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We analyze a nutrient-plankton system with a time delay. We choose the time delay as a bifurcation parameter and investigate the
stability of a positive equilibrium and the existence of Hopf bifurcations. By using the centermanifold theorem and the normal form
theory, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are researched. The theoretical
results indicate that the time delay can induce a positive equilibrium to switch from a stable to an unstable to a stable state and so
on. Numerical simulations show that the theoretical results are correct and feasible, and the system exhibits rich complex dynamics.

1. Introduction

Plankton is the basis of all aquatic food chains and its
importance for marine ecosystems is widely recognized [1].
The dynamics of zooplankton-phytoplankton systems have
been discussed by many authors [2–8]. A wealth of studies
have shown that a time delaymay have a complex effect on the
dynamics of such systems, with effects that include stability
switches for equilibria, the existence of Hopf bifurcation
periodic solutions, and the direction and stability of Hopf
bifurcation [9–18].

Algal blooms are a common feature of marine ecosys-
tems, and a high nutrient concentration has an important
influence on algal blooms [19]. Plankton-nutrient interaction
models can provide a better understanding of plankton
dynamics. The model formulated by Huppert et al. [20]
consists of two variables, nutrient level𝑁 and phytoplankton
biomass 𝑃, in the following system:

𝑁̇ = 𝑎 − 𝑏𝛽 (𝑡)𝑁𝑃 − 𝑒𝑁,

𝑃̇ = 𝑐𝛽 (𝑡)𝑁𝑃 − 𝑑𝑃.

(1)

Considering the biological significance, all the constants, 𝑎,
𝑏, 𝑐, 𝑑, and 𝑒, are assumed to be positive. The phytoplankton
growth rate𝛽 can be represented as a periodic function𝛽(𝑡) =
𝛽(𝑡 + 𝑇), where 𝑇 is the forcing period affected by seasonal
conditions such as light, salinity, and water temperature.

Harmful algal blooms have become a serious environ-
mental problem worldwide and have been widely studied
[8, 21]. On the basis of field studies and mathematical
modeling, Chattopadhayay et al. [22] proposed the following
phytoplankton-zooplankton model:

𝑃̇ = 𝑟𝑃 (1 −
𝑃

𝐾
) − 𝛽𝑓 (𝑃)𝑍,

𝑍̇ = 𝛽
1
𝑓 (𝑃)𝑍 − 𝑑𝑍 − 𝜌𝑔 (𝑃)𝑍.

(2)

The authors studied the existence and local stability of steady
states and the existence of Hopf bifurcation for system (2)
by taking various combinations of 𝑓(𝑃) and 𝑔(𝑃) [22]. The
results showed that toxin-producing plankton is helpful in
terminating planktonic blooms by decreasing the grazing
pressure of zooplankton.
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To reflect maturation time, capture time, and other
factors, a time delay is often included inmathematicalmodels
of population dynamics. Incorporation of a time delay can
provide a better understanding of the dynamics of biological
models. In recent years, many researchers have studied
the fact that time delay plays important roles in biological
dynamical systems [18, 23–28]. Following Huppert et al. [20]
and Chattopadhayay et al. [22], we consider the following
plausible nutrient-phytoplankton-zooplankton systemwith a
time delay:

𝑁̇ = 𝛼 − 𝑏𝑁 − 𝑒𝑁𝑃 ≜ 𝐹
1
(𝑁, 𝑃, 𝑍) ,

𝑃̇ = 𝛽𝑁 (𝑡 − 𝜏) 𝑃 −
𝑐𝑃𝑍

ℎ + 𝑃
− 𝑚𝑃 − 𝑟𝑃

2
≜ 𝐹
2
(𝑁, 𝑃, 𝑍) ,

𝑍̇ =
𝑑𝑃𝑍

ℎ + 𝑃
− 𝑘𝑍 −

𝜌𝑃𝑍

ℎ + 𝑃
≜ 𝐹
3
(𝑁, 𝑃, 𝑍) ,

(3)

where𝑁 is the nutrient concentration,𝑃 and𝑍 are the density
of the phytoplankton and zooplanktons population, respec-
tively, 𝛼 is the external source of nutrients flowing into the
system, 𝑏 is the small loss rate to reflect sinking of nutrients
from the epilimnion down to the hypolimnion, 𝑒 and 𝑐 are the
capture rates for phytoplankton on nutrient and zooplankton
on phytoplankton, and 𝛽 and 𝑑 denote the rates of biomass
conversion. ℎ is the half-saturation constant, 𝑚 and 𝑘 are
the death rates for phytoplankton and zooplankton, and 𝑟

is the interspecies competition coefficient for phytoplankton,
which reflects phytoplankton self-limitation. The parameter
𝜏 ≥ 0 denotes the time delay, which arises because of the time
required by phytoplankton to absorb nutrients.

The remainder of the paper is organized as follows.
In Section 2, we determine the stability of the positive
equilibrium and the existence of Hopf bifurcation. Section 3
illustrates the direction of Hopf bifurcation and the stability
of bifurcating periodic solutions. To verify the theoretical
analysis, we present numerical simulations in Section 4.
Finally, Section 5 provides some conclusions.

2. Stability and Existence of Hopf Bifurcation

In this section, we study the local stability of the pos-
itive equilibrium of system (3). The positive equilibrium
𝐸
∗
(𝑁
∗
, 𝑃
∗
, 𝑍
∗
) corresponds to the coexistence of the three

species, where

𝑃
∗
=

ℎ𝑘

(𝑑 − 𝑘 − 𝜌)
,

𝑁
∗
=

𝛼

(𝑏 + 𝑒𝑃∗)
,

𝑍
∗
=
(𝛽𝑁
∗
− 𝑚 − 𝑟𝑃

∗
) (ℎ + 𝑃

∗
)

𝑐
.

(4)

It is obvious that 𝐸∗ exists if and only if

𝛼 >
(𝑚 (𝑑 − 𝑘 − 𝜌) + ℎ𝑘𝑟) (𝑏 (𝑑 − 𝑘 − 𝜌) + 𝑒ℎ𝑘)

𝛽 (𝑑 − 𝑘 − 𝜌)
2

,

𝑑 > 𝑘 + 𝜌.

(5)

From (5), we know that the positive equilibrium 𝐸
∗ of system

(3) exists if external nutrients flowing into the system exceed
a certain critical value, and the ratio of biomass consumed
by zooplankton is greater than the sum of the zooplankton
mortality rate and the rate of toxic substance production
by phytoplankton. Hereafter we assume that the conditions
stated in (5) always hold.

Using the translations

𝑢
1
(𝑡) = 𝑁 (𝑡) − 𝑁

∗
,

𝑢
2
(𝑡) = 𝑃 (𝑡) − 𝑃

∗
,

𝑢
3
(𝑡) = 𝑍 (𝑡) − 𝑍

∗
,

(6)

we translate the positive equilibrium 𝐸
∗ to the origin. Then

the linearized system for system (3) near (𝑁∗, 𝑃∗, 𝑍∗) is

𝑢̇
1
= 𝑎
11
𝑢
1
+ 𝑎
12
𝑢
2
,

𝑢̇
2
= 𝑎
21
𝑢
1
(𝑡 − 𝜏) + 𝑎

22
𝑢
2
+ 𝑎
23
𝑢
3
,

𝑢̇
3
= 𝑎
32
𝑢
2
,

(7)

where

𝑎
11
= −𝑏 − 𝑒𝑃

∗
,

𝑎
12
= −𝑒𝑁

∗
,

𝑎
32
=
(𝑑 − 𝜌) ℎ𝑍

∗

(ℎ + 𝑃∗)
2
,

𝑎
21
= 𝛽𝑃
∗
,

𝑎
22
=

𝑐𝑃
∗
𝑍
∗

(ℎ + 𝑃∗)
2
− 𝑟𝑃
∗
,

𝑎
23
= −

𝑐𝑃
∗

ℎ + 𝑃∗
.

(8)

The associated characteristic equation of system (7) is

𝜆
3
+ 𝐴𝜆
2
+ 𝐵𝜆 + 𝐶 + 𝐷𝜆𝑒

−𝜆𝜏
= 0, (9)

where

𝐴 = − (𝑎
11
+ 𝑎
22
) ,

𝐵 = 𝑎
11
𝑎
22
− 𝑎
23
𝑎
32
,

𝐶 = 𝑎
11
𝑎
23
𝑎
32
> 0,

𝐷 = −𝑎
12
𝑎
21
< 0.

(10)

It is well known that the positive equilibrium𝐸
∗ of system (3)

is locally asymptotically stable if all roots of (9) have negative
real parts and is unstable if (9) has a root with positive real
parts. Now, we shall discuss the distribution of the roots of
(9). First, when 𝜏 = 0, the characteristic equation becomes

𝜆
3
+ 𝐴𝜆
2
+ (𝐵 + 𝐷) 𝜆 + 𝐶 = 0. (11)
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According to the Routh-Hurwitz criterion, 𝐸∗ is locally
asymptotically stable if and only if

𝐴 (𝐵 + 𝐷) − 𝐶 > 0, 𝐴 > 0. (12)

By Corollary 2.4 in the paper of Ruan and Wei [29], we
know that if instability occurs for a particular value of time
delay, a characteristic root of (9) must intersect the imaginary
axis. Hence, suppose that 𝑖𝜔 (𝜔 > 0) is a purely imaginary
root of (9). Inserting this into (9) and separating the real and
imaginary parts, we obtain

−𝜔
3
+ 𝐵𝜔 + 𝐷𝜔 cos𝜔𝜏 = 0,

−𝐴𝜔
2
+ 𝐶 + 𝐷𝜔 sin𝜔𝜏 = 0.

(13)

Squaring and adding these two equations, we have

𝜔
6
+𝑀
1
𝜔
4
+𝑀
2
𝜔
2
+ 𝐶
2
= 0, (14)

where𝑀
1
= 𝐴
2
− 2𝐵 and𝑀

2
= 𝐵
2
− 2𝐴𝐶 − 𝐷

2. Let 𝜒 = 𝜔
2;

then (14) becomes

𝜒
3
+𝑀
1
𝜒
2
+𝑀
2
𝜒 + 𝐶

2
= 0. (15)

Form (15), we define a function𝑓(𝜒) = 𝜒
3
+𝑀
1
𝜒
2
+𝑀
2
𝜒+𝐶
2.

It is obvious that if Δ
1
= 𝑀
2

1
− 3𝑀
2
≤ 0, then 𝑓󸀠(𝜒) = 3𝜒

2
+

2𝑀
1
𝜒 + 𝑀

2
≥ 0.When Δ

1
> 0, the equation 𝑓

󸀠
(𝜒) = 0 has

two real roots:

𝜒
∗

1
=
−𝑀
1
+ √Δ

1

3
,

𝜒
∗

2
=
−𝑀
1
− √Δ

1

3
.

(16)

Noticing that lim
𝜒→+∞

𝑓(𝜒) = +∞ and 𝑓(0) = 𝐶
2
> 0, then

we introduce the following results, which have been proved
by many authors [30, 31].

Lemma 1. For (15), we obtain the following results:

(i) If Δ
1
= 𝑀
2

1
− 3𝑀
2
≤ 0, then (15) has no positive roots.

(ii) If Δ
1
= 𝑀
2

1
− 3𝑀
2
> 0, then (15) has two positive real

roots if and only if 𝜒∗
1
> 0 and 𝑓(𝜒∗

1
) < 0.

Hence, if the condition,

Δ
1
= 𝑀
2

1
− 3𝑀
2
> 0,

𝜒
0
fl

−𝑀
1
+ √Δ

1

3
> 0,

𝑓 (𝜒
0
) < 0,

(17)

is satiated, then (15) has two positive roots, denoted by 𝜒
1
, 𝜒
2
.

Then (14) has two positive roots, namely, 𝜔
1
= √𝜒1 and 𝜔2 =

√𝜒2.We define

𝜏
𝑘

𝑗
=

1

𝜔
𝑘

(𝜑
𝑘
+ 2𝑗𝜋) , 𝑘 = 1, 2; 𝑗 = 0, 1, 2, . . . , (18)

where 𝜑
𝑘
∈ (0, 2𝜋] satisfies

𝜑
𝑘
=

{{{{

{{{{

{

2𝜋 − arccos
𝜔
2

𝑘
− 𝐵

𝐷
, 𝑖𝑓

𝐴𝜔
2

𝑘
− 𝐶

𝐷𝜔
𝑘

< 0,

arccos
𝜔
2

𝑘
− 𝐵

𝐷
, 𝑖𝑓

𝐴𝜔
2

𝑘
− 𝐶

𝐷𝜔
𝑘

≥ 0.

(19)

For convenience, let 𝜏1
𝑗
< 𝜏
2

𝑗
. Let 𝜆(𝜏) = 𝜇(𝜏) + 𝑖𝜔(𝜏) denote

the root of (9) such that

𝜇 (𝜏
𝑘

𝑗
) = 0,

𝜔 (𝜏
𝑘

𝑗
) = 𝜔
𝑘

(𝑘 = 1, 2, 𝑗 = 0, 1, 2, . . .) .

(20)

Then we have the following lemma.

Lemma 2. If (17) holds, then

𝑑Re 𝜆 (𝜏)
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏1
𝑗

> 0,

𝑑Re 𝜆 (𝜏)
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏2
𝑗

< 0,

𝑗 = 0, 1, 2, . . . .

(21)

Proof. Differentiating both sides of (9) with respect to 𝜏, we
have

𝑑𝜆

𝑑𝜏
=

𝐷𝜆
2
𝑒
−𝜆𝜏

3𝜆2 + 2𝐴𝜆 + 𝐵 + (𝐷 − 𝐷𝜆𝜏) 𝑒
−𝜆𝜏

. (22)

Then

𝑑Re (𝜆 (𝜏𝑘
𝑗
))

𝑑𝜏

=
𝜔
2

𝑘

Δ
2

[3𝜔
4

𝑘
+ 2 (𝐴

2
− 2𝐵)𝜔

2

𝑘
+ (𝐵
2
− 2𝐴𝐶 − 𝐷

2
)] ,

(23)

where

Δ
2
= (𝐵 − 3𝜔

2

𝑘
+ 𝐷 cos𝜔

𝑘
𝜏
𝑘

𝑗
− 𝐷𝜔
𝑘
𝜏
𝑘

𝑗
sin𝜔
𝑘
𝜏
𝑘

𝑗
)
2

+ (2𝐴𝜔
𝑘
− 𝐷 sin𝜔

𝑘
𝜏
𝑘

𝑗
− 𝐷𝜔
𝑘
𝜏
𝑘

𝑗
cos𝜔
𝑘
𝜏
𝑘

𝑗
)
2

.

(24)

As 𝜒
𝑘
= 𝜔
2

𝑘
, then 𝑑Re(𝜆(𝜏𝑘

𝑗
))/𝑑𝜏 = (𝜔

2

𝑘
/Δ
2
)𝑓
󸀠
(𝜒
𝑘
).

If (17) holds, (15) has two positive roots, denoted by
𝜒
1
, 𝜒
2
, and 𝑓(𝜒

0
) is the local minimum value. Assuming

𝜏
1

𝑗
< 𝜏
2

𝑗
, we obtain 𝑓

󸀠
(𝜒
1
) > 0 and 𝑓

󸀠
(𝜒
2
) < 0. Hence,

(𝑑Re 𝜆(𝜏)/𝑑𝜏)|
𝜏=𝜏
1

𝑗

> 0, (𝑑Re 𝜆(𝜏)/𝑑𝜏)|
𝜏=𝜏
2

𝑗

< 0, 𝑗 =

0, 1, 2, . . ..This completes the proof.

On the basis of the above analysis, we have the following
theorem.

Theorem 3. Suppose that (5) and (12) hold; then we obtain the
following:
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(i) If Δ
1
= 𝑀
2

1
− 3𝑀

2
≤ 0, then the positive equilibrium

𝐸
∗ of system (3) is locally asymptotically stable for all

values of 𝜏 ≥ 0.

(ii) If (17) holds, there exists a nonnegative integer 𝑛, such
that the positive equilibrium 𝐸

∗ is locally asymptoti-
cally stable whenever 𝜏 ∈ [0, 𝜏

1

0
) ∪ (𝜏

2

0
, 𝜏
1

1
) ∪ ⋅ ⋅ ⋅ ∪

(𝜏
2

𝑛−1
, 𝜏
1

𝑛
) and is unstable whenever 𝜏 ∈ (𝜏

1

0
, 𝜏
2

0
) ∪

(𝜏
1

1
, 𝜏
2

1
) ∪ ⋅ ⋅ ⋅ ∪ (𝜏

1

𝑛−1
, 𝜏
2

𝑛−1
) ∪ (𝜏

1

𝑛
, +∞). Then system

(3) undergoes Hopf bifurcation around 𝐸
∗ for every

𝜏 = 𝜏
1,2

𝑗
, 𝑗 = 0, 1, 2 . . . .

3. Direction and Stability of Hopf Bifurcation

FromTheorem 3 (ii), we have obtained the conditions for the
occurrence of Hopf bifurcation when 𝜏 = 𝜏

1,2

𝑗
, 𝑗 = 0, 1, 2, . . . .

For convenience, we define 𝜏
0
= 𝜏
1,2

𝑗
, 𝑗 = 0, 1, 2, . . ., and 𝜔

0
=

𝜔
𝑘
and 𝑘 = 1, 2. In this section, we consider the direction

of the Hopf bifurcation and the stability of the bifurcating
periodic solutions by using the center manifold and normal
form theories presented by Hassard et al. [32]. Let 𝑥(𝑡) =

𝑁(𝜏𝑡) −𝑁
∗, 𝑦(𝑡) = 𝑃(𝜏𝑡) − 𝑃

∗, 𝑧(𝑡) = 𝑍(𝜏𝑡) − 𝑍
∗, 𝜏 = 𝛿 + 𝜏

0
,

𝜙 = (𝑥, 𝑦, 𝑧)
𝑇, and 𝜙

𝑡
(𝜃) = 𝜙(𝑡 + 𝜃), where 𝜃 ∈ [−1, 0]. Using

Taylor series expansion about 𝐸∗, system (3) can be written
as

(

𝑥̇ (𝑡)

𝑦̇ (𝑡)

𝑧̇ (𝑡)

)

= 𝜏(𝐾
1
(

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

) + 𝐾
2
(

𝑥 (𝑡 − 1)

𝑦 (𝑡 − 1)

𝑧 (𝑡 − 1)

) + 𝑓) ,

(25)

where

𝐾
1
= (

𝑎
11

𝑎
12

0

0 𝑎
22

𝑎
23

0 𝑎
32

0

) ,

𝐾
2
= (

0 0 0

𝑎
21

0 0

0 0 0

) ,

𝑓 = 𝑓 (𝛿) 𝜙
𝑡
= (

𝑓
1

𝑓
2

𝑓
3

),

𝑓
1
= −𝑒𝑥 (𝑡) 𝑦 (𝑡) ,

𝑓
2
= 𝛽𝑥 (𝑡 − 1) 𝑦 (𝑡) + (𝑐ℎ𝑍

∗
(ℎ + 𝑃

∗
)
−3

− 𝑟) 𝑦
2
(𝑡)

− 𝑐ℎ (ℎ + 𝑃
∗
)
−2

𝑦 (𝑡) 𝑧 (𝑡)

− 𝑐ℎ𝑍
∗
(ℎ + 𝑃

∗
)
−4

𝑦
3
(𝑡) + ⋅ ⋅ ⋅ ,

𝑓
3
= (𝜌 − 𝑑) ℎ𝑍

∗
(ℎ + 𝑃

∗
)
−3

𝑦
2
(𝑡)

+ (𝑑 − 𝜌) ℎ (ℎ + 𝑃
∗
)
−2

𝑦 (𝑡) 𝑧 (𝑡)

+ (𝑑 − 𝜌) ℎ𝑍
∗
(ℎ + 𝑃

∗
)
−4

𝑦
3
(𝑡) + ⋅ ⋅ ⋅ .

(26)

Then 𝛿 = 0 is Hopf bifurcation value of system (3).
Let 𝐿
𝛿
(𝜙) = (𝛿 + 𝜏

0
)(𝐾
1
𝜙(0) + 𝐾

2
𝜙(−1)). According to

the Riesz representation theorem, there exists a 3 × 3matrix
𝜂(𝜃, 𝛿) of the bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿
𝛿
(𝜙) = ∫

0

−1

𝑑𝜂 (𝜃, 𝛿) 𝜙 (𝜃) ,

for 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
3
) .

(27)

In fact, we can select

𝜂 (𝜃, 𝛿) = (𝜏
0
+ 𝛿)𝐾

1
𝜐 (𝜃) − (𝜏

0
+ 𝛿)𝐾

2
𝜐 (𝜃 + 1) , (28)

where 𝜐 denote the Dirac delta function:

𝜐 (𝜃) =
{

{

{

0, 𝜃 ̸= 0,

1, 𝜃 = 0.

(29)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅
3
), we define

Γ (𝛿) 𝜙 (𝜃) =

{{{

{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝛿) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝛿) 𝜙 (𝜃) =
{

{

{

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝛿) 𝜙, 𝜃 = 0.

(30)

Then system (25) can be rewritten as

𝑢̇
𝑡
= Γ (𝛿) 𝑢

𝑡
+ 𝑅 (𝛿) 𝑢

𝑡
, (31)

where 𝑢 = (𝑥, 𝑦, 𝑧)
𝑇 and 𝑢

𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜓 ∈ 𝐶
1
([0, 1], (𝑅

3
)
∗
), we define the adjoint operator

Γ
∗ as

Γ
∗
𝜓 (𝑠) =

{{{

{{{

{

−
𝑑𝜙 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝜓 (−𝜉) 𝑑𝜂 (𝜉, 0) , 𝑠 = 0,

(32)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(33)

where 𝜂(𝜃) = 𝜂(𝜃, 0). From the results in the previous section,
we know that ±𝑖𝜔

0
𝜏
0
are the eigenvalues of Γ(0).Thus, ±𝑖𝜔

0
𝜏
0

are also the eigenvalues of Γ∗.
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Let 𝑞(𝜃) = (1, 𝛾
1
, 𝛾
2
)
𝑇
𝑒
𝑖𝜔
0
𝜏
0
𝜃 be the eigenvector of Γ(0)

corresponding to the eigenvalue 𝑖𝜔
0
𝜏
0
, and let 𝑞

∗
(𝑠) =

𝐷(1, 𝛾
3
, 𝛾
4
)𝑒
𝑖𝜔
0
𝜏
0
𝑠 be the eigenvector of Γ

∗ corresponding
to the eigenvalue −𝑖𝜔

0
𝜏
0
. With the condition Γ(0)𝑞(𝜃) =

𝑖𝜔
0
𝜏
0
𝑞(𝜃), we obtain

[𝑖𝑤
0
𝐼 − (𝐾

1
+ 𝐾
2
𝑒
−𝑖𝜔
0
𝜏
0)] 𝑞 (0) = 0, (34)

where 𝐼 is an identity matrix of order 3; that is,

(

𝑖𝜔
0
− 𝑎
11

−𝑎
12

0

−𝑎
21
𝑒
−𝑖𝜔
0
𝜏
0 𝑖𝜔
0
− 𝑎
22

−𝑎
23

0 −𝑎
32

𝑖𝜔
0

)(

1

𝛾
1

𝛾
2

) = (

0

0

0

) . (35)

Then we can obtain

𝛾
1
=
𝑖𝜔
0
− 𝑎
11

𝑎
12

,

𝛾
2
=
(𝑖𝜔
0
− 𝑎
11
) 𝑎
32

𝑖𝜔
0
𝑎
12

.

(36)

Similarly, with Γ
∗
𝑞
∗
(0) = −𝑖𝜔

0
𝜏
0
𝑞
∗
(0) or [−𝑖𝑤

0
𝐼 − (𝐾

𝑇

1
+

𝐾
𝑇

2
𝑒
𝑖𝜔
0
𝜏
0)](𝑞
∗
(0))
𝑇
= 0, we have

(

𝑖𝜔
0
+ 𝑎
11

𝑎
21
𝑒
−𝑖𝜔
0
𝜏
0 0

𝑎
12

𝑖𝜔
0
+ 𝑎
22

𝑎
32

0 𝑎
23

𝑖𝜔
0

)(

1

𝛾
3

𝛾
4

) = (

0

0

0

) . (37)

Solving the above equations, we obtain

𝛾
3
=
− (𝑖𝜔
0
+ 𝑎
11
)

𝑎
21
𝑒−𝑖𝜔0𝜏0

,

𝛾
4
=
𝑎
23
(𝑖𝜔
0
+ 𝑎
11
)

𝑖𝜔
0
𝑎
21
𝑒−𝑖𝜔0𝜏0

.

(38)

Hence,

⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩ = 𝑞

∗
(0) 𝑞 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝑞
∗
(𝜉 − 𝜃) 𝑑𝜂

⋅ (𝜃) 𝑞 (𝜉) 𝑑𝜉 = 𝐷𝐷 (1, 𝛾
3
, 𝛾
4
) (1, 𝛾

1
, 𝛾
2
)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛾
3
, 𝛾
4
) 𝑒
−𝑖𝜔
0
𝜏
0
(𝜉−𝜃)

𝑑𝜂 (𝜃) (1, 𝛾
1
, 𝛾
2
)
𝑇

⋅ 𝑒
𝑖𝜔
0
𝜏
0
𝜉
𝑑𝜉 = 𝐷 (1 + 𝛾

1
𝛾
3
+ 𝛾
2
𝛾
4
)

− ∫

0

−1

𝜃𝐷 (1, 𝛾
3
, 𝛾
4
) 𝑒
𝑖𝜔
0
𝜏
0
𝜃
𝑑𝜂 (𝜃) (1, 𝛾

1
, 𝛾
2
)
𝑇

= 𝐷 (1 + 𝛾
1
𝛾
3
+ 𝛾
2
𝛾
4
) + 𝜏
0
𝐷𝑒
−𝑖𝜔
0
𝜏
0 (1, 𝛾

3
, 𝛾
4
)

⋅ 𝐾
2
(1, 𝛾
1
, 𝛾
2
)
𝑇

= 𝐷 {1 + 𝛾
1
𝛾
3
+ 𝛾
2
𝛾
4

+ 𝜏
0
𝛾
3
𝛽𝑃
∗
𝑒
−𝑖𝜔
0
𝜏
0} .

(39)

Then we can choose

𝐷 = (1 + 𝛾
1
𝛾
3
+ 𝛾
2
𝛾
4
+ 𝜏
0
𝛾
3
𝛽𝑃
∗
𝑒
𝑖𝜔
0
𝜏
0)
−1 (40)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1 and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

In the following, we first compute the coordinates to
describe the center manifold 𝐶

0
at 𝛿 = 0 according to the

approach of Hassard et al. [32]. Let 𝑢
𝑡
be the solution of (31)

when 𝛿 = 0. We define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢
𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(41)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧, 𝑧, 𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2
+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6
+ ⋅ ⋅ ⋅ ,

(42)

where 𝑧 and 𝑧 are local coordinates for the center manifold
𝐶
0
in the direction of 𝑞∗ and 𝑞

∗, respectively. In this paper,
we only consider real solutions as𝑊 is real if 𝑢

𝑡
is real. Since

𝛿 = 0, for the solution 𝑢
𝑡
∈ 𝐶
0
of (31), we obtain

𝑧̇ (𝑡) = ⟨𝑞
∗
, 𝑢̇ (𝑡)⟩

= 𝑖𝜔
0
𝜏
0
𝑧 (𝑡)

+ ⟨𝑞
∗
(𝜃) , 𝑅 (0) (𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔
0
𝜏
0
𝑧 (𝑡)

+ 𝑞
∗
(0) 𝑓 (0) (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜔
0
𝜏
0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) ,

(43)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓 (0) (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(44)

From (31) and (41), we have

𝑊̇ = 𝑢̇
𝑡
− 2Re {𝑧̇𝑞} = 𝑢

𝑡
− 𝑧̇𝑞 − 𝑧̇ 𝑞

= Γ𝑢
𝑡
+ 𝑅𝑢
𝑡
− 𝑧̇𝑞 − 𝑧̇ 𝑞
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= Γ (𝑊 + 2Re {𝑧𝑞}) + 𝑅 (𝑊 + 2Re {𝑧𝑞})

− 2Re {𝑔 (𝑧, 𝑧) 𝑞 (𝜃)}

=
{

{

{

Γ𝑊 − 2Re {𝑞∗ (𝜃) 𝑅 (0) 𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

Γ𝑊 − 2Re {𝑞∗ (0) 𝑅 (0) 𝑞 (0)} + 𝑅 (0) , 𝜃 = 0

≜ Γ𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(45)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2
+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(46)

On the center manifold 𝐶
0
, from (42)–(44), we obtain

𝑊̇ (𝑧, 𝑧) = 𝑊
𝑧
𝑧̇ + 𝑊

𝑧
𝑧̇

= 𝑊
20
(𝜃) 𝑧𝑧̇ + 𝑊

11
(𝜃) 𝑧 𝑧̇ + 𝑊

02
(𝜃) 𝑧 𝑧̇

+ 𝑊
11
(𝜃) 𝑧𝑧̇ + 𝑂 (|(𝑧, 𝑧)|

3
)

= 𝑊
20
(𝜃) 𝑧 (𝑖𝑤

0
𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧))

+ 𝑊
11
(𝜃) 𝑧 (𝑖𝑤

0
𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧))

+ 𝑊
02
(𝜃) 𝑧 (−𝑖𝑤

0
𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧))

+ 𝑊
11
(𝜃) 𝑧 (−𝑖𝑤

0
𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧))

+ 𝑂 (|(𝑧, 𝑧)|
3
)

= 𝑖𝑤
0
𝜏
0
𝑊
20
(𝜃) 𝑧
2
− 𝑖𝑤
0
𝜏
0
𝑊
02
(𝜃) 𝑧
2

+ 𝑂 (|(𝑧, 𝑧)|
3
) .

(47)

Combining (45)–(47) and (42) and comparing the coeffi-
cients, we have

(2𝑖𝜔
0
𝜏
0
𝐼 − Γ (0))𝑊

20
(𝜃) = 𝐻

20
(𝜃) ,

Γ (0)𝑊
11
(𝜃) = −𝐻

11
(𝜃) ,

(2𝑖𝜔
0
𝜏
0
𝐼 + Γ (0))𝑊

02
(𝜃) = −𝐻

02
(𝜃) .

(48)

Since

𝑢
𝑡
(𝜃) = (𝑥

𝑡
(𝜃) , 𝑦

𝑡
(𝜃) , 𝑧
𝑡
(𝜃))
𝑇

= 2Re {𝑧 (𝑡) 𝑞 (𝜃)} + 𝑊 (𝑡, 𝜃)

= 𝑧𝑞 (𝜃) + 𝑧 𝑞 (𝜃) + 𝑊 (𝑡, 𝜃) ,

(49)

noting that 𝑞(0) = (1, 𝛾
1
, 𝛾
2
)
𝑇, we have

𝑥 (𝑡) = 𝑧 + 𝑧 +𝑊
(1)

20
(0)

𝑧
2

2
+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑦 (𝑡) = 𝛾
1
𝑧 + 𝛾
1
𝑧 +𝑊

(2)

20
(0)

𝑧
2

2
+𝑊
(2)

11
(0) 𝑧𝑧

+𝑊
(2)

02
(0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑧 (𝑡) = 𝛾
2
𝑧 + 𝛾
2
𝑧 +𝑊

(3)

20
(0)

𝑧
2

2
+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑥 (𝑡 − 1) = 𝑒
−𝑖𝑤
0
𝜏
0𝑧 + 𝑒

𝑖𝑤
0
𝜏
0𝑧 +𝑊

(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(50)

According to the definition of 𝑔(𝑧, 𝑧), we obtain

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓 (0) (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝐷 (1, 𝛾
1
, 𝛾
4
) 𝜏
0
(𝑓
1
, 𝑓
2
, 𝑓
3
)
𝑇

.

(51)

Comparison of the coefficients with (44) yields

𝑔
20
= 2𝜏
0
𝐷𝛾
1
(𝛾
1
𝜎
1
+ 𝛾
2
𝜎
2
+ 𝛽𝛾
3
𝑒
−𝑖𝜔
0
𝜏
0 − 𝑒) ,

𝑔
11
= 𝜏
0
𝐷(𝛾
1
(𝛾
1
𝜎
1
+ 𝛾
2
𝜎
2
+ 𝛽𝛾
3
𝑒
𝑖𝜔
0
𝜏
0 − 𝑒)

+ 𝛾
1
(𝛾
1
𝜎
1
+ 𝛾
2
𝜎
2
+ 𝛽𝛾
3
𝑒
−𝑖𝜔
0
𝜏
0 − 𝑒)) ,

𝑔
02
= 2𝜏
0
𝐷𝛾
1
(𝛾
1
𝜎
1
+ 𝛾
2
𝜎
2
+ 𝛽𝛾
3
𝑒
𝑖𝜔
0
𝜏
0 − 𝑒) ,

𝑔
21
= 2𝜏
0
𝐷{𝛾
1
(𝜎
1
𝑊
(2)

11
(0) + 𝜎

2
𝑊
(3)

11
(0)

+ 𝛽𝛾
3
𝑊
(1)

11
(−1) − 𝑒𝑊

(1)

11
(0)) +

𝛾
1

2
(𝜎
1
𝑊
(2)

20
(0)

+ 𝜎
2
𝑊
(3)

20
(0) + 𝛽𝛾

3
𝑊
(1)

20
(−1) − 𝑒𝑊

(1)

20
(0))

+
𝑊
(2)

20
(0)

2
(𝜎
1
𝛾
1
+ 𝜎
2
𝛾
2
+ 𝛽𝛾
3
𝑒
𝑖𝜔
0
𝜏
0 − 𝑒)

+𝑊
(2)

11
(0) (𝜎

1
𝛾
1
+ 𝜎
2
𝛾
2
+ 𝛽𝛾
3
𝑒
−𝑖𝜔
0
𝜏
0 − 𝑒)} ,

(52)

where 𝜎
1
= (𝑐𝛾

3
+ 𝛾
4
(𝜌 − 𝑑))ℎ𝑍

∗
/(ℎ + 𝑃

∗
)
3
− 𝛾
3
𝑟, 𝜎
2
=

(𝛾
4
(𝑑−𝜌)ℎ𝑍

∗
−𝑐ℎ𝛾
3
)/(ℎ+𝑃

∗
)
2, and𝑊

20
(0),𝑊

20
(−1),𝑊

11
(0),

and𝑊
11
(−1) are still unknown.Next, we compute𝑊

20
(𝜃) and

𝑊
11
(𝜃) accurately.
For 𝜃 ∈ [−1, 0), we have

𝐻(𝑧, 𝑧, 𝜃) = −2Re {𝑞∗ (𝜃) 𝑅 (0) 𝑞 (𝜃)}

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃)
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= −(𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ ⋅ ⋅ ⋅) 𝑞 (𝜃)

− (𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ ⋅ ⋅ ⋅) 𝑞 (𝜃) .

(53)

Comparing the coefficients with (46), we obtain

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(54)

From the definition of Γ(0) and (48) and (54), we have

𝑊̇
20
(𝜃) = 2𝑖𝑤

0
𝜏
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (55)

For 𝑞(𝜃) = (1, 𝛾
1
, 𝛾
2
)
𝑇
𝑒
𝑖𝜔
0
𝜏
0
𝜃, solving (55) yields

𝑊
20
(𝜃) =

𝑖𝑔
20
𝑞 (0)

𝑤
0
𝜏
0

𝑒
𝑖𝑤
0
𝜏
0
𝜃
+
𝑖𝑔
02
𝑞 (0)

3𝑤
0
𝜏
0

𝑒
−𝑖𝑤
0
𝜏
0
𝜃

+ 𝐸
1
𝑒
2𝑖𝑤
0
𝜏
0
𝜃
.

(56)

Similarly, using the same method, we obtain

𝑊
11
(𝜃) =

−𝑖𝑔
11
𝑞 (0)

𝑤
0
𝜏
0

𝑒
𝑖𝑤
0
𝜏
0
𝜃
+
𝑖𝑔
11
𝑞 (0)

𝑤
0
𝜏
0

𝑒
−𝑖𝑤
0
𝜏
0
𝜃
+ 𝐸
2
. (57)

𝐸
1
and 𝐸

2
are three-dimensional vectors that can be deter-

mined by setting 𝜃 = 0 in𝐻(𝑧, 𝑧, 𝜃).

For (45), when 𝜃 = 0,𝐻(𝑧, 𝑧, 0) = −2Re{𝑞∗(0)𝑅(0)𝑞(0)}+
𝑅(0). Thus,

𝐻
20
(0)

= −𝑔
20
𝑞 (0) − 𝑔

02
𝑞 (0) + 𝜏

0
(−𝑒𝛾
1
, 𝛾
1
Θ
1
, 𝛾
1
Θ
3
)
𝑇

,

𝐻
11
(0)

= −𝑔
11
𝑞 (0) − 𝑔

11
𝑞 (0)

+ 𝜏
0
(−𝑒 (𝛾

1
+ 𝛾
1
) , 𝛾
1
Θ
2
+ 𝛾
1
Θ
1
, 𝛾
1
Θ
3
+ 𝛾
1
Θ
4
)
𝑇

,

(58)

where

Θ
1
= 𝛽𝑒
−𝑖𝜔
0
𝜏
0 − 𝑟𝛾
1
+

𝛾
1
𝑐ℎ𝑍
∗

(ℎ + 𝑃∗)
3
−

𝛾
2
𝑐ℎ

(ℎ + 𝑃∗)
2
,

Θ
2
= 𝛽𝑒
𝑖𝜔
0
𝜏
0 − 𝑟𝛾

1
+

𝛾
1
𝑐ℎ𝑍
∗

(ℎ + 𝑃∗)
3
−

𝛾
2
𝑐ℎ

(ℎ + 𝑃∗)
2
,

Θ
3
=
ℎ (𝑑 − 𝜌) (𝛾

2
ℎ + 𝛾
2
𝑃
∗
− 𝛾
1
𝑍
∗
)

(ℎ + 𝑃∗)
3

,

Θ
4
=
ℎ (𝑑 − 𝜌) (𝛾

2
ℎ + 𝛾
2
𝑃
∗
− 𝛾
1
𝑍
∗
)

(ℎ + 𝑃∗)
3

.

(59)

According to (48), we obtain

2𝑖𝑤
0
𝜏
0
𝑊
20
(0) − 𝜏

0
𝐾
1
𝑊
20
(0) − 𝜏

0
𝐾
2
𝑊
20
(−1)

= 𝐻
20
(0) ,

𝜏
0
𝐾
1
𝑊
11
(0) + 𝜏

0
𝐾
2
𝑊
11
(−1) = −𝐻

11
(0) .

(60)

From (56), (57), and (60), we have

𝐸
1
=

1

𝜏
0

(2𝑖𝑤
0
𝐼 − 𝐾
1
− 𝐾
2
𝑒
−2𝑖𝑤
0
𝜏
0)
−1

(𝐻
20
(0)

+ 2𝑔
20
𝑞 (0) +

2𝑔
02
𝑞 (0)

3
+
𝑖𝑔
20
𝐾
1
𝑞 (0)

𝑤
0

+
𝑖𝑔
02
𝐾
1
𝑞 (0)

3𝑤
0

+
𝑖𝑔
20
𝑒
−𝑖𝑤
0
𝜏
0𝐾
2
𝑞 (0)

𝑤
0

+
𝑖𝑔
02
𝑒
𝑖𝑤
0
𝜏
0𝐾
2
𝑞 (0)

3𝑤
0

) ,

𝐸
2
=

1

𝜏
0

(−𝐿
1
− 𝐿
2
)
−1

(𝐻
11
(0) −

𝑖𝑔
11
𝐾
1
𝑞 (0)

𝑤
0

+
𝑖𝑔
11
𝐾
1
𝑞 (0)

𝑤
0

−
𝑖𝑔
11
𝑒
−𝑖𝑤
0
𝜏
0𝐿
2
𝑞 (0)

𝑤
0

+
𝑖𝑔
11
𝑒
𝑖𝑤
0
𝜏
0𝐾
2
𝑞 (0)

𝑤
0

) .

(61)

Now, all 𝑔
𝑖𝑗
can be expressed in terms of parameters. There-

fore, we can evaluate the following values:

𝑐
1
(0) =

𝑖

2𝑤
0
𝜏
0

(𝑔
20
𝑔
11
− 2

󵄨󵄨󵄨󵄨𝑔11
󵄨󵄨󵄨󵄨

2

−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨

2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re (𝑐
1
(0))

Re 𝜆󸀠 (𝜏
0
)
,

𝛽
2
= Re (𝑐

1
(0)) ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆

󸀠
(𝜏
0
)}

𝑤
0
𝜏
0

.

(62)

According to the above analysis, we can obtain the
following theorem about the properties of Hopf bifurcation.

Theorem4. For 𝜇
2
, 𝛽
2
, and𝑇

2
defined as above, the properties

of Hopf bifurcation at the critical value 𝜏 = 𝜏
0
are as follows:

(i) If 𝜇
2

> 0 (< 0), Hopf bifurcation is supercritical
(subcritical).

(ii) If 𝛽
2
< 0 (> 0), the Hopf periodic solutions are stable

(unstable).
(iii) If 𝑇

2
> 0 (< 0), the period of the bifurcation periodic

solution of system (3) increases (decreases).

4. Numerical Simulations

In this section, we verify the theoretical results proved
in previous sections using numerical simulations for the
following parameter values:

𝑏 = 0.4,

𝑒 = 0.1,
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Figure 1: (a) Relationship between the conversion frequency 𝑛 of stability switches for positive equilibrium 𝐸
∗ and the external source of

nutrients𝛼, where the blue spots represent the value of 𝑛, the black line represents the boundary of the existence of𝐸∗, the green line represents
the boundary of the appearance of 𝑛, and the red line represents the disappearance of 𝑛. (b) Interval values for stability switches and Hopf
bifurcation about 𝐸∗, where the green diamonds and the blue dots represent 𝜏1

𝑗
(0 ≤ 𝑗 ≤ 𝑛) and 𝜏

2

𝑗
(0 ≤ 𝑗 ≤ 𝑛 − 1), respectively, and the

honeydew and deep pink rectangles, respectively, represent the stable and unstable interval of 𝐸∗.

𝛽 = 1.2,

𝑐 = 0.1,

ℎ = 3.5,

𝑚 = 0.2,

𝑟 = 0.2,

𝑑 = 1.2,

𝑘 = 0.2,

𝜌 = 0.1.

(63)

According to the analysis above, the existence and stability
of the interior equilibrium for system (3) both change with
the value of the external source of nutrients 𝛼, as illustrated
in Figure 1. In Figure 1(a), 𝑛 (the conversion frequency of
stability switches for 𝐸

∗) changes with 𝛼. From (5), the
condition for the existence of 𝐸∗ is 𝛼 > 0.1416. Region
I in Figure 1(a) indicates that system (3) has no positive
equilibrium if the external source of nutrients flowing into
the system is less than the critical value, 0.1416. In region
IV, 𝐸∗ is unstable when condition (12) is not satisfied. This
shows that when 𝛼 is greater than a critical value, 0.755, 𝐸∗ is
always unstable and a time delay will no longer affect system
(3). When the value of 𝛼 is in region II, condition (17) is not
satisfied and (14) has no positive roots. Hence, 𝐸∗ is stable
only when 𝜏 = 0. In region III, Theorem 3 (ii) holds and

there exists a nonnegative integer 𝑛 such that 𝐸∗ is locally
asymptotically stable when

𝜏 ∈ [0, 𝜏
1

0
) ∪ (𝜏

2

0
, 𝜏
1

1
) ∪ ⋅ ⋅ ⋅ ∪ (𝜏

2

𝑛−1
, 𝜏
1

𝑛
) , (64)

and it is unstable when

𝜏 ∈ (𝜏
1

0
, 𝜏
2

0
) ∪ (𝜏

1

1
, 𝜏
2

1
) ∪ ⋅ ⋅ ⋅ ∪ (𝜏

1

𝑛−1
, 𝜏
2

𝑛−1
)

∪ (𝜏
1

𝑛
, +∞) .

(65)

To simulate clear stability switches, Figure 1(b) shows interval
values for stability switches and Hopf bifurcation about 𝐸∗
with the values of 𝛼 selected as 0.355, 0.2991, 0.2948, 0.2819,
0.2776, and 0.2733 and 𝜏

𝑘

𝑗
(𝑘 = 1, 2; 𝑗 = 0, 1, . . . , 𝑛). For

example, when 𝛼 = 0.2819, Theorem 3 (ii) is satisfied. Then
(14) has two positive roots, 𝜔

1
= 0.2625 and 𝜔

2
= 0.2157.

From (18), we obtain

𝜏
1

0
= 8.3830 < 𝜏

2

0
= 14.9808 < 𝜏

1

1
= 32.3148 < 𝜏

2

1

= 44.1079 < 𝜏
1

2
= 56.2466 < 𝜏

2

2
= 73.2349 < 𝜏

1

3

= 80.1783 < 𝜏
2

3
= 102.362 < 𝜏

1

4
= 104.1101 < 𝜏

1

5

= 128.0419 < 𝜏
2

4
= 131.4890.

(66)

In order to more clearly show the interval values for stability
switches, we use the rectangles to represent the stable and
unstable interval of positive equilibrium 𝐸

∗. Therefore, in
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Figure 2: Numerical solutions of system (3) with 𝛼 = 0.2819, 𝜏 = 5, and initial point (0.7, 1.2, 18). (a) shows the time series of 𝑁 (black
line), 𝑃 (red line), and 𝑍 (blue line) and (b) shows the associated phase diagram of system (3) (magenta line). The equilibrium 𝐸

∗ is locally
asymptotically stable.
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Figure 3: Numerical solutions of system (3) with 𝛼 = 0.2819, 𝜏 = 10, and initial point (0.6, 0.7, 15). (a) shows the time series of 𝑁 (black
line), 𝑃 (red line), and 𝑍 (blue line) and (b) shows the associated phase diagram of system (3) (magenta line). There exists a positive period-1
solution of system (3).

Figure 1(b), it is easy to see that the stability switches of
positive equilibrium𝐸

∗ occurwith the change of time delay 𝜏.
On the basis of the above analysis, we present examples

in Figures 2–5. The equilibrium point 𝐸∗ is locally asymp-
totically stable in Figure 2. When 𝜏 passes through critical
values,𝐸∗ loses its stability, and bifurcating periodic solutions
occur and are stable, as shown in Figures 3-4. In Figure 5,
the bifurcating solutions disappear and chaos occurs when 𝜏
passes through critical values.

The numerical results in Figures 2–5 show that oscillat-
ing solutions are strongly affected by 𝜏. To generalize the
dynamical behavior of system (3) influenced by parameter
𝜏, we make numerical simulation using a wide range of

values of parameter 𝜏 to show the bifurcation diagram (see
Figure 6(a)). Results for the nutrient density and phyto-
plankton density as a function of 𝜏 are similar and are not
shown here. From Figure 6(a), the order-2 periodic solution
appears in the system (3) by increasing parameter 𝜏. Keeping
increasing 𝜏, chaos occurs. Subsequently, an order-3 periodic
solution bifurcates from chaos. Finally, chaos occurs again
with increase of 𝜏. To investigate the influence of parameter 𝜏
on amplitudes of the oscillations observed when the positive
equilibrium undergoes Hopf bifurcations, we simulate the
stability switches of positive equilibrium in the component𝑍
(see Figure 6(b)). In Figure 6(b), the green points are 𝜏1

0
=

6.7822, 𝜏
2

0
= 15.5408, 𝜏

1

1
= 28.6033, 𝜏

2

1
= 44.0317, and
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Figure 4: Numerical solutions of system (3) with 𝛼 = 0.4, 𝜏 = 50, and initial point (0.8, 1, 18). (a) shows the time series of𝑁 (black line), 𝑃
(red line), and𝑍 (blue line) and (b) shows the associated phase diagram of system (3) (magenta line).There exists a positive period-3 solution
of system (3).
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Figure 5: Numerical solutions of system (3) with 𝛼 = 0.4, 𝜏 = 70, and initial point (0.8, 1, 18). (a) shows the time series of𝑁 (black line), 𝑃
(red line), and𝑍 (blue line) and (b) shows the associated phase diagram of system (3) (magenta line). There exists a chaos attractor of system
(3).

𝜏
1

2
= 50.4243, respectively. The black solid lines denote that

the positive equilibrium component 𝑍∗ = 16.92598 is stable
when 𝜏 ∈ [0, 𝜏1

0
) ∪ (𝜏
2

0
, 𝜏
1

1
) ∪ (𝜏
2

1
, 𝜏
1

2
). The blue and red curves

denote the maximum and minimum 𝑍 values, respectively.
The black dashed lines indicate that when 𝜏 ∈ (𝜏

1

0
, 𝜏
2

0
) ∪

(𝜏
1

1
, 𝜏
2

1
) ∪ (𝜏

1

2
, +∞), the equilibrium loses its stability and

oscillations occur.Therefore, the numerical simulations agree
with the theoretical predictions.

5. Conclusion

In this paper, we have studied the dynamics of a nutrient-
plankton system with a time delay. We have investigated

the stability of the positive equilibrium and the existence of
Hopf bifurcation. By using center manifold theory and the
normal form method, we determined the direction of Hopf
bifurcation and the stability of bifurcating periodic solutions.

In detail, we have found that if some conditions are
satisfied, the phenomenon of stability switches arises from
system (3). When the time delay passes through some
critical values, there exists a nonnegative integer 𝑛 such that
the positive equilibrium switches 𝑛 times from stability to
instability to stability and so on, and Hopf bifurcations occur
at the positive equilibrium. The numerical simulations in
Figure 1 indicate that the theoretical results are correct, and
the number of stability switches changes with the value of
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Figure 6: (a) Bifurcation diagram of system (3) with 𝛼 = 0.5 and initial point (0.6, 0.7, 16); (b) the stability switches of positive equilibrium in
the component 𝑍 with respect to time delay 𝜏 for 𝛼 = 0.2991 and 𝑍∗ = 16.92598, where the green point denotes the Hopf bifurcation point,
the black solid line denotes the stable positive equilibrium, the black dashed line denotes the unstable positive equilibrium, and the blue and
red curves denote the maximum and minimum values of zooplankton density 𝑍, respectively.

the external source of nutrients 𝛼. This result indicates that
the external source of nutrients flowing into the system has
important influence on the complex dynamics of system (3).

Numerical simulations also showed that as the time
delay further increases, the periodic solutions disappear and
chaos appears. All these results not only will help in further
investigating the dynamics of pelagic ecosystem in theory but
also are very useful to understand the complex phenomena
really happening in marine ecosystem.
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