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When studying axisymmetric particle fluid flows, a scalar function, 𝜓, is usually employed, which is called a stream function. It
serves as a velocity potential and it can be used for the derivation of significant hydrodynamic quantities. The governing equation
is a fourth-order partial differential equation; namely, 𝐸4𝜓 = 0, where 𝐸2 is the Stokes irrotational operator and 𝐸

4
= 𝐸
2
∘ 𝐸
2 is

the Stokes bistream operator. As it is already known, 𝐸2𝜓 = 0 in some axisymmetric coordinate systems, such as the cylindrical,
spherical, and spheroidal ones, separates variables, while in the inverted prolate spheroidal coordinate system, this equation accepts
𝑅-separable solutions, as it was shown recently by the authors. Notably, the kernel space of the operator 𝐸4 does not decompose in
a similar way, since it accepts separable solutions in cylindrical and spherical system of coordinates, while 𝐸4𝜓 = 0 semiseparates
variables in the spheroidal coordinate systems and it 𝑅-semiseparates variables in the inverted prolate spheroidal coordinates. In
addition to these results, we show in the present work that in the inverted oblate spheroidal coordinates, the equation 𝐸

󸀠2

𝜓 = 0 also
𝑅-separates variables and we derive the eigenfunctions of the Stokes operator in this particular coordinate system. Furthermore, we
demonstrate that the equation 𝐸

󸀠4

𝜓 = 0 𝑅-semiseparates variables. Since the generalized eigenfunctions of 𝐸󸀠2 cannot be obtained
in a closed form, we present a methodology through which we can derive the complete set of the generalized eigenfunctions of 𝐸󸀠2

in the modified inverted oblate spheroidal coordinate system.

1. Introduction

Stokes flow arises in many problems in physics, medicine,
and engineering, where the relative motion between parti-
cles and fluid is extensively studied, either theoretically or
experimentally. It is defined as the steady axisymmetric flow
of an incompressible, viscous fluid, and it is employed in cases
where the viscous forces dominate the inertial ones or, equiv-
alently, when the Reynolds number ismuch less than 1; that is,
Re ≪ 1 [1]. It was first studied by Stokes [2, 3] for describing
the flow around a spherical particle. Stokes flow is mathemat-
ically described through the celebrated system of differential
equations governing the velocity and the pressure field [1]. In
the axisymmetric cases, however, a scalar function𝜓, namely,
the stream function 𝜓, is employed instead, which satisfies
the fourth-order partial differential equation 𝐸

4
𝜓 = 0, where

𝐸
4
= 𝐸
2
∘ 𝐸
2 and 𝐸

2 is the Stokes irrotational operator [1, 4].

With respect to the direction of the flow, the particles
may be considered as being either symmetric, for example,
spheres [1, 4–6], or axisymmetric, for example, spheroids
[1, 5, 6], or nonsymmetric, for example, ellipsoids [7, 8].
Since the lack of symmetry is the most common situation in
physical problems, our interest focuses on the nonspherical
geometries starting with the axisymmetric ones. A solution
of Stokes flow in spheroidal coordinates was given implicitly
by Sampson early in 1891 [8]. Much later, Payne and Pell [9]
derived a solution for the case of a spheroid moving along its
axis of symmetrywithin a quiescent viscous fluid, whileDavis
[10] studied the sedimentation of axisymmetric particles in
shear flows. Lai and Mockros [11] calculated the flow field
which is generated by a spheroid executing axial translatory
oscillations in an infinite, incompressible, viscous fluid. The
motion of ellipsoidal particles immersed in a viscous fluid
was the subject of a fundamental work of Jeffery [12], while
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Dorrepall et al. [13] studied Stokes flows about a closed torus.
Recently, Srivastava et al. [14] dealt with the problemof steady
Stokes flow past a deformed sphere, considering that the uni-
form stream is along the axis of symmetry or perpendicular
to the axis of symmetry.

Among the methods for solving a partial differential
equation, there exists the well-known method of separation
of variables. Happel and Brenner [1], by applying this method
and using an effective ad hoc technique, obtained a solution
for the boundary value problem of the axisymmetric viscous
flow around a single spheroid with different boundary con-
ditions. Unfortunately, due to the difficulties imposed by the
coordinate system, they did not manage to provide a general
solution of the governing fourth-order partial differential
equation. In 1994, Dassios et al. in [15] derived a complete
set of eigenfunctions and generalized eigenfunctions of the
Stokes operator 𝐸2 by introducing the notion of semisepa-
rability. Moreover, they calculated the 0-eigenspace and the
generalized 0-eigenspace of 𝐸2 in the spheroidal coordinates,
in terms of series expansion of specific combinations of
particular kind of Gegenbauer functions [16, 17]. Dassios
and Vafeas in [18] rewrote in a more convenient manner the
expansions of prolate eigenfunction that were obtained in [15]
to eliminate some indeterminacies of their application.

Also, Chwang [19] andChwang andWu [20–22] provided
solutions for the Stokes flow around slender bodies in
unbounded fluids through superposition of hydrodynamic
singularities. Moreover, Rallison and Acrivos [23] developed
themethod of boundary integrals of distributed singularities,
while Youngren and Acrivos [24] determined the problem of
the slow viscous flow of an unbounded fluid past a single solid
particle which is formulated exactly as a system of linear inte-
gral equations of the first kind for a distribution of Stokeslets
over the particle surface.The use of fundamental singularities
for modelling the Stokes flows is the subject of another
category of studies and it is quite different from the approach
presented in this work.

Numerical studies have also been presented. Pitter et al.
[25] investigated the flow past a thin oblate spheroid falling
at terminal velocity in an infinite, viscous fluid. Datta and
Deo [26] calculated numerically the Stokes flow with slip
condition in a deformable sphere and in an oblate spheroid
with Kuwabara boundary conditions.

In other studies, the solution obtained by Lamb [27, 28]
is used. Lamb in [28] derived the solution for Stokes flow
around an ellipsoid. Zhuang et al. [29] proposed a three-
dimensional fundamental solution in terms of the oblate
spheroidal coordinates transforming the solid harmonic
functions in Lamb’s solution.

Stokes flow in the inverted coordinate systems has been
also studied. Hellou [30] presented biharmonic solutions for
flow in small Re numbers using geometric inversion in two
dimensions. Utilising the outcomes of Dassios et al. [15], we
have further expanded our studies to Stokes flow problems
around nonconvex bodies, such as the inverted prolate
spheroids. The obtained expressions were used to model the
blood plasma flow past a red blood cell [31], the sedimenta-
tion of a red blood cell [32], and also the blood plasma flow

around two aggregated Low Density Lipoproteins [33] and
the translation of two aggregated Low Density Lipoproteins
within blood plasma [34]. Moreover, the authors in [35, 36]
derived the eigenfunctions of the Stokes operator 𝐸

󸀠2 in
the modified inverted prolate coordinate system, proving
that Stokes operator in this system 𝑅-separates variables.
Specifically, since the generalized eigenfunctions cannot be
expressed in a closed form, they developed an algorithm for
obtaining every generalized eigenfunction of the kernel of𝐸󸀠2

through recurrence relations.
In the present work, we follow the same methodology we

developed in [15] and derive the eigenfunctions of the Stokes
operator in the modified inverted oblate coordinate system.
We provide an algorithm through which we can calculate
the generalized eigenfunctions of the Stokes operator 𝐸

󸀠2,
since, again, a closed form expression is not feasible. We
utilised the concept of semiseparation and the 𝑅-separation
andwe obtained the eigenfunctions of the 0-eigenspace of𝐸󸀠2

expressed as products of Gegenbauer functions divided by
the Euclidian distance 𝑟, while the generalized 0-eigenspace
of 𝐸󸀠2 consisted of combinations of products of Gegenbauer
functions divided by 𝑟3. Thus, we further expand the notion
of 𝑅-separability and the 𝑅-semiseparability, that were intro-
duced first in [35, 36] for the inverted prolate spheroidal
system, to the inverted oblate coordinate system, defining
appropriately the function 𝑅.

The structure of this paper is as follows. In Section 2, the
mathematical background is presented, while in Section 3
we calculate the eigenfunctions of the 0-eigenspace of 𝐸󸀠2

and we show the methodology to calculate the generalized
0-eigenfunctions in the modified inverted oblate system of
coordinates. In Section 4, we discuss the obtained results.

2. Mathematical Background

Each point (𝑥
1
, 𝑥
2
, 𝑥
3
) in Cartesian coordinates can be

represented in the oblate spheroidal coordinates (𝜆, 𝜁, 𝜑) by
the equations [37]

𝑥
1
= 𝑐√𝜆2 + 1√1 − 𝜁2 cos𝜑,

𝑥
2
= 𝑐√𝜆2 + 1√1 − 𝜁2 sin𝜑,

𝑥
3
= 𝑐𝜆𝜁,

(1)

where 𝜆 ∈ R, −1 ≤ 𝜁 ≤ 1, 𝜑 ∈ [0, 2𝜋), and 𝑐 > 0 specifies the
semifocal distance.

Consequently,

r = (𝑐√𝜆2 + 1√1 − 𝜁2 cos𝜑, 𝑐√𝜆2 + 1√1 − 𝜁2

⋅ sin𝜑, 𝑐𝜆𝜁) ,
(2)

with

𝑟 = |r| = 𝑐√𝜆2 − 𝜁2 + 1. (3)
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Assuming a sphere of radius 𝑏 > 0with respect to that sphere,
the inverted oblate spheroidal coordinates are defined as in
[37]

𝑥
󸀠

1
=
𝑏
2√𝜆2 + 1√1 − 𝜁2 cos𝜑

𝑐 (𝜆2 − 𝜁2 + 1)
,

𝑥
󸀠

2
=
𝑏
2√𝜆2 + 1√1 − 𝜁2 sin𝜑

𝑐 (𝜆2 − 𝜁2 + 1)
,

𝑥
󸀠

3
=

𝑏
2
𝜆𝜁

𝑐 (𝜆2 − 𝜁2 + 1)
,

(4)

where

r󸀠 = (
𝑏
2√𝜆2 + 1√1 − 𝜁2 cos𝜑

𝑐 (𝜆2 − 𝜁2 + 1)
,

𝑏
2√𝜆2 + 1√1 − 𝜁2 sin𝜑

𝑐 (𝜆2 − 𝜁2 + 1)
,

𝑏
2
𝜆𝜁

𝑐 (𝜆2 − 𝜁2 + 1)
) ,

𝑟
󸀠
=
󵄨󵄨󵄨󵄨󵄨
r󸀠󵄨󵄨󵄨󵄨󵄨 =

𝑏
2

𝑐√𝜆2 − 𝜁2 + 1
.

(5)

In what follows, we denote with primes the corresponding
quantities in the inverted coordinate system.

3. 𝑅-Separation of the Stokes Operator and
𝑅-Semiseparation of the Bistream Operator
in the Inverted Oblate Coordinate System

3.1. 𝑅-Separation of the Stream Operator in Ω
󸀠. The Stokes

stream operator in the inverted oblate system is

𝐸
󸀠2

=
𝑐
2
(𝜆
2
− 𝜁
2
+ 1)

𝑏4 (𝜆2 + 𝜁2)
{2𝜆 (𝜆

2
+ 1)

𝜕

𝜕𝜆

+ (𝜆
2
+ 1) (𝜆

2
− 𝜁
2
+ 1)

𝜕
2

𝜕𝜆2
− 2𝜁 (1 − 𝜁

2
)
𝜕

𝜕𝜁

+ (1 − 𝜁
2
) (𝜆
2
− 𝜁
2
+ 1)

𝜕
2

𝜕𝜁2
} .

(6)

We define the eigenfunctions Θ(𝑖)
𝑛
(𝜆, 𝜁), for 𝑖 = 1, 2, 3, 4, as

Θ
󸀠(1)

𝑛
(𝜆, 𝜁) =

𝑏

𝑐√𝜆2 − 𝜁2 + 1
𝐺
𝑛
(𝑖𝜆) 𝐺

𝑛
(𝜁) ,

Θ
󸀠(2)

𝑛
(𝜆, 𝜁) =

𝑏

𝑐√𝜆2 − 𝜁2 + 1
𝐺
𝑛
(𝑖𝜆)𝐻

𝑛
(𝜁) ,

Θ
󸀠(3)

𝑛
(𝜆, 𝜁) =

𝑏

𝑐√𝜆2 − 𝜁2 + 1
𝐻
𝑛
(𝑖𝜆) 𝐺

𝑛
(𝜁) ,

Θ
󸀠(4)

𝑛
(𝜆, 𝜁) =

𝑏

𝑐√𝜆2 − 𝜁2 + 1
𝐻
𝑛
(𝑖𝜆)𝐻

𝑛
(𝜁) ,

(7)

which satisfy the equations

𝐸
󸀠2

Θ
󸀠(𝑖)

𝑛
= 0, 𝑖 = 1, 2, 3, 4, (8)

so the eigenfunctions Θ󸀠(𝑖)
𝑛
(𝜆, 𝜁) belong in the kernel of the

operator 𝐸󸀠2. Therefore, the Stokes stream operator 𝑅-sepa-
rates variables with

𝑅 = 𝑟. (9)

Note that although the argument is a complex number, the
Gegenbauer functions 𝐺

𝑛
and 𝐻

𝑛
are real valued. Therefore,

a complete representation of the kernel of the operator 𝐸󸀠2 is
given as follows, for any 𝜓 ∈ Ker𝐸󸀠2:

𝜓 (𝜆, 𝜁) =

∞

∑

𝑛=0

4

∑

𝑖=1

𝐴
𝑖

𝑛
Θ
󸀠(𝑖)

𝑛
(𝜆, 𝜁) , (10)

where 𝐴𝑖
𝑛
are constants.

3.2. 𝑅-Semiseparation of the Bistream Operator in Ω
󸀠. Fol-

lowing the same methodology we proposed in [18, 19], and
since, again, a closed form for the generalized eigenfunctions,
Ω
󸀠(𝑖)

𝑛
(𝜆, 𝜁), cannot be obtained, we derive every Ω

󸀠(𝑖)

𝑛
(𝜆, 𝜁)

using recurrence relations as follows.
The generalized eigenfunctions from 𝑛 = 0 to 𝑛 = 3 are

Ω
󸀠(1)

0
(𝜆, 𝜁) =

𝐺
0
(𝑖𝜆) 𝐺

0
(𝜁)

6√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(1)

1
(𝜆, 𝜁) =

𝐺
1
(𝑖𝜆) 𝐺

1
(𝜁)

2√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(1)

2
(𝜆, 𝜁) =

𝐺
2
(𝑖𝜆) 𝐺

2
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(1)

3
(𝜆, 𝜁) =

𝐺
3
(𝑖𝜆) 𝐺

3
(𝜁)

−6√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(2)

0
(𝜆, 𝜁) =

𝐺
0
(𝑖𝜆) 𝐺

1
(𝜁)

6√𝜆2 − 𝜁2 + 1
3

+
𝐺
0
(𝑖𝜆) 𝐺

3
(𝜁)

− (3/2)√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(2)

1
(𝜆, 𝜁) =

𝐺
1
(𝑖𝜆) 𝐺

0
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3

+
𝐺
1
(𝑖𝜆) 𝐺

2
(𝜁)

(3/2)√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(2)

2
(𝜆, 𝜁) =

𝐺
2
(𝑖𝜆)𝐻

2
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3
+

𝐺
2
(𝑖𝜆) 𝐺

1
(𝜁)

−3√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(2)

3
(𝜆, 𝜁) =

𝐺
3
(𝑖𝜆)𝐻

3
(𝜁)

−6√𝜆2 − 𝜁2 + 1
3
+

𝐺
3
(𝑖𝜆) 𝐺

0
(𝜁)

9√𝜆2 − 𝜁2 + 1
3
,
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Ω
󸀠(3)

0
(𝜆, 𝜁) =

𝐺
1
(𝑖𝜆) 𝐺

0
(𝜁)

6√𝜆2 − 𝜁2 + 1
3

+
𝐺
3
(𝑖𝜆) 𝐺

0
(𝜁)

− (3/2)√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(3)

1
(𝜆, 𝜁) =

𝐺
0
(𝑖𝜆) 𝐺

1
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3

+
𝐺
2
(𝑖𝜆) 𝐺

1
(𝜁)

(3/2)√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(3)

2
(𝜆, 𝜁) =

𝐻
2
(𝑖𝜆) 𝐺

2
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3
+

𝐺
1
(𝑖𝜆) 𝐺

2
(𝜁)

−3√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(3)

3
(𝜆, 𝜁) =

𝐻
3
(𝑖𝜆) 𝐺

3
(𝜁)

−6√𝜆2 − 𝜁2 + 1
3
+

𝐺
0
(𝑖𝜆) 𝐺

3
(𝜁)

9√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(4)

0
(𝜆, 𝜁) =

𝐺
1
(𝑖𝜆) 𝐺

1
(𝜁)

2√𝜆2 − 𝜁2 + 1
3
= Ω
(1)

1
(𝜆, 𝜁) ,

Ω
󸀠(4)

1
(𝜆, 𝜁) =

𝐺
0
(𝑖𝜆) 𝐺

0
(𝜁)

6√𝜆2 − 𝜁2 + 1
3
= Ω
(1)

0
(𝜆, 𝜁) ,

Ω
󸀠(4)

2
(𝜆, 𝜁) =

𝐻
2
(𝑖𝜆)𝐻

2
(𝜁)

−2√𝜆2 − 𝜁2 + 1
3
+

𝐺
1
(𝑖𝜆)𝐻

2
(𝜁)

−3√𝜆2 − 𝜁2 + 1
3

+
𝐻
2
(𝑖𝜆) 𝐺

1
(𝜁)

−3√𝜆2 − 𝜁2 + 1
3
,

Ω
󸀠(4)

3
(𝜆, 𝜁) =

𝐻
3
(𝑖𝜆)𝐻

3
(𝜁)

−6√𝜆2 − 𝜁2 + 1
3
+

𝐺
0
(𝑖𝜆)𝐻

3
(𝜁)

9√𝜆2 − 𝜁2 + 1
3

+
𝐻
3
(𝑖𝜆) 𝐺

0
(𝜁)

9√𝜆2 − 𝜁2 + 1
3
.

(11)

We also define operator Λ as

Λ = 2𝜆 (𝜆
2
+ 1)

𝜕

𝜕𝜆
+ (𝜆
2
+ 1) (𝜆

2
− 𝜁
2
+ 1)

𝜕
2

𝜕𝜆2

− 2𝜁 (1 − 𝜁
2
)
𝜕

𝜕𝜁
+ (1 − 𝜁

2
) (𝜆
2
− 𝜁
2
+ 1)

𝜕
2

𝜕𝜁2
.

(12)

Furthermore, we define the functions

Φ
(1)

2,4
= Λ

𝐺
2
(𝑖𝜆) 𝐺

2
(𝜁)

− (8/5)√𝜆2 − 𝜁2 + 1
3
,

Φ
(1)

3,5
= Λ

𝐺
3
(𝑖𝜆) 𝐺

3
(𝜁)

− (24/7)√𝜆2 − 𝜁2 + 1
3
,

Φ
(2)

2,4
= Λ(

𝐺
2
(𝑖𝜆)𝐻

2
(𝜁)

− (8/5)√𝜆2 − 𝜁2 + 1
3

+
𝐺
2
(𝑖𝜆) 𝐺

1
(𝜁)

− (72/25)√𝜆2 − 𝜁2 + 1
3
) ,

Φ
(2)

3,5
= Λ(

𝐺
3
(𝑖𝜆)𝐻

3
(𝜁)

− (24/7)√𝜆2 − 𝜁2 + 1
3

+
𝐺
3
(𝑖𝜆) 𝐺

0
(𝜁)

(360/49)√𝜆2 − 𝜁2 + 1
3
) ,

Φ
(3)

2,4
= Λ(

𝐻
2
(𝑖𝜆) 𝐺

2
(𝜁)

− (8/5)√𝜆2 − 𝜁2 + 1
3

+
𝐺
1
(𝑖𝜆) 𝐺

2
(𝜁)

− (72/25)√𝜆2 − 𝜁2 + 1
3
) ,

Φ
(3)

3,5
= Λ(

𝐻
3
(𝑖𝜆) 𝐺

3
(𝜁)

− (24/7)√𝜆2 − 𝜁2 + 1
3

+
𝐺
0
(𝑖𝜆) 𝐺

3
(𝜁)

(360/49)√𝜆2 − 𝜁2 + 1
3
) ,

Φ
(4)

2,4
= Λ(

𝐻
2
(𝑖𝜆)𝐻

2
(𝜁)

− (8/5)√𝜆2 − 𝜁2 + 1
3

+
𝐺
1
(𝑖𝜆)𝐻

2
(𝜁)

− (72/25)√𝜆2 − 𝜁2 + 1
3

+
𝐻
2
(𝑖𝜆) 𝐺

1
(𝜁)

− (72/25)√𝜆2 − 𝜁2 + 1
3
) ,

Φ
(4)

3,5
= Λ(

𝐻
3
(𝑖𝜆)𝐻

3
(𝜁)

− (24/7)√𝜆2 − 𝜁2 + 1
3

+
𝐺
0
(𝑖𝜆)𝐻

3
(𝜁)

(360/49)√𝜆2 − 𝜁2 + 1
3

+
𝐻
3
(𝑖𝜆) 𝐺

0
(𝜁)

(360/49)√𝜆2 − 𝜁2 + 1
3
) .

(13)

Using the relations

ΛΩ
󸀠(𝑖)

𝑛
= −𝛼
𝑛
Φ
(𝑖)

𝑛−2,𝑛
+ 𝛽
𝑛
Φ
(𝑖)

𝑛,𝑛+2
,

Λ
𝑓
𝑛
(𝑖𝜆) 𝑔
𝑛
(𝜁)

√𝜆2 − 𝜁2 + 1
3

=
1

√𝜆2 − 𝜁2 + 1
3
{−𝑖4𝜆 (𝜆

2
+ 1)𝑓

󸀠

𝑛
(𝑖𝜆) 𝑔
𝑛
(𝜁)

− (𝜆
2
+ 1) (𝜆

2
− 𝜁
2
+ 1)𝑓

󸀠󸀠

𝑛
(𝑖𝜆) 𝑔
𝑛
(𝜁)

+ 6 (𝜆
2
+ 𝜁
2
) 𝑓
𝑛
(𝑖𝜆) 𝑔
𝑛
(𝜁)

− 4𝜁 (𝜁
2
− 1)𝑓

𝑛
(𝑖𝜆) 𝑔

󸀠

𝑛
(𝜁)

+ (𝜁
2
− 1) (𝜆

2
− 𝜁
2
+ 1)𝑓

𝑛
(𝑖𝜆) 𝑔

󸀠󸀠

𝑛
(𝜁)} ,
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Λ
𝑓
𝑛
(𝑖𝜆) 𝑔
𝑛
(𝜁)

√𝜆2 − 𝜁2 + 1
3
= − (4𝑛 + 2) 𝛼

𝑛
Φ
(𝑖)

𝑛−2,𝑛
− (4𝑛 − 6)

⋅ 𝛽
𝑛
Φ
(𝑖)

𝑛,𝑛+2
,

(14)

we can calculate every generalized eigenfunctionΩ
󸀠(𝑖)

𝑛
(𝜆, 𝜁).

4. Discussion

The complete set of the eigenfunctions of the Stokes operator
in the modified inverted oblate coordinate system is obtained
for the first time. Τhe 0-eigenspace of the operator 𝐸

󸀠2 is
given as𝑅-separable solutions of Gegenbauer functions of the
angular and radial dependence, with 𝑅 being the Euclidian
distance 𝑟, expressed in the particular coordinate system.
The generalized eigenfunctions of the operator 𝐸

󸀠2 in the
modified inverted oblate coordinate system are obtained
through an algorithmic procedure presented in Section 3.The
generalized eigenfunctions are given as the preimages of spe-
cific combinations of the 0-eigenfunctions defined through
recurrence relations. They are obtained in 𝑅-semiseparable
form, with 𝑅 being equal to 𝑟

3 this time. In other words,
we demonstrated that the operator 𝐸󸀠2 𝑅-separates variables
while the operator 𝐸

󸀠4 “𝑅-semiseparates” variables in the
modified inverted oblate coordinate system.This “behaviour”
reflects the fact of the inversion of the coordinate system and
it is closely related to the kind of flow (e.g, irrotational) that
the particular Stokes operator represents. The obtained solu-
tions provide a complete decomposition of the 0-eigenspaces
of the Stokes operators in the inverted oblate spheroidal
system, allowing each time the choice of the appropriate
subspace for representing the solution of the boundary value
problem under consideration. As it is already mentioned, the
obtained analytical expansions may be used for quantitative
and qualitative analysis of problems arising in physics or in
medicine, such as blood flow around red blood cells, or the
movement of aggregated lipoproteins.
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