑛𝑥.

(8)

The maximum relative error in 𝑆𝑘 is then defined as

𝑒(𝑘)max = max
𝑖∈[1,...,𝑛𝑥], 𝑙∈[1,...,𝑀𝑘+1]

𝑒(𝑘)𝑖 (𝜏(𝑘)𝑗 ) . (9)

3.3. Nonsmooth Solution Location. If a mesh interval has met
the accuracy tolerance, that is, 𝑒(𝑘)max ≤ 𝜀, where 𝜀 is the desired
relative tolerance, then mesh size is reduced by decrease of
the number of collocation points or merging adjacent mesh
intervals; otherwise the mesh size needs to be modified by
increasing points or dividing that mesh interval into several
subintervals. Let 𝜅(𝑘)(𝜏) be the curvature of the 𝑖th component
of the state in mesh interval 𝑘, as

𝜅(𝑘) (𝜏) = 󵄨󵄨󵄨󵄨󵄨𝑋̈(𝑘)𝑖 (𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 + 𝑋̇(𝑘)𝑖 (𝜏)2)3/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (10)

Let 𝜅(𝑘) and 𝜅(𝑘)max be the mean and maximum value
of 𝜅(𝑘)(𝜏), respectively. Then define 𝑟𝑘 as the ratio of the
maximum to the mean curvature:

𝑟𝑘 = 𝜅(𝑘)max𝜅(𝑘) . (11)

3.4. Increasing the Number of Mesh Points within a Mesh
Interval. When 𝑒(𝑘)max > 𝜀 and if 𝑟𝑘 ≤ 𝑟max, where 𝑟max is a user-
defined parameter, the curvature is considered uniform in
this mesh interval and then the number of collocation points
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should be increased in interval 𝑘. Let𝑁(𝑀)
𝑘

and𝑁(𝑀+1)
𝑘

denote
the number of collocation points in interval 𝑘 at mesh𝑀 and𝑀+1, respectively, where𝑀 is themesh refinement iteration.
The number of points𝑁(𝑀+1)

𝑘
at mesh𝑀+ 1 is calculated by

the formula

𝑁(𝑀+1)𝑘 = 𝑁(𝑀)𝑘 + 𝑃𝑘, 𝑃𝑘 = ceil[log10 (𝑒(𝑘)max𝜀 )] . (12)

It is noted in (12) that the ratio of the maximum to the
error tolerance has a direct effect on the increases of the
polynomial degree in mesh interval. An upper limit 𝑁max is
set for the maximum allowable polynomial degree to make
sure that the number of collocation points does not grow to
an unreasonably large value. If 𝑁(𝑀+1)

𝑘
> 𝑁max (i.e., 𝑁(𝑀+1)𝑘

exceeds the maximum allowable polynomial degree), then
the mesh interval 𝑆𝑘 must be divided into equally spaced
subintervals.

3.5. Generation of New Mesh Segment. Assume 𝑒(𝑘)max > 𝜀 and𝑟𝑘 > 𝑟max, and then the 𝑘th mesh interval should be refined.
The following procedure is the strategy for mesh interval
division. Firstly, the predicted polynomial determines the
number of all the collocation points in the new subinterval.
Secondly, the number of collocation points should be no
fewer than the minimum allowable number. In other words,
whenever dividing a mesh interval, each interval will contain
at least 𝑁min collocation points. Third, the new number of
mesh intervals, 𝐵𝑘, is given by the formula

𝐵𝑘 = ceil[𝐵𝑢log10 (𝑒(𝑘)max𝜀 )] , (13)

where 𝐵𝑢 is a user-defined positive integer. In this process, it
is ensured that the number of new intervals should be at least
two.Thus, the number of new subintervals, denoted as𝐵𝑘, can
be rewritten as

𝐵𝑘 = max{2, ceil[𝐵𝑢log10 (𝑒(𝑘)max𝜀 )]} . (14)

3.6. Reducing the Number of Collocation Points in a Mesh
Interval. The relative error of the mesh interval is less than
the desired relative tolerance, and 𝑟𝑘 < 𝑟max, and then
the number of collocation points should be decreased. The
number of points 𝑁(𝑀+1)

𝑘
at mesh 𝑀 + 1 is calculated by the

formula

𝑁(𝑀+1)𝑘 = 𝑁(𝑀)𝑘 − 𝑃󸀠𝑘, 𝑃󸀠𝑘 = ceil(log10√𝑒(𝑘)max𝜀 ) . (15)

3.7. Merging Adjacent Mesh Subintervals. Before the adjacent
mesh subintervals merging, it is necessary to decrease the
number of each interval according to the method in Sec-
tion 3.5 and then generally estimate the number of mesh
interval points. If 𝑁𝑘+1 ̸= 𝑁𝑘, the mesh interval 𝑆𝑘+1 =[𝑇𝑘, 𝑇𝑘+1] andmesh interval 𝑆𝑘 = [𝑇𝑘−1, 𝑇𝑘] cannot bemerged

because the highest polynomial orders of the two adjacent
mesh intervals are not equal. All the matching points of the
original twomesh intervals are combined, and the conditions
for themerging of the twomesh subintervals aremainly three:

(1) The two mesh subintervals must be adjacent.
(2) The relative error estimates of the two grid intervals

are not more than 𝜀.
(3) The relative error of the new mesh interval after the

merger is not larger than 𝜀.
3.8. Penalty Function Method for Solving NLP. For con-
venience, the cost function and the path constraints are
adjoined together, so that we obtain the augmented cost
function

𝐽 ≈ 𝐽 + 𝜌 𝐾∑
𝑘=1

𝑁𝑘∑
𝑗=1

max {0, 𝐶 (𝑋(𝑘)𝑗 , 𝑈(𝑘)𝑗 , 𝑡 (𝜏(𝑘)𝑖 ))} , (16)

where the term 𝜌 represents penalty factor and 𝐶(𝑘)𝑗 =𝐶(𝑋(𝑘)𝑗 , 𝑈(𝑘)𝑗 , 𝑡(𝜏(𝑘)𝑖 )). When the penalty factor is greater than
a certain threshold, the solution of problem is equal to the
solution of original problem. The max operator has a great
difference on the time spent of solving the problem, so it
is time-consuming to solve the discretized NLP by using
the existing mature gradient-based optimization algorithm.
This paper develops the smoothing approximation function
method proposed in [15].

𝑝(𝑘)𝑗 (𝜀, 𝜌)

=
{{{{{{{{{{{{{

0, 𝐶(𝑘)𝑗 < − 𝜀𝜌𝑛 ,𝜌𝑛2𝜀 𝐶(𝑘)𝑗 + 𝐶(𝑘)𝑗 + 𝜀2𝜌𝑛 , − 𝜀𝜌𝑛 ≤ 𝐶(𝑘)𝑗 < 0,
𝐶(𝑘)𝑗 + 𝜀2𝜌𝑛 , 𝐶(𝑘)𝑗 > 0.

(17)

Obviously, the function 𝑝 is first-order differentiable with
respect to 𝐶 and has a good approximation to the max
operation. When the smoothing factor 𝜀 → 0, then we have𝑝(𝑘)𝑗 (𝜀, 𝜌) = max{0, 𝐶(𝑘)𝑗 }. The optimal index is converted into

𝐽 ≈ 𝐽 + 𝜌 𝐾∑
𝑘=1

𝑁𝑘∑
𝑗=1

𝑝(𝑘)𝑗 (𝜀, 𝜌) . (18)

The gradient-basedNLP algorithm also needs to compute
the gradient information of the objective function for the
optimal variable. Define theHamiltonian function of optimal
control problem:

𝐻(x, u,𝜆) = 𝐿 + 𝜆𝑇𝑓 + 𝑝 (𝜀, 𝜌) . (19)

3.9. Mesh Refinement Method. The schematic of adaptive
mesh iteration method is shown in Figure 1. The adaptive
mesh iteration method is summarized as follows.
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Figure 1: Schematic of adaptive mesh iteration method.

Step 1. Set 𝑀 = 0 and supply initial mesh, 𝑆 = ⋃𝐾𝑘=1 𝑆𝑘 =[−1, +1], where⋂𝐾𝑘=1 𝑆𝑘 = ⌀.

Step 2. Solve NLP on current mesh 𝑆.
Step 3. Compute maximum relative error 𝑒(𝑘)max in 𝑆𝑘, 𝑘 =1, . . . , 𝐾, if 𝑒(𝑘)max ≤ 𝜀 for all 𝑘 = 1, . . . , 𝐾 or 𝑀 > 𝑀max, and
then quit. Otherwise, proceed to Step 4.

Step 4. If 𝑒(𝑘)max > 𝜀, 𝑘 = 1, . . . , 𝐾, proceed to Step 5; otherwise,
proceed to Step 6.

Step 5. Compute the ratio between the maximum and the
mean curvature 𝑟𝑘 in 𝑆𝑘, and if 𝑟𝑘 ≤ 𝑟max, set the number of
collocation points according to (15); else divide the interval 𝑆𝑘
into 𝐵𝑘 subintervals, where 𝐵𝑘 is given by (14). Then proceed
to Step 7.

Step 6. For the single mesh interval, reduce the number of
collocation points. Merge the adjacent mesh intervals if they
satisfy the merger conditions.

Step 7. Set𝑀 =⃗ 𝑀 + 1, and return to Step 2.

4. Simulation Analysis

The order and intervals of the method in [12] are fixed in
each simulation, while those of the method described in
this paper are variable. For the convenience of narration,
the mesh refinement method in [12] is called FMRM (fixed
mesh refinement method), and the method in Section 3 is
called AMIM (adaptive mesh iteration method).The term𝑀
denotes the mesh refinement iteration, and 𝑀 = 0 means
the mesh initialization, and the term 𝑁 and term 𝐾 denote
the total collocation points and interval number, respectively.
The number of collocation points within each interval of the
two methods is at least 2. The maximum of all mesh interval
allowable error values is 𝜀, where 𝜀 = 10−6. When the mesh is
initialization, the whole mesh is divided into 10 intervals, and
each interval has a number of 2 collocation points. The value

Table 1: Hypersonic boost-glide vehicle date and physical constants.

Quantity Numerical values
Mass (kg) 1200𝑊/𝑆 (kg/m2) 420𝑅𝑒 (m) 6.378 × 106𝜌0 (kg/m3) 1.225𝜇 (m2/s2) 3.986 × 1014𝛽 (m) 7200

of term 𝑟max is 1.2, and the maximum number of collocation
points with each interval is 12. The penalty factor 𝜌 is 100
[15].The simulation results of this paper were performed on a
3.4GHz Intel Core i7 CPU computer and MATLAB Version
R2013.

Consider the following trajectory optimization prob-
lem taken from [16], and the state equations for a three-
dimensional point mass vehicle which is commonly used
in midcourse guidance systems of a Maneuverable Research
Reentry Vehicle (MaRRV) are listed as follows:

̇𝑟 = V sin 𝛾,
̇𝜙 = V cos 𝛾 sin𝜒𝑟 cos 𝜃 ,
̇𝜃 = 𝑉 cos 𝛾 cos𝜒𝑟 ,
V̇ = −𝐷𝑚 − 𝑔 sin 𝛾,
̇𝛾 = 1

V
[𝐿 cos𝛽 − (𝑔 − V2𝑟 ) cos 𝛾] ,

̇𝜒 = 𝐿 sin𝛽𝑚V cos 𝛾 + V𝑟 cos 𝛾 sin𝜒 tan 𝜃,

(20)

where 𝑟 is the radial position and the terms 𝜙 and 𝜃 are the
latitude and longitude, respectively. The term V is the total
velocity, and the terms 𝛾 and 𝜒 denote the flight path angle
and azimuth angle, respectively. The symbol 𝑚 represents
the vehicle mass and 𝑔 is the gravity (𝜇/𝑟2 with 𝜇 being
the gravitational parameter). The atmospheric density with
altitude is assumed to be exponential model as

𝜌 (𝑟) = 𝜌0𝑒−(𝑟−𝑅𝑒)/𝐻, (21)

where 𝜌0 and𝐻 are constants in Table 1.
The lift and drag are defined as

𝐿 = 𝑞𝑑𝑆𝐶𝐿 (𝛼) ,
𝐷 = 𝑞𝑑𝑆𝐶𝐷 (𝛼) , (22)

where

𝐶𝐿 (𝛼) = −0.034 + 0.93𝛼,
𝐶𝐷 (𝛼) = 0.037 − 0.01𝛼 + 0.736𝛼2 + 0.936𝛼3. (23)
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Figure 2: (a) Altitude versus range. (b) Velocity versus time. (c) Attack angle versus time.

The objective is to maximize the range, so the cost
function is given by

𝐽 = min {−𝜃𝑓} . (24)

Figures 2(a), 2(b), and 2(c) show the final solutions of the
optimal control problem. It can be seen from Figures 2(a),
2(b), and 2(c) that the solution to the trajectory is relatively
smooth, though there seems to be a rapid change in the attack
angle in Figure 2(c) near 𝑡 = 1000 s. It is noted that the
control variable is limited to [−5 deg, 15 deg] and that the
solutions showed in Figure 2(c) satisfy that constraint. The
results demonstrate the ability of approaches described in this
paper for solving optimal control problems with inequality
path constraints. In particular, it can be seen that the attack
angle remains of 15 deg near 𝑡 = 1000 s. One might suppose
that if the attack angle is not constrained, its value would
likely be larger than 15 deg.

Figure 3 shows the collocation points distribution of the
solutions obtained using AMIM. When 𝑀 = 0, the initial
mesh is constructed. From𝑀 = 0 to𝑀 = 2, the mesh points
are added largely, while the increment is relatively small from
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Figure 3: Mesh point history.

𝑀 = 2 to the iteration process terminated. As Figures 4(a)
and 4(b) show about the trajectories iteration process and
attack angle iteration process, respectively, it can be seen that
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Table 2: Compare results using VOIand FOI methods.

Case Methods 𝑛 𝐾 Mean times/s 𝑁 𝑀 Cost function
1 AMRM (2, 11) 65 6.3 214 4 −4165.3
2 FMRM 5 50 19.6 201 8 −4050.2
3 FMRM 5 60 33.8 241 7 −4103.7
4 FMRM 5 65 41.3 261 6 −4128.5
5 FMRM 7 40 25.2 241 7 −4085.2
6 FMRM 7 45 38.1 271 6 −4114.6
7 FMRM 7 55 47.8 331 5 −4163.4
8 FMRM 9 25 23.0 201 8 −4016.1
9 FMRM 9 30 36.4 241 7 −4073.9
10 FMRM 9 35 49.7 281 5 −4122.8
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Figure 4: (a) Trajectories iteration. (b) Attack angle iteration.

there is a great difference from mesh initialization to Mesh
Iteration 1 and Mesh Iteration 2 of the trajectories; moreover,
the gap between Mesh Iteration 2 and Mesh Iterations 3–4 is
very small, and the situation of attack angle iteration process
shown in Figure 4(b) is the same as the trajectories process,
which means that the solutions are gradually converged on
the actual solution with each mesh refinement iteration. It
is noted that a higher number of mesh points are needed to
ensure the convergence of the solutions, and that explains
why the increments in Figure 3 from mesh initialization to
Mesh Iteration 2 and fromMesh Iteration 2 toMesh Iteration
4 are different.

A comparison of the implementation of the AMRM and
FMRM with different higher-order and intervals solutions
are given in Table 2. Comparisons are made in terms of
computation time, the number of total mesh points 𝑁 and
the number of mesh intervals 𝐾 and the number of mesh
refinement iterations 𝑀, and the cost function values. In
each case, the initial guesses are randomized controls, with
randomized state. A total of 100 samples are used to produce

the results in this paper. The terminology AMRM (2, 11)
refers to the AMRMwhere the number ofmesh points within
each interval can vary between 2 and 11; furthermore, the
number of mesh intervals in AMRM can vary as well. All
the simulations parameters are shown in black roman font
in Table 2, and all the results are shown in black italics. As
can be seen from the results listed in Table 2, the AMRM
result in the smallest overall times compared with other
cases. The reason is that the AMRM has the properties of
reducing the unnecessary points and intervals, while FMRM
(other cases) does not have this kind of property but only
keeps the number of mesh points and intervals fixed until
the simulation terminated. It is a fact that computation times
mostly depend on the number of mesh refinement iterations
and mesh size, while the growth of computation time for
cases 4, 7, and 10 is due mostly to the increment number of
mesh points and mesh intervals. Interestingly, the number of
mesh intervals in case 1 is not set parameter but the result
from the simulation, where the numbers of mesh intervals
in cases 2–10 are set parameters. Case 7 using 7 mesh points
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with 55 intervals gives a terminal cost function of−4163.4 km,
which is the most optimality one in cases 2–9. The results
show, as expected, that using larger mesh size results in
improvements in accuracy at the expense of more runtime,
due to the denser Jacobians. For FMRM, better accuracy can
be achieved by increasing mesh points for smooth problems,
while increasing the number of intervals to achieve better
accuracy for nonsmooth problems [12]. However, it is a fact
that smooth regions and nonsmooth regions together exist
in one solution of the problem, so it is difficult to trade the
number of mesh points and the number of mesh intervals
when solving a complicated problem. The simulations show
that the AMEM can trade the number of mesh points within
intervals with the number of mesh intervals and obtain an
accurate solution with a relatively small mesh size.

5. Conclusions

This paper develops an adaptive mesh iteration method for
solving optimal control problems.Themethod has the ability
to trade the number of mesh points with number of mesh
intervals compared to other mesh refinement methods. The
mesh size is guided by a previously derivedmaximum relative
error and the ratio of the maximum to the mean curvature of
themesh intervals.The number ofmesh intervals is increased
in regions where solution is nonsmooth, while the mesh
points increased in regionswhere the solution is smooth. Fur-
thermore, the mesh size can be decreased either by reducing
the mesh points or by combining adjacent mesh intervals
which share the same number of mesh points. The method
applied successfully trajectory optimization of MaRRV from
the open literature and comparedwith othermesh refinement
methods. The simulation results demonstrate the superiority
of the AMRM.
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