View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation

Journal of Electrical and Computer Engineering
Volume 2016, Article ID 8536432, 15 pages
http://dx.doi.org/10.1155/2016/8536432

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

Performance Estimation Based Multicriteria Partitioning
Approach for Dynamic Dataflow Programs

Malgorzata Michalska,! Nicolas Zufferey,2 and Marco Mattavelli

'EPFL SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Geneva School of Economics and Management (GSEM), University of Geneva, 1211 Geneva 4, Switzerland

Correspondence should be addressed to Malgorzata Michalska; malgorzata.michalska@epfl.ch

Received 29 January 2016; Revised 17 June 2016; Accepted 29 June 2016

Academic Editor: Maxime Pelcat

Copyright © 2016 Malgorzata Michalska et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

The problem of partitioning a dataflow program onto a target architecture is a difficult challenge for any application design. In
general, since the problem is NP-complete, it consists of looking for high quality solutions in terms of maximizing the achievable
data throughput. The difficulty is given by the exploration of the design space which results in being extremely large for parallel
platforms. The paper describes a heuristic partitioning methodology applicable to dynamic dataflow programs. The methodology
is based on two elements: an execution model of the dynamic dataflow program which is used as estimation of the performance for
the exploration of the large design space and several partitioning algorithms competing to lead to specific high quality solutions.
Experimental results are validated with executions on a virtual platform.

1. Introduction

An interesting alternative to the classical sequential program-
ming methods for signal processing system implementations
is the approach based on dataflow programming. Dataflow
programs are characterized by a high analyzability and plat-
form independence and by providing an explicit exposition of
the potential parallelism. For these reasons, they can be used
for exploring a variety of parallel implementation options
and to provide an extensive and systematic implementation
analysis [1, 2]. Hence, they have been investigated in several
research works [3-5].

Dataflow programs are in general structured as, possibly,
hierarchical networks of communicating computational ker-
nels, called actors. Actors are connected by directed, lossless,
order preserving point-to-point communication channels,
and data exchanges are only permitted by sending data pack-
ets (called tokens) over those channels. A general dataflow
Model of Computation (MoC) is known in the literature
as “Dataflow Process Network (DPN) with firings” [6]. A
DPN network evolves as a sequence of discrete steps (called
firings) corresponding to the executions of actions that may
consume and/or produce a finite number of tokens and

modify the internal actor state. At each step, according to
the current actor internal state, only one action can be fired.
The processing part of the actors is thus encapsulated in the
atomic executions completely abstracting from time. Figure 1
illustrates the construction of a sample dataflow program and
the underlying structure of an actor.

An important property of a dataflow program is the
composability of its components (actors). Porting a program
onto a target architecture requires determining three settings:
the partitioning (the assignment of dataflow actors to the
processing units), the scheduling (the execution order inside
each unit, where, depending on the internal nature of actors, a
static scheduling may or may not exist), and the dimensioning
of buffers (a finite size for each communication channel in
the network). An essential aspect of the problem is that
although the configurations are applied at the level of actors,
the program execution (i.e., in terms of data dependencies) is
described at the level of action firings.

Depending on the architecture and on the dataflow
program itself, the size of the solution space of admissible
partitioning and scheduling configurations can be, in general,
extremely large. Therefore, an important design challenge
is to find a set of configurations that optimizes the desired

https://core.ac.uk/display/193463502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Actions

Pin [] Pout

S——
Internal
variables

b by

F1GURE 1: Construction of a sample dataflow program.

objective function. This problem has been proven to be NP-
complete even for the case of only two processors [7]. Among
different objective functions that might be considered, this
work focuses on the maximization of the data throughput
of a dataflow program. This particular objective function is
often an appropriate choice for stream programs, since in
many cases it contributes also to an optimization of other
criteria, such as, for instance, resources utilization and energy
consumption [8].

An efficient exploration of the multidimensional design
space has two important applications. First, exploration of
feasible regions leads to determining a close-to-optimal set
of configurations according to the desired objective function.
Second, it enables the identification of unreachable regions
of the design space that could become reachable by applying
refactorization stages to the considered design. For instance,
a different implementation of an algorithm might be required
for obtaining higher performances if its current exposed
parallelism is lower than the potential parallelism offered by
the processing platform.

Among different dimensions of the design space, more
attention is usually paid to the partitioning, since its impact
on the overall performance is considered to be dominant.
Furthermore, the room for improvement left, for instance, to
scheduling strongly depends on the quality of the applied par-
titioning (i.e., low-quality partitioning configurations cannot
be improved much by applying eflicient scheduling). This
property has been confirmed also for other, nondataflow
domains [9, 10]. The purpose of this work is to describe a
new partitioning methodology to perform the design space
exploration of dataflow program implementations.

The original contribution of this paper includes different
stages of the partitioning process: starting from presenting
and discussing different aspects of the problem, possible
impact of a considered architecture, through the model-
ing approach, up to the description of several partitioning
solution methods with different quality and complexity. An
important property of the methodology is the construction
of partitioning algorithms based on highly accurate models

Journal of Electrical and Computer Engineering

g(j1) = 9j2)
OO0
9(j4) = 9j5)

ml m2

FIGURE 2: Partitioning and scheduling illustration.

of the program executions. The execution model is used in
order to evaluate each solution and to extract some execution
properties which are further considered as optimization crite-
ria. The approach can be implemented with limited memory
requirements (i.e., it can be implemented on a standard PC
also for complex designs) and provides solutions according to
quasi-constant evaluation times for different configurations
considered. Unlike most of the existing approaches, the
methodology can be used for analyzing static as well as fully
dynamic dataflow programs.

The paper has the following structure. First, Section 2
presents and formulates the partitioning and scheduling
problem explicitly for the case of dynamic dataflow programs.
In this context, the related work is discussed in Section 3.
Then, Section 4 describes the execution model used to
derive the estimations and Section 5 reports in detail the
proposed partitioning algorithms built upon this model. The
algorithms are analyzed for complexity, quality of solution,
and usability, based on the experimental results presented in
Section 6. Finally, conclusions and future works are discussed
in Section 7.

2. Dataflow Partitioning and Scheduling

The design problem considered here can be applied to any
dataflow MoC.

2.1. Problem Presentation. Following the terminology com-
monly used in the production field [11], an objective is to
find an assignment of # jobs (representing action firings) to
a set of m parallel machines (corresponding to processors).
The objective function to minimize is the overall makespan
(i.e., the completion time of the last performed job among
all processors). Assuming that the processors do not allow
parallel execution, only one job can be performed at a time
on each machine. Therefore, when all jobs are assigned to
the machines, it must be decided in which order the jobs are
going to be performed on each machine. The literature termi-
nology often calls the first problem as mapping in the spatial
domain (binding) and the second as mapping in the temporal
domain (scheduling) [12]. In this work, partitioning (K,) and
scheduling (K;) refer to these problems, respectively, and are
illustrated in Figure 2.

Each job j has an associated processing time (weight) p;
and a group (actor) g;. There are k possible groups, and each
one can be divided into subgroups where all jobs have the
same processing time. This division can be easily identified

Journal of Electrical and Computer Engineering

with actions and their executions (firings). Between some
pairs {j, j'} of incompatible jobs (i.e., with g; # gy)is
associated a communication time w;;. The communication
time is subject to a fixed quantity g;; of information (or
the number of tokens) that needs to be transferred. The
size of this data is fixed for any subgroup (i.e., an action
always produces/consumes the same amount of data). Due
to the structure of dataflow programs, the partitioning and
scheduling must take into account the following constraints:

(i) Group constraint: all jobs belonging to the same
group have to be processed on the same machine (i.e.,
an actor must be entirely assigned to one processing
unit). A fixed relative order is decided within each
group. It can be assumed that this order is established
based on the program’s input data.

(i) Precedence constraint: (j, j') means that a job j must
be completed before job j' is allowed to start.

(iii) Setup constraint: it requires that, for each exist-
ing connection (j, j') involving jobs from different

groups, a setup (or communication) time w ;j oceurs.

(iv) Communication channel capacity constraint: the size
of a communication channel (buffer) through which
the information (tokens) is being transmitted is
bounded by B. That is, the sum of g s assigned to this
buffer (g,) cannot exceed B. If it occurs, it might affect
the executability of j and j' and introduce serious
delays in the overall makespan.

2.2. Architecture Impact. Executing the dataflow program on
a given architecture requires introducing the notion of time
to its originally time-abstracting definition. It is achieved by
assigning a concrete value to the weight p; of each job and
to the communication time w;;. The types and ranges of

ji
values for p;’s and w;;’s fully depend on the properties of the

targeted architecturej.]For the case of homogeneous platforms,
pj is constant no matter how a group (actor) is actually parti-
tioned. It is not the case for heterogeneous platforms, where
this value can vary according to the processor family that the
processing unit belongs to (i.e., software or hardware).
Assuming that job j is assigned to the machine p, the
actual value of communication time w;; is a product of two
elements: the number of tokens g;; and the variable time
¢jj(pj» pjr) needed to transfer a single unit of information
from p; to p;. For two given jobs j and j', the largest ¢jjt
can be significantly larger than the smallest ¢;;. In theory,

every connection (j, j') can have as many different cjji’s as
the number of different possible assignments to the machines.
But in practice, this number can be usually reduced to few
different values of latency, depending on the memory level
serving a given communication (see Chapter 4 of [13]).

The case of heterogeneous platforms (typically hardware
or software families of processors) may introduce some
further constraints to the problem, such as the following:

(i) Eligibility constraint: not all jobs can be processed
on each machine (i.e., each machine has a collection
d(p;) of not supported operations).

(ii) Capacity constraint: the memory size is limited for a
given family fl of processors. It involves that the mem-
ory requirements of all jobs assigned to processors of
this family cannot exceed the given size.

Different figures of merit can be also introduced for com-
munication time, especially for communication occurring
between jobs partitioned to machines belonging to different
families.

2.3. Problem Formulation. Following different aspects of the
problem discussed in Sections 2.1 and 2.2, for each job it
is required to find a partitioning configuration K, and for
each partition a scheduling configuration K, so that the
total execution time is minimized. The constraints include
group, setup/communication, buffer capacity, eligibility, and
capacity. These aspects can be summarized in the problem
formulation provided below.

Decision Variables are as follows: V,K,(j) = p;, ¥ ,K, =
(g

Objective Function is min(T,q(fiase))-

Constraints are as follows:

(1) gji=9j = Kp(j) = Kp(j,),
(11)] < j’ = Tstart(jl) 2 Tend(j)’
(iii) j, = j = X, + tokens(j) < B,
(iv) K,(j) = pi = j ¢ d(p),

(V) ZpeaZpepZ

gepZjegmem(j) < size(f).

3. Related Work

Due to the NP-completeness of the partitioning problem
for realistic instances, it is only possible to develop meth-
ods providing close-to-optimal solutions [14]. They can be
obtained by applying constructive heuristics, where a solution
is generated from scratch by sequentially adding components
to the current partial solution according to some criteria
until the solution is complete [15]. Another possibility is
metaheuristics, formally defined as an iterative generation
process which guides a subordinate heuristic by combining
intelligently different concepts for exploring and exploiting
the search space [16]. Metaheuristics (e.g., simulated anneal-
ing, tabu search, variable neighborhood search, and guided
local search) can usually lead to solutions of higher quality,
but in general they require much longer computing times
(17, 18].

There are several examples of the approaches based on
metaheuristics used for partitioning or, more generally, for
the design space exploration of dataflow programs. In [19],
simulated annealing is employed for estimating the bounds
of the partitioning program. Various optimization stages
(including the selection of a target architecture, partitioning,
scheduling, and designing space exploration) are applied
in [20] in order to identify feasible solutions. The opti-
mizations are performed using an evolutionary algorithm.
Multiobjective evolutionary algorithms used for performing
an automatic design space exploration are also an objective

of work discussed in [21]. An interesting transition from
simple heuristics to advanced metaheuristics (such as genetic
algorithms) is also described in [22], where more advanced
methods act as a refinement to the less advanced ones.

An important aspect of metaheuristic approaches for
design space exploration, which requires explicitly providing
an execution model, is performance estimation that can be
used as an evaluation of a solution. The level of details
considered in the model usually determines the accuracy
of estimation as well as the evaluation time. The more
detailed is the model, the more accurate estimation can
be obtained, but employing a much longer time [23-25].
There are multiple frameworks which use the concept of
performance estimation in order to build the optimization
methods on them.

An interesting example, demonstrating some similarities
with the methodology described in this paper, is the MPSoCs
Application Programming Studio (MAPS) [26]. This design
space exploration framework performs an estimation of a
program execution, based on the analysis of the execution
trace. Chapter 6 of [27] introduces a trace replay module
employing a discrete-event simulator in order to simulate the
scheduling of the segments of the trace. Several optimization
heuristics are built on the estimation, with an emphasis on the
advantages of light-weight heuristics over evolutionary meth-
ods, and the composability analysis for the purpose of execut-
ing simultaneously multiple applications on a given platform
without interference [4]. In terms of modeling differences,
the framework addresses only KPN dataflow programs and
supports a limited set of dependencies. Another framework,
supporting only the KPN programs, is Sesame system-level
simulation framework [28]. Similar to the work presented in
this paper, it introduces a concept of an application model
which is independent from the architecture model and the
partitioning configuration. The objective of the framework is
to find the most suitable and efficient target MPSoC platform
for a given program. Hence, the exploration process involves
simulating and analyzing the candidate architectures.

Unlike the two approaches mentioned earlier, Metropolis
is a framework that abandons the imposition of a specific
language or flow model to the design [29]. It introduces
a design description at different levels of abstraction and
provides an infrastructure based on meta-modeling that
remains generic enough to support existing MoCs, whereas
it can also accommodate new MoCs. The meta-model allows
capturing the architecture, the functionality, and the mapping
between different abstraction levels. The simulation and
formal analysis allow the user to determine how well an
implementation satisfies the specified requirements. With
its generic features, the framework responds only partially
to the demands of DPN, because it does not support a
simultaneous analysis at the level of partitioning, possibly
dynamic scheduling and buffer dimensioning.

In the mentioned examples, the partitioning method-
ologies have been designed explicitly for the purpose of
dataflow partitioning, which is a specific instance of a graph
partitioning problem. The research field of graph partitioning
is thoroughly covered by different algorithms proposed in
the literature [30] as well as some software packages, such

Journal of Electrical and Computer Engineering

as METIS [31] or SCOTCH [32]. Such general purpose
partitioning algorithms cannot be, however, easily applied for
the case of dataflow programs, since they are not aware of
the semantics related to the nodes and edges of a dataflow
graph. An attempt of applying the METIS, mentioned earlier,
for the purpose of run-time actor mapping of dataflow
programs has been made in [33]. This approach explores the
results of profiling and extracts some optimization criteria
(connectivity between actors, critical path). It is, however,
difficult to evaluate the obtained solutions in terms of being
close-to-optimal, or point to possible optimizations in the
design, since no execution model is provided. The considered
partitioning graph is the program network itself and not the
execution trace which can provide elements and measures
of the execution properties of the dataflow program. Fur-
thermore, such combinatorial approach, which might operate
quite effectively for small instances of the problem, cannot be
successfully applied to the exploration of design problems of
larger size.

Summarizing, a comparison with existing approaches
puts in evidence that there are some important differences
that should be emphasized. First of all, the approach can be
applied to all dataflow models of execution including fully
dynamic dataflow programs [34]. Hence, it includes also
other, less expressive dataflow variants such as, for instance,
SDF and CSDF [35]. Furthermore, due to the demands of the
dynamic programs, such as dynamic scheduling influenced
by the applied buffer configuration, the methodology can be
used directly for optimization of other design configurations,
without imposing any particular order of optimizations.
Finally, the long-term objective of the methodology is to
find a close-to-optimal (close-to-the-potential-parallelism)
design configuration on a given platform, in order to assess
the maximum performance of a dataflow program, identify
its bottlenecks, and hence identify new regions of the design
space to be reached after applying some refactorization to the
design.

4. Dataflow Program Execution Modeling

A general dataflow MoC, DPN with firings, is considered. It
allows implementation of fully dynamic programs efficiently
capturing all classes of signal processing applications (e.g.,
video and audio codecs, packet switching in communication
networks). For this reason, a representation of a dataflow
program must capture its entire dynamic behavior. Such a
representation can be built by generating a directed, acyclic
graph G, called Execution Trace Graph (ETG), where nodes of
the graph represent a collection of action executions, called
firings. Such representation has been already extensively
studied to solve some optimization problems of dynamic
dataflow implementations [36].

It is possible to explicitly characterize various intrinsic
dependencies between two firings, which are used to describe
the program execution. They can be grouped into two types.
The first type includes internal dependencies related to FSM,
internal variables, and ports (p"/p°*" in Figure 1) and
describes the relations between two firings of the same actor.
The second type (token dependencies) describes the relations

Journal of Electrical and Computer Engineering

between two firings of different actors that, respectively, pro-
duce and consume at least one token. Defining dependencies
between executed firings establishes precedence orders: if
firing f, depends on firing f;, then f; has to be executed
and completed (including the communication, if applicable)
before f, can be started.

An ETG has to consider a sufficiently large and sta-
tistically meaningful set of input stimuli in order to cover
the whole span of dynamic behavior of the application
considered. The size of G varies according to the type of
application and to the size of the input stimuli set. In
fact, for some applications, it can be large. For instance, a
very complex algorithm, such as HEVC video compression
operating on an input signal of a few tenths of frames, may
result in G containing a few billions of nodes. Still, it can be
processed in reasonable time using standard PC platforms, as
demonstrated by the examples described in Chapter 9 of [36].

Considering the program execution on a given architec-
ture, the ETG is weighted at the nodes and at the edges, and
the weights correspond to the values of p; and w;;, respec-
tively. These values are normally obtained by profiling the
program on the target architecture. A weighted ETG allows
simulating the program execution for a given partitioning,
scheduling, and buffer dimensioning configuration. This task
is accomplished by an event-driven performance estimation
tool that processes the firings following the constraints and
properties, as presented in Section 2.

5. Partitioning Algorithms

This section presents the algorithmic details of different
partitioning solution methods, namely, greedy constructive
procedures, the decent local search heuristics, and the tabu
search metaheuristic. Each method takes the weighted ETG
as input data.

5.1. Greedy Constructive Procedures. In order to construct
a solution, the greedy procedures require specifying only
the target number of processors. The solution generation
succeeds in a negligible time frame, since no performance
estimation needs to be performed.

5.1.1. Workload Balance (WB). The concept of balancing
the workload in order to minimize the bottleneck of the
program and hence maximize the throughput has been
already successfully employed for partitioning purposes of
systems of different types [37]. Inspired by such approaches,
the very first constructive heuristic has been designed. The
algorithm starts from calculating the total workload of each
group throughout the program execution. It is expressed as
the sum of the p;’s for all jobs (firings) belonging to one
group (actor) g. The actors are then sorted decreasingly
by the sum of weights (workload) wl(g) = X, p;- The
partitioning decision is based on the sum of workloads
of actors partitioned already in one processor p: wl(p) =
2 gep WI(g). The next actor on the list is always partitioned
on the processor with the smallest sum of workloads wl(p).
In this way, a balance of overall workload of each partition
should be achieved and the bottleneck (understood as the

workload of the most occupied processor) is likely to be
minimized.

5.1.2. Balanced Pipeline (BP). The algorithm starts from giv-
ing each actor a dedicated processor. Next, the processors are
being iteratively reduced and the members of the least occu-
pied processors are attached to the remaining processors.
The optimization criteria of the algorithm involve equalizing
the average preceding workload (understood as the maximal
sum of weights of each firing of each actor that precedes the
given actor in the network in terms of topological order) and
maximizing the number of common predecessors (under-
stood as the number of actors appearing on the topological
list of predecessors for a given pair of actors) within each
partition. The simulation of the execution time might be
incorporated to the algorithm in order to estimate the optimal
number of processors from the perspective of processors
utilization. The Balanced Pipeline algorithm, extended with
some additional optimization procedures for communication
volume and idle time, has been shown to outperform existing
partitioning algorithms for dataflow programs. For a more
detailed description of the algorithm, its metrics, and its
results, the reader is referred to [38].

5.2. Decent Local Search Heuristics (DLS). As described in
[39], a local search starts from an initial solution and then
explores the solution space by moving from the current
solution to a neighbor solution. A neighbor solution is usually
obtained by making a slight modification of the current
solution, called a move. The neighborhood N(s) of a solution
s is the set of solutions obtained from s by performing
each possible move. In a descent local search (DLS), the best
solution (according to the considered objective function f) of
s’ € N(s) is generated at each iteration. The main drawback
of this method is that it stops in the first local optimum. Two
DLS approaches are proposed below: the Idle DLS and the
Communication Frequency DLS.

5.2.1. Idle DLS (IDLS). Representing the program execution
with the ETG, and simulating it for a given partitioning,
scheduling, and buffer dimensioning configuration using
the performance estimation tool, may provide important
information related to actor states throughout the execution.
The following states may occur for an actor that is currently
not processing and has not yet terminated.

(i) Blocked reading considers the situation where an actor
has not yet received the required input tokens and
therefore cannot be executed.

(ii) Blocked writing takes into account the situation where
the buffer an actor is expecting to write to is full, so it
has to wait for the available space.

(iii) Idle corresponds to the situation where although an
actor has the necessary tokens and required space
in the buffers, it cannot be fired because another
actor is currently processing in the same processor (as
previously mentioned, only one job can be executed
on each processor at a time).

Assuming a design space exploration in the dimension of
partitioning and scheduling, it is particularly important to
minimize the occurrences of the idle state. In order to achieve
that, in IDLS, all actors are sorted according to their idle
times in decreasing order (idle time list). A newly created
solution s is generated by moving a single actor to the most
idle partition, where the idleness of a partition is defined as
the overall time during the execution when none of its actors
could be executed due to being blocked reading/writing or
terminating already. In each iteration, the possible moves are
prioritized according to the position of the considered actor
on the idle time list. A move is evaluated by estimating the
makespan of the new solution. For the case of a successful
move, the statistics on the idle times of the actors and the
corresponding idle time list are being regenerated. Since the
moves are prioritized, there is a risk that if there is a move
with a high priority that does not improve the solution, it will
be unnecessarily repeated in each iteration. To prevent that
from happening, a simple release mechanism is implemented:
a (once unsuccessful) move, understood as an actor-partition
pair, may be repeated only if the content of the target partition
has been modified by applying another move.

5.2.2. Communication Frequency DLS (CFDLS). Another
information that can be extracted from the ETG is the num-
ber of token dependencies between the firings of different
actors. Accumulating these numbers for all firings leads to
creating an actor-actor communication frequency map. This
map is independent from the partitioning configuration, but
taking the partitioning into consideration, it can be easily
transformed into an actor-partition map. Indeed, this map is
taken as an optimization criterion by another local search. For
each actor, the algorithm calculates the internal communi-
cation frequency (token exchange with actors partitioned to
the same processor) and external communication frequency
(token exchange with actors partitioned to different proces-
sors). As described previously in Section 2.2, the partitioning
of actors may strongly influence the values of communication
cost and therefore the makespan.

If for any actor the external communication frequency
with one processor exceeds the internal communication
frequency, this actor-partition pair is considered as a move.
The moves are prioritized according to the overall commu-
nication frequency of the actors and a release mechanism
(similarly to IDLS) is implemented. The move can be eval-
uated in two ways: by estimating the execution time of a new
solution or by analyzing if the overall external communica-
tion frequency (calculated collectively for all partitions) has
decreased. In this work, for the purpose of consistency with
other solution methods, only the first method is used.

5.3. Tabu Search (TS). Tabu search, as introduced by Glover
[40], is still among the most cited and used local search
metaheuristics for combinatorial optimization problems. It
avoids the problem of getting stuck in the first local optimum
by making use of recent memory with a tabu list. More
precisely, it forbids performing the reverse of the moves done
during the last tab (parameter) iterations, where tab is called
tabu tenure. At each iteration of TS, the neighbor solution s’

Journal of Electrical and Computer Engineering

is obtained from the current solution s by performing on the
latter the best nontabu move (ties are broken randomly). The
process stops, for instance, when a time limit T' (parameter)
is reached. In most TS implementations, if the neighborhood
size is too big, only a proportion is explored in each iteration.
This proportion can be, for instance, a random sample
involving e% (parameter) of the neighbor solutions.

TS has proven to have a good balance between inten-
sification (i.e., the capability to focus on specific regions
of the solution space) and diversification (i.e., the ability
to visit diverse regions of the solution space). In addition,
it has a good overall behavior according to the following
measures [18]: (1) quality of the obtained results (according
to a given objective function f that has to be optimized);
(2) quickness (time needed to get competitive results); (3)
robustness (sensitivity to variations in data characteristics);
(4) simplicity (facility of adaptation); and (5) flexibility (pos-
sibility to integrate properties of the considered problem).
To adapt TS to the studied problem, the following elements
have to be designed: the representation of any solution s, the
neighborhood structure (i.e., what is a move), the tabu list
structure (i.e., what type of information is forbidden), and
a stopping criterion (i.e., what is the most appropriate time
limit).

5.3.1. Solution Encoding and Neighborhood Structure. A solu-
tion for partitioning is represented as a map of actors and
processors, where the number of processors is fixed. Each
actor can be mapped to only one processor at the time,
and each processor must be mapped to at least one actor.
Hence, leaving empty processors is not allowed. The following
basic types of moves are possible: (1) REINSERT: moving an
actor to another processor; (2) SWAP: two actors belonging
to two different processors. For the purpose of swapping,
the term complementary move is introduced. Assume that a
move m(j, p;, p;y) consists of relocating an actor j from source
partition p; to target partition p;. A move m(j', pisp;) is
complementary to m(j, p;, p;) if it involves moving any actor
j' from source partition p to target partition p;. In this work,
the neighborhood structures are generated by performing
REINSERT and SWAP moves according to four different
criteria, presented below:

(1) N® (for balancing):

(i) REINSERT: choose randomly an actor from the
most occupied processor and move it to the least
occupied processor.

(if) SWAP: choose randomly two actors in different
partitions so that swapping the actors decreases
the relative workload imbalance between the
two partitions.

2) N9 (for idle):

(i) REINSERT: for each actor which has a bigger
idle time is than its processing time, find the
most idle processor, different from the one
currently mapped, where the definition of idle
is as described in Section 5.2.1.

Journal of Electrical and Computer Engineering

(ii) SWAP: generate a set of moves on the REIN-
SERT basis, but allow actors to be moved to any
partition except for the least idle one (search for
complementary pairs of moves).

(3) NP (for communication frequency):

(i) REINSERT: check the internal and external
communication frequency of each actor and
consider the moves, as described in Sec-
tion 5.2.2.

(ii) SWAP: generate a set of moves on the REIN-
SERT basis (search for complementary pairs of
moves).

(4) N® (for random):

(i) REINSERT: choose randomly an actor and
move it to a different processor (randomly cho-
sen).

(ii) SWAP: generate a set of moves on the REIN-
SERT basis (search for complementary pairs of
moves).

5.3.2. Parameters. Any time an actor j is moved from a
processor p to another processor, it is forbidden to put j
back to p for tab iterations, where tab is an integer uniformly
generated in interval [a,b], and the values of parameters a
and b were tuned to 5 and 15, based on the preliminary
experiments. Smaller values do not allow escaping from
local optima, whereas larger values do not allow intensifying
the search around promising solutions. There are two other
sensitive parameters that have to be tuned for TS, namely, e
(the proportion of neighbor solutions explored during each
iteration) and T (the time limit). Reaching the time limit T
results in immediate termination of the search and returning
of the best solution ever found. Usually, T is set so that
the improvement potential is poor (i.e., the percentage of
improvement is below a threshold during a predefined time
interval) if the method is run for larger time limits. Next,
the smaller is e, the more iterations are performed but the
fewer neighbors are investigated in each iteration. A large
value of e contributes to the intensification ability of the
method (indeed, all the solutions around the current one are
explored), whereas a small value plays a diversification role
(indeed, no focus is put on the neighborhood of each solu-
tion). Finally, a small (resp., large) value of tab strengthens
the intensification (resp., diversification) ability of the search.

5.3.3. Advanced Variants of Tabu Search. Since each of the
used neighborhood structures relies on different properties,
a more advanced version of the TS involves a consolidation
of all neighborhood structures. It is applied in two different
variants:

(i) Joint Tabu Search (JTS): at each iteration, the neigh-
borhood structure includes moves obtained accord-
ing to all types. Therefore, the used neighborhood
structure is N = N® y NO y N©P y N®,

This variant should have more flexibility, because it
involves various types of moves. The proportion of
the set sizes for different types of moves can be freely
tuned.

(ii) Probabilistic Tabu Search (PTS): at each iteration, the
search assigns a probability to the selection of each
neighborhood of the set (N® ND NCB N Thig
probability is tuned based on the history of the search
during the considered run. As a result, the search
is guided by the success rate of each type of move
(where a success corresponds to an improvement of
the current solution).

6. Experimental Results

6.1. Experimental Setup. The focus of this work is to explore
the design space along the partitioning dimension. Hence, the
other dimensions need to be fixed. The dynamic scheduling
policy used in the experiments is nonpreemptive, which
involves that the same actor is continuously scheduled, as
long as its firing conditions (i.e., available input tokens and
output space) are fulfilled. The nonsatisfaction of any of the
conditions results in choosing the next actor (on the round-
robin basis) among all actors with satisfied input/output
conditions. Regarding the buffers, an infinite size would be,
ideally, considered. Since it is not possible for the practical
implementations, the buffer size must be sufficiently large,
so that deadlocks are avoided and the overall blocked writing
time of the actors, as defined in Section 5.2.1, is kept at
a minimum level. In this way the influence of a buffer
size which is too small remains negligible for the overall
performance. For the dataflow programs considered here it
has been sufficient to set all buffers to the size of 512 tokens.

6.1.1. Experimental Designs. The quality of a partitioning
algorithm is, in principle, assessed by the quality of a solution
it provides. For each solution it can be evaluated how close it is
to the objective function and how it approaches the potential
parallelism of a given dataflow program implementation, for
instance, how far is a given throughput from the best through-
put achievable by the dataflow program under consideration.
Hence, it is essential to perform the experiments with an
application that in principle can provide a sufficient level of
parallelism. If this condition is not satisfied, it is likely that
either none or any partitioning algorithm can provide any
satisfactory performance. For this reason, finding appropriate
dataflow programs for validating partitioning algorithms is
not a trivial task. The application used in the experiments is an
MPEG-4 SP decoder design that consists of 41 actors in total
and provides the upper bound on the potential parallelism
around 6.28. This upper bound on the potential parallelism
is evaluated as a proportion of the critical executions in the
overall execution time, assuming a full parallel execution
and the unbounded buffer size configuration (as described in
Chapter 5 of [36]).

MPEG-4 SP decoder network is an implementation of a
full MPEG-4 4:2:0 Simple Profile decoder standard written
in CAL Actor Language [41]. The main functional blocks
include a parser, a reconstruction block, a 2D inverse discrete

Journal of Electrical and Computer Engineering

addressing

BTYPE QF DC
R
B AC_PRED_DIR

———>WBIYPE Al
B

Is

\C_PRED_DIR PQF_AC
EAC 1AP

IPQF_AC QF_ACH
PTR

IAC_PRED_DIR

IPREV_QP

interpolation_1

Ic SIGNED
IQFS DC QUANT
QP PREV_QUANT

A halfpel
R
g ITEX

Ty

framebuff

Bererpoaion
o MoT
i Sbalipel

BTYPE RD
WD

addressing 0
——>MBIYPE AT
B

invpred_0

BIYPE QFDC

B AC_PRED_DIR
c g

Mergers2o
add
-
JmNoT VDR u
3 SmIEX v
BTVPE

ol

FS_DC QUANT!

Qi
QP PREV_QUANT

spltier_Qp.
~Mar QUANT Y

QUANT U
QUANT VI~

framebuff_0

I
D MOT
v iR (S halipel

BIYPE RD
WD

bikexp spliter_420_B

RUN B Y
VALUE WETYPE UM
LAST

JEPQF_AC QF_AC
2 P
OB AC_PRED_DIR

PREV_QP

QFs_DC QUANT
QP_PREV_QUANT |

splitier_BTYPE.

WBTYFE YR
um—

= E=
] e

-

it

HEIGHT!
o) E—

F1GURE 3: MPEG-4 SP decoder network.

cosine transform (IDCT) block, and a motion compensator.
These functional units are hierarchical compositions of actors
in themselves. The decoding starts from the parser (the most
complicated actor in the network consisting of 71 actions)
which extracts data from the incoming bitstream, through
reconstruction blocks exploiting the correlation of pixels up
to the motion compensator performing a selective adding
of blocks. In order to give an overview of the complexity
of the design, a schematic representation of the network is
presented in Figure 3.

6.1.2. Target Platform. The platform used for the experiments
is an array of Transport Triggered Architecture (TTA) proces-
sors [42]. There are several features of this platform that allow
an easy modeling and a precise simulation for the purpose
of partitioning and scheduling design space exploration.
The most significant one is a cacheless, negligible inter-
processor communication, and therefore an independence of
the profiling results from the mapping configuration. In fact,
as confirmed by our previous experiments on the platform,
the results of a single profiling remain valid for multiple
partitioning and scheduling configurations [43]. Hence, such
a platform is a good choice for an initial validation of the
effectiveness of the methodology.

6.1.3. Tuning of Parameters. As described in Section 5.3,
apart from the length of the tabu tenure, TS is sensitive to

two parameters that need to be properly tuned: the time
limit T and the percentage e of explored neighbor solutions.
For that purpose, 3 runs on a set of initial partitioning
configurations have been performed for each: N®, N,
N©H and N®_ First, with a fixed value of e = 0.5,
each TS variant was performed 3 times on the initial set of
partitioning configurations. For each run, TS was stopped
any time 5 minutes have elapsed without improving the best
encountered solution (during the current run) by at least 1%.
Parameter T has been set as the largest encountered stopping
time (minus 5 minutes) among all these experiments.

Next, with the selected value of T, all TS variants were
tested with different values of e € 0.2,0.4,0.6,0.8 in order
to deduce the best value for each neighborhood type. The
value of e = 0.4 has been chosen as the one providing the
best average results among all instances in the test set. It was
also observed that if a method is performed several times on
the same instance, it gets similar results. This indicates the
robustness of the proposed approach.

Proper tuning of parameters is important in order to
reliably compare all of the iterative methods. All stages of
parameters tuning in the proposed methodology have been
performed automatically. The time limit T tuned for TS
has been used also as a time limit for the DLS methods.
Additionally, since these methods tend to get quickly stuck in
local optima, a restarting procedure has been implemented.

Journal of Electrical and Computer Engineering 9
Partitioning
algorithms
Partitioning Extracted
configuration information
Dataflow
program \ ————————- !
I
1
1
I
I
) !
1
Architecture TTA w, _,/I Performance estimation
model profiling Ji
TTA Time
cycle-accurate Verification
simulator
FIGURE 4: Experimental workflow.
If DLS finishes before elapsing the given time limit, it is TABLE 1: Speed-up: greedy constructive procedures.
restarted with a new random solution. At the end, the best Rload —"
found solution (among the restarts) is returned. Proc Workloa Be,l ance Random
balance pipeline
6.2. Methodology of Experiments. Most of the tools used ! 1.00 1.00 1.00
for the experiments are the components of Turnus code- 2 1.83 179 175
sign framework [44]. They include the generation of an 3 266 220 2.08
ETG for a given st.atisti.cally meaning.ﬁ.ll input stimulus, 4 307 2.84 277
the performance estimation tool exploiting the ETG, and
. . 5 3.38 3.10 2.34
the results of the platform profiling and the generation . 56l
of partitioning configurations using different algorithms. 4.07 3.09 :
Complementary units in this workflow are the profiling of 7 540 3.10 248
the TTA architecture and a TTA cycle-accurate simulator [45] 8 5.76 3.10 314

that allows a verification of the estimated results in terms of
areal execution time obtained on the platform. The complete
workflow is presented in Figure 4.

The partitioning configurations were generated using
each of the described algorithm for the number of processors
between 2 and 8. Considering the choice of application, 8
units should already approach their potential parallelism. For
the local search methods that require specifying an initial
solution, in each case, two sets were tested: the random
one and the one generated by the WB algorithm. Such a
choice was made in order to provide the algorithms with
possibly good, as well as bad, initial configurations and also
observe their sensitivity to the quality of an initial solution.
The evaluation of the solutions generated by each algorithm
was accomplished by the performance estimation tool that
calculated the total execution time expressed in clock-cycles.
Based on those values, the speed-up versus the mono-core
execution was calculated in each case. The results presented
in this section target the calculated values of speed-up in
order to relate them easily to the potential parallelism of the
application. Finally, the results obtained by estimation were
also consistently verified by the platform execution.

6.3. Greedy and Decent Local Search Heuristics. Table 1
contains the speed-up values of partitioning configurations

generated with the WB and BP algorithms along with the
values estimated for a random set of configurations. Tables
2 and 3 contain the results obtained for the IDLS and
CFDLS heuristics for the two sets of initial partitioning
configurations.

Since the purpose of a greedy constructive method is to
build a solution from scratch, an important property is the
scalability of the performance. In this case, both algorithms
scale; however, the BP achieves a saturation already around 5
processors, unlike the WB that scales further. The maximal
speed-up obtained for BP configurations is similar to the
random configurations but is achieved on a smaller number
of processors (5 versus 8). Applying the IDLS and CFDLS
methods in all the cases improve the initial solution, but the
improvement is bigger for CFDLS. The quality of the solution
provided by the DLS heuristics depends also strongly on the
quality of the solution provided as a starting configuration.

6.4. Tabu Search. The first experiment aimed at confirm-
ing the most beneficial types of moves. It was performed
separately for each type of neighborhood structure. In the
first execution, only the REINSERT moves were allowed,

10
TABLE 2: DLS speed-up: balanced start.
Proc IDLS CFDLS
1 1.00 1.00
2 1.83 1.94
3 2.67 2.68
4 3.25 3.49
5 3.48 4.20
6 4.08 4.75
7 5.47 5.63
8 5.93 6.06
TABLE 3: DLS speed-up: random start.

Proc. IDLS CFDLS
1 1.00 1.00
2 1.77 1.95
3 2.09 2.32
4 2.78 3.19
5 2.35 4.27
6 2.95 3.98
7 3.02 3.93
8 3.85 4.23

whereas in the second one, the SWAP moves were also
included. SWAP moves were not considered alone, since they
do not lead to any change of the initial size of each partition
(resulting in a nonconnected solution space). The results of
this comparison for each neighborhood type are presented
in Tables 4-11. Along with admitting the SWAP moves, a
significant improvement has been brought only to N®_ In
fact, the performance of N'® based on REINSERT only was
very poor and a slight improvement has been introduced
only for certain initial configurations. It relies on the fact
that the possible space of moves is very narrowed in this case
(only actors from the most occupied partition are taken into
consideration) and the tabu list can be very restrictive. Since
it also aims at balancing the workload, for higher number of
processors, it is not rare to encounter a solution where the
heaviest bottleneck actor is placed alone on the processor.
Due to the solution definition described in Section 5.3.1, the
algorithm cannot proceed from that point. Relative balancing
of the workload between two partitions instead of an overall
balancing seems to be a much more effective approach.

For the other neighborhood structures, allowing SWAP
moves decreased the quality of the final solution in the
vast majority of the cases. It might be due to the fact that
SWAP moves unnecessarily increased the set of neighbor
solutions and reduce the diversification ability of the method.
Comparing the neighborhood structures, there are some
conclusions that can be made. First, N seems to outperform
the other variants, including N ©P This observation is
contrary to what has been previously observed for the DLS
heuristics, where the search based on the communication
frequency outperformed the idle optimization. It confirms
that determining a local optimization criterion is challenging,

Journal of Electrical and Computer Engineering

(B)

TABLE 4: Speed-up: N*” with balanced start.

Proc. REINSERT SWAP
1 1.00 1.00
2 1.85 1.94
3 2.67 2.77
4 3.21 3.48
5 4.04 4.32
6 4.83 4.85
7 5.40 5.62
8 5.76 6.19
TaBLE 5: Speed-up: N'® with random start.
Proc. REINSERT SWAP
1 1.00 1.00
2 1.75 1.95
3 2.08 2.74
4 2.77 3.30
5 2.34 413
6 2.61 3.68
7 2.48 4.04
8 3.24 4.76
TaBLE 6: Speed-up: N with balanced start.
Proc. REINSERT SWAP
1 1.00 1.00
2 1.92 1.92
3 2.75 2.80
4 3.61 3.46
5 4.45 4.23
6 4.92 4.88
7 5.81 5.66
8 6.28 6.18
TasLE 7: Speed-up: N with random start.
Proc. REINSERT SWAP
1 1.00 1.00
2 1.93 1.94
3 2.66 2.66
4 3.36 3.27
5 3.94 3.59
6 4.73 4.12
7 4.31 4.65
8 5.95 4.65

whereas employing an appropriate exploration strategy (i.e.,
the TS framework) is the other one. Finally, the results
obtained for N and N‘° also prove that a guided choice
of moves outperforms a random selection. In other words,
the complete freedom of choice when choosing a move, as
for N®), does not necessarily lead to competitive solutions.

Journal of Electrical and Computer Engineering

(CF)

TABLE 8: Speed-up: N*" with balanced start.

Proc. REINSERT SWAP
1 1.00 1.00
2 1.88 1.93
3 2.79 2.78
4 3.49 3.56
5 4.30 4.29
6 4.95 4.97
7 5.79 5.74
8 6.26 6.18
TaBLE 9: Speed-up: N“®) with random start.
Proc REINSERT SWAP
1 1.00 1.00
2 1.87 1.88
3 2.65 2.68
4 3.33 3.29
5 423 4.36
6 4.94 3.85
7 4.62 4.36
8 4.66 4.23
TaBLE 10: Speed-up: N® with balanced start.
Proc. REINSERT SWAP
1 1.00 1.00
2 1.92 1.94
3 2.70 2.74
4 3.47 3.38
5 4.26 4.11
6 491 4.76
7 5.64 5.57
8 6.27 6.18
TaBLE 11: Speed-up: N® with random start.
Proc. REINSERT SWAP
1 1.00 1.00
2 1.94 1.90
3 2.65 2.29
4 3.30 3.16
5 4.01 3.20
6 3.65 3.53
7 4.02 3.47
8 4.56 4.36

The final part of experiments with TS involves a compar-
ison of its two advanced variants. Taking into consideration
the previous observations, the analysis involved neighbor-
hood N® based on the SWAP moves and neighborhoods
N(D, N(CF), and N® based on REINSERT moves. Since
different types provide different sizes of the neighborhood

11
TaBLE 12: PTS and JTS speed-up: balanced start.
Proc. PTS JTS
1 1.00 1.00
2 1.93 1.96
3 2.83 2.80
4 3.58 3.57
5 4.44 4.37
6 5.13 5.03
7 5.81 572
8 6.22 6.22
TABLE 13: PTS and JTS speed-up: random start.

Proc PTS JTS
1 1.00 1.00
2 1.96 1.93
3 2.77 2.71
4 3.62 3.39
5 4.42 4.26
6 4.98 4.31
7 5.10 4.86
8 5.72 512

sets, such sizes have been equalized according to the averaged
values. For this reason, another parameter, namely, the
admission rate, has been introduced for each neighborhood
structure. Admission rate expresses the percentage of moves
that is generated at each iteration. For N and N“¥), a given
percentage of moves is extracted according to the priorities
(i.e., most idle or most communicative actors, resp.). For
N® and N®, since there are no priorities, the solutions are
extracted randomly. The values of admission rate have been
tuned as follows: 0.9 for N, 0.48 for N‘“®), 0.16 for N®, and
0.08 for NP\

Tables 12 and 13 contain the results of the analysis of the
advanced variants of TS. In almost all cases, PTS performed
better than JTS and provided the results that, considering
the previously mentioned upper bound on the potential
parallelism of an application, can be considered as close-to-
optimal. PTS and JTS were also less sensitive to the quality
of the initial configuration. In fact, in few cases, a random
initial solution leads to better results than a balanced initial
configuration.

6.5. Consistency Verification. In order to verify the consis-
tency of the obtained estimated results and their relation
to the platform execution, a comparison of execution times
was performed on a representative fraction of generated
partitioning configurations spanned on each of the con-
sidered numbers of processors. Figure 5 presents a chart
indicating the consistency of the estimation and platform
execution results. Finally, Table 14 summarizes the best
solutions obtained with PTS for each number of processors.
Apart from the values of execution times expressed in clock-
cycles and the speed-up, the distance between the execution

12

Execution time (clk/10°)

M Estimation
M Platform

Journal of Electrical and Computer Engineering

7 cores

Configuration

F1GURE 5: Consistency verification.

TABLE 14: Improvement summary.

TABLE 15: Averaged time of the final improvement.

Proc. Time Speed-up CP dist [%] Diff [%] Algorithm Time

1 36938764 1.00 528 4.06 WB N/A

2 18839134 1.96 220 12.64 BP N/A

3 13045976 2.83 122 735 IDLS 73 min

4 10200033 3.62 73 3.62 CFDLS 58 min

5 8321995 4.44 41 14.73 N® 13 min

6 7194547 5.13 2 13.8 N 44 min

7 6354158 5.81 8 14.28 N©ED 84 min

8 5941632 6.22 1 11.96 N® 318 min
JTS 308 min
PTS 276 min

time and the length of the critical path expressed in % is
also highlighted. This value indicates how far a given solution
is from the maximal parallelism of the application. It might
be a particularly precious information for the application
designer in terms of possible tracking the approach to the
potential parallelism of an application. The last column con-
tains the value of estimation discrepancy for this particular
solution.

6.6. Discussion. Comparing the results obtained for all imple-
mented algorithms, the first observation is that according to
the decreasing quality of the output solutions, the algorithms
can be ordered as follows: advanced TS variants, TS, DLS,
and the greedy constructive procedures. This ranking is
consistent, as a more refined approach outperforms a simpler
one. It highlights that the specific ingredients belonging to
a more refined method are relevant. Additionally, finding
a good partitioning configuration for a small number of
processors (i.e., 2 or 3) is relatively easy and the differences
between the solutions provided by different algorithms are
minor. For instance, for the case of two processors, the
difference between the solutions provided by the best and the
worst algorithms is less than 6%. With the increasing number
of processors, the differences become more significant. For
the case of the WB algorithm, the biggest difference of 30%
with respect to PTS can be observed at around 5 processors,

whereas for the BP algorithm, on 8 processors, the difference
goes up to 100%.

The comparison of different variants of TS leads to a
conclusion that the resulting solution might benefit from
varying the definition of the neighborhood. In fact, both
JTS and PTS outperformed the variants where only one type
of neighborhood was taken into consideration. Among the
advanced variants, the success of PTS over JTS might rely
on two factors: (1) using the history of local search, which
allows an adaptation of the search to the properties of the test
case and (2) much smaller size of the neighborhood in each
iteration that contributes to a diversification of the search.

An important aspect that must be also taken into account
for evaluating the algorithms is the time required for their
completion. It involves the evaluation time for all considered
solutions in all iterations, extraction of the optimization
criteria, and computation of new solutions. For DLS and
TS, the upper bound on the time is defined by the user.
However, for each algorithm, it was observed when the
last improving move (before termination at the specified
point) was performed. The averaged values among different
instances are summarized in Table 15. For the TS, a big
difference is visible between N® and the other variants. In
fact, in this work, it is the time for N®® that enforces the time

Journal of Electrical and Computer Engineering

limit for all other algorithms, but in the case of this particular
variant, it does not necessarily correspond to the quality of
the final solution. A promising observation can be made for
the advanced variants of TS, since PTS not only provides with
the best results, but also succeeds in ca. 10% shorter time than
JTS. In all cases, the most impacting factor is the number of
iterations performed, since the performance estimation and,
at the same time, extraction of optimization criteria much
outstrip the cost of computing the new solution.

Since the described partitioning methodology relies on an
estimation of the actual performance, an important question
is the estimation quality in terms of precision. This specific
issue occurs in various fields [46]. For the case of experiments
performed in this work, the average estimation discrepancy
is between 3.35% (in total) and 10.31% (for the subset of best
solutions). These values can be considered acceptable, since
they still allow DLS and TS algorithms to iteratively improve
an initial solution. In order to explain the reasons of this
discrepancy, the first factor that must be taken into account is
the general uncertainty of profiling [47]. The estimation of the
execution time must rely on the limited set of measurements
coming from the platform that can be burdened with some
errors. On the other hand, there are some properties of the
program execution not present in the proposed execution
model, because of their hard tractability. A good example is
the overhead introduced by a partition scheduler [48] that
might depend on multiple factors, such as the number of
actors in one partition, the properties of a scheduling policy,
the number of conditions to be checked before an actor is
executed, or even the order of appearance of actors on the
list representing each partition.

7. Conclusion

This paper presents a partitioning methodology for dynamic
dataflow programs that is based on a program execution
model and uses multiple solution methods belonging to dif-
ferent classes of optimization algorithms: greedy constructive
procedures, decent local search, and tabu search metaheuris-
tic. The algorithms differ in terms of the time needed for
generating a solution, the quality of the final solution, and the
way they explore different properties of a dataflow application
and its execution on the target platform. The best performing
algorithms have been verified to approach the full potential
parallelism of dataflow programs and hence to be capable of
efficiently exploring the design space in all the partitioning
dimensions.

The algorithms are based on the performance estimation
of a program execution on a target platform. The estimation
takes into account the partitioning, scheduling, and buffer
size configuration and is capable of evaluating performances
in terms of the total execution time. During the evaluation,
the execution properties are also tracked and extracted in
order to provide optimization criteria to the algorithms. The
estimation has been experimentally verified to be highly
accurate and consistent with real executions on the consid-
ered platform.

A direction for future improvements is to investigate the
opportunities of extending the model and the methodology

13

by further properties in order to minimize the estimation
discrepancy. The methods might include tracking the vari-
ance for different executions of the same action in order to
provide the model with individual weights for each job and
profiling of scheduling cost that might be used for accurate
scheduling and buffer size optimization. Further study is also
required in order to determine the level of influence of these
configurations on each other in order to effectively explore
the design space in multiple dimensions. After validating the
methodology on a simple platform with small level of uncer-
tainty, an important objective is to consider more performing
platforms which could turn to be more difficult to model.
Studying the methodology of profiling communication cost
occurring on such platform is currently an ongoing work.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is supported by the Fonds National Suisse pour la
Recherche Scientifique, under Grant 200021.138214.

References

[1] J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium, vol. 19 of Lecture Notes in Computer
Science, pp. 362-376, Springer, Berlin, Germany, 1974.

[2] G.Kahn, The Semantics of Simple Language for Parallel Program-
ming, IFIP Congress, 1974.

[3] S.Bhattacharyya, P. Murthy, and E. Lee, Software Synthesis from
Dataflow Graphs, vol. 360, Springer Science & Business Media,
2012.

[4] J. Castrillon, R. Velasquez, A. Stulova et al., “Trace-based KPN
composability analysis for mapping simultaneous applications
to MPSoC platforms,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition (DATE ’10), pp.
753-758, Dresden, Germany, March 2010.

[5] M. Mattavelli, “MPEG reconfigurable video representation,” in
The MPEG Representation of Digital Media, L. Chiariglione, Ed.,
pp. 231-247, Springer, New York, NY, USA, 2012.

[6] E. A. Lee and T. M. Parks, “Dataflow process networks,’
Proceedings of the IEEE, vol. 83, no. 5, pp. 773-801, 1995.

[7] J. D. Ullman, “NP-complete scheduling problems,” Journal of
Computer and System Sciences, vol. 10, pp. 384-393, 1975.

[8] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A
catalog of stream processing optimizations,” ACM Computing
Surveys, vol. 46, no. 4, article 46, 2014.

[9] L.Benini, M. Lombardi, M. Milano, and M. Ruggiero, “Optimal
resource allocation and scheduling for the CELL BE platform,”
Annals of Operations Research, vol. 184, pp. 51-77, 2011.

[10] S.Casale Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi,
and J. W. Janneck, “Partitioning and optimization of high level
stream applications for multi clock domain architectures,” in
Proceedings of the IEEE Workshop on Signal Processing Systems
(SiPS ’13), pp. 177-182, October 2013.

[11] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Pren-
tice Hall, New York, NY, USA, 2008.

14

(12]

(16]
(17]

(18]

(19]

[20

[t}

(22]

(24

(25]

[26]

L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping
applications to tiled multiprocessor embedded systems,” in
Proceedings of the 17th International Conference on Application
of Concurrency to System Design (ACSD ’07), pp. 29-40, IEEE,
Bratislava, Slovakia, July 2007.

M. Selva, Performance monitoring of throughput constrained
data flow programs executed on shared-memory multi-core
architectures [Ph.D. thesis], INSA, Lyon, France, 2015.

M. Garey and D. Johnson, A Guide to the Theory of NP-
Completeness, W.H. Freeman, 1979.

C. Blum and A. Roli, “Metaheuristics in combinatorial opti-
mization: overview and conceptual comparison,” ACM Com-
puting Surveys, vol. 35, no. 3, pp. 268-308, 2003.

I. H. Osman and G. Laporte, “Metaheuristics: a bibliography,”
Annals of Operations Research, vol. 63, pp. 513-623, 1996.

M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics,
Springer, Berlin, Germany, 2010.

N. Zufferey, “Metaheuristics: some principles for an efficient
design,” Computer Technology and Application, vol. 3, pp. 446-
462, 2012.

M. A. Arslan, J. W. Janneck, and K. Kuchcinski, “Partitioning
and mapping dynamic dataflow programs,” in Proceedings of the
46th Asilomar Conference on Signals, Systems and Computers
(ASILOMAR ’12), pp. 1452-1456, IEEE, Pacific Grove, Calif,
USA, November 2012.

J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to
system-level synthesis,” in Proceedings of the 5th International
Workshop on Hardware/Software Codesign (Codes/CASHE 97),
pp. 167-171, Braunschweig, Germany, March 1997.

T. Schlichter, M. Lukasiewycz, C. Haubelt, and J. Teich,
“Improving system level design space exploration by incorpo-
rating sat-solvers into multi-objective evolutionary algorithms,”
in Proceedings of the IEEE Computer Society Annual Symposium
on VLSI (ISVLSI 06), pp. 309-316, Karlsruhe, Germany, March
2006.

M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-E Nezan, “An
open framework for rapid prototyping of signal processing
applications,” EURASIP Journal on Embedded Systems, vol.
2009, Article ID 598529, 2009.

M. Obaidat and G. Papadimitriou, Applied System Simulation:
Methodologies and Applications, Springer, New York, NY, USA,
2013.

P. Bose and T. M. Conte, “Performance analysis and its impact
on design,” Computer, vol. 31, no. 5, pp. 41-49, 1998.

S. Pllana, I. Brandic, and S. Benkner, “Performance modeling
and prediction of parallel and distributed computing systems:
a survey of the state of the art) in Proceedings of the Ist
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS °07), pp. 279-284, Vienna, Austria,
April 2007.

J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: mapping
concurrent dataflow applications to heterogeneous MPSoCs,
IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp.
527-545, 2013.

J. Castrillon, Programming Heterogeneous MPSoCs, Springer,
Berlin, Germany, 2013.

A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic ap-
proach to exploring embedded system architectures at multiple
abstraction levels,” IEEE Transactions on Computers, vol. 55, no.
2, pp. 99-111, 2006.

(29]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]
(41]
(42]

[43]

Journal of Electrical and Computer Engineering

E Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. Sangiovanni-Vincentelli, “Metropolis: an integrated
electronic system design environment,” Computer, vol. 36, no.
4, pp. 45-52, 2003.

A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz,
“Recent advances in graph partitioning,” in Algorithm Engineer-
ing: Selected Results and Surveys, vol. 9220 of Lecture Notes in
Computer Science, 2015.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scientific Computing, vol. 20, no. 1, pp. 359-392, 1998.

E Pellegrini and J. Roman, “A software package for static
mapping by dual recursive bipartitioning of process and archi-
tecture graphs,” in High-Performance Computing and Network-
ing: International Conference and Exhibition HPCN EUROPE
1996 Brussels, Belgium, April 15-19, 1996 Proceedings, vol. 1067
of Lecture Notes in Computer Science, pp. 493-498, Springer,
Berlin, Germany, 1996.

H. Yviquel, E. Casseau, M. Raulet, P. Jaaskelainen, and J.
Takala, “Towards run-time actor mapping of dynamic dataflow
programs onto multi-core platforms,” in Proceedings of the 8th
International Symposium on Image and Signal Processing and
Analysis (ISPA ’13), pp. 732-737, September 2013.

S. Bhattacharyya, E. Deprettere, and B. Theelen, “Dynamic
dataflow graphs,” in Handbook of Signal Processing Systems, pp.
905-944, Springer, Berlin, Germany, 2013.

T. Parks, J. Pino, and E. A. Lee, “A comparison of synchronous
and cyclo-static dataflow;” in Proceedings of the Asilomar Con-
ference on Signals, Systems and Computers, Pacific Grove, Calif,
USA, November 1995.

S. Casale-Brunet, Analysis and optimization of dynamic dataflow
programs [Ph.D. thesis], EPFL, Lausanne, Switzerland, 2015.

T. Tabirca, S. Tabirca, L. Freeman, and L. T. Yang, “A static
workload balance scheduling algorithm,” in Proceedings of
the International Conference on Parallel Processing Workshops
(ICPPW °02), pp. 235-239, August 2002.

M. Michalska, S. Casale-Brunet, E. Bezati, and M. Mattavelli,
“Execution trace graph based multi-criteria partitioning of
stream programs,” Procedia Computer Science, vol. 51, pp. 1443-
1452, 2015.

S. Thevenin, N. Zufferey, and M. Widmer, “Metaheuristics for
a scheduling problem with rejection and tardiness penalties;’
Journal of Scheduling, vol. 18, no. 1, pp. 89-105, 2015.

E Glover, “Tabu search—part I ORSA Journal on Computing,
vol. 1, pp. 190-205, 1989.

J. W. Janneck and J. Eker, “CAL language report,” Tech. Memo
UCB/ERL M03/48, UC Berkeley, 2003.

TTA-Based Co-Design Environment, http://tce.cs.tut.fi/tta
.html.

M. Michalska, J. Boutellier, and M. Mattavelli, “A methodology
for profiling and partitioning stream programs on many-core
architectures,” Procedia Computer Science, vol. 51, pp. 2962
2966, 2015.

S. Casale-Brunet, C. Alberti, M. Mattavelli, and J. W. Janneck,
“Turnus: a unified dataflow design space exploration frame-
work for heterogeneous parallel systems,” in Proceedings of the
7th Conference on Design and Architectures for Signal and Image
Processing (DASIP ’13), pp. 47-54, Cagliari, Italy, October 2013.

H. Yviquel, A. Sanchez, P. Jadskeldinen, J. Takala, M. Raulet,
and E. Casseau, “Embedded multi-core systems dedicated
to dynamic dataflow programs,” Journal of Signal Processing
Systems, vol. 80, no. 1, pp. 121-136, 2014.

Journal of Electrical and Computer Engineering

[46]

(48]

E. A. Silver and N. Zufferey, “Inventory control of an item with
a probabilistic replenishment lead time and a known supplier
shutdown period,” International Journal of Production Research,
vol. 49, no. 4, pp. 923-947, 2011.

V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism
and overcount on modern hardware performance counter
implementations,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS ’13), pp. 215-224, Austin, Tex, USA, April 2013.

R. 1. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Computing Surveys, vol. 43,
no. 4, article 35, 2011.

15

International Journal of

Rotating
Machinery

International Journal of

The SCientiﬁC Journal of DiStribUted
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Journal of ‘ Electrical and Computer
Robotics Engineering

Advances in
Modelling & International Journal of
rrenaion ot o Simulatio Aerospace
ston in Engineering Engineering

Observation

e

/!
| Journal of

International Journal of Antennas and Active and Passive e
Chemical Engineering Propagation Electronic Components Shock and Vibration

