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Copyright © 2016 Chao Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Networked navigation system (NNS) enables a wealth of new applications where real-time estimation is essential. In this paper,
an adaptive horizon estimator has been addressed to solve the navigational state estimation problem of NNS with the features of
remote sensing complementary observations (RSOs) andmixed LOS/NLOS environments. In our approach, it is assumed that RSOs
are the essential observations of the local processor but suffer from random transmission delay; a jump Markov system has been
modeled with the switching parameters corresponding to LOS/NLOS errors. An adaptive finite-horizon group estimator (AFGE)
has been proposed, where the horizon size can be adjusted in real time according to stochastic parameters and random delays.
First, a delay-aware FIR (DFIR) estimator has been derived with observation reorganization and complementary fusion strategies.
Second, an adaptive horizon group (AHG) policy has been proposed to manage the horizon size. The AFGE algorithm is thus
realized by combining AHG policy and DFIR estimator. It is shown by a numerical example that the proposed AFGE has a more
robust performance than the FIR estimator using constant optimal horizon size.

1. Introduction

Networked navigation system (NNS) [1, 2], which determines
its navigational state individually from the cooperative infor-
mation taken with respect to spatial neighbors, has been used
for a variety of purposes, such as cooperative localization
[3], multivehicle cooperative guidance [4], and spatially dis-
tributed estimation [5]. NNS typically takes advantage of state
estimations for accurate localization essentially based on the
remote sensing observations (RSOs), which is transmitted by
the cooperative NNSs through a wireless medium.Thus, dur-
ing the design of navigational state estimator, several prob-
lematic issues in NNS should be considered, induced by the
observation features and the transmission environment. In
this research, the impact of mixed LOS/NLOS environment
and complementary feature of RSOs will be investigated.

Remote sensing observations (RSOs), such as image,
relative measurement, and sink knowledge, always have

complementary feature, which means every observed data
just comprises partial of system dynamics; thus one use-
ful observation of estimator can only be obtained by the
integration of multiple synchronous RSOs. Note that these
RSOs are ubiquitous in large-scale systems [6], especially in
wireless networked system (WNS) [7], and thus the state
estimation based on the sensors of RSO data is brought
forward. In [8], a particle filter based track-before-detect
(TkBD) scheme was proposed for multiple sensors, where
the sensors were asynchronous and heterogeneous; however,
the TkBD schemes are computationally expensive and are
mainly applicable in scene of low signal-to-noise ratios.
Earlier research of RSO focused on optical sensors [9], in
which the sensor noise is assumed to be Gaussian. More
recent efforts focus on the radar problem, where the pixel
intensity is either Rayleigh or Rician distributed depending
on the absence or presence of objectives [10]. Although the
extant literature considers various types of RSO sensors,
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the researches on the complementary property of wireless
networks are quite few, let alone the packet-based RSO of
NNS, that is, the navigational knowledge of the sender and
the relative measurements.

Non-line-of-sight (NLOS) propagation might take place
in a wireless network whenever there are obstacles hin-
dering the radio signal path between the objective and its
cooperative neighbors, especially in an urban region or the
indoor environment. Whenever measured by received signal
strength (RSS) or angle of arrival (AOA), NLOS propagation
often induces transmission delay or dropout of the packets,
and thus large localization errorsmight occur if not addressed
[11]. Several strategies have been proposed for mitigating the
bad effect of NLOS errors, such as statistical identification
[12], hypothesis test [13], and robust parameter estimation
[14]. In [15], the switching behavior of NLOS and the line-
of-sight (LOS) has been described by a hidden Markov
Model, and an estimator has been designed by combining
Kalman filter with the interacting multiple model (IMM)
approach. These results are further extended to nonlinear
AOA measurement by using the MUSIC method in [16].
Similar approach has also been used to observe a mobile
objective in mixed LOS/NLOS environments by using indi-
vidual measurement and LOS detection [17]. However, little
research has been investigated to mitigate the delay and
dropout problems caused by NLOS propagation. In [18], a
joint AOA and delay estimation method has been proposed
for space-time coherent distributed signals based on search.
The problem of joint AOA/RSS based state estimation for
NNS in mixed LOS and NLOS environment has not been
studied.

In reality, almost all networked systems can record the
results over a recent finite horizon; for such time-varying
systems, one would be more interested in the optimal
estimation based on the finite recent data. When it comes
to the filter design issue, finite-horizon estimation is an
effective approach and gives rise to many available methods
in terms of moving horizon estimation [1, 19], finite-horizon
H∞ fault estimation [20], and finite-horizon FIR estimation
[21]. However, finite-horizon estimation approach has its
own limitations, especially on expensively computational
burden [22], with the reasons in terms of the adoption of
finite recent measurements, the inversion computation [23],
and the singularity problem [24]. One of the improvement
methods is to manage the horizon size (window length), and
several approaches [25] have been proposed. Although the
existing approaches are effective with linear time-invariant
systems, they can be less effective with wireless networked
systems, with the reason that the constant (i.e., fixed) horizon
size of the existing methods may be not able to handle
the network-induced constraints owing to mixed LOS/NLOS
environment.Thus, it is desirable to adapt the horizon size in
finite-horizon estimation, and this motivates us to investigate
this issue.

Summarizing the above analysis, it can be concluded
that there is a great need to examine how the mixed
LOS/NLOS environments affect the performance of the
distributed estimation over a sensor network with RSO
data. To address the effects of NLOS errors and random

delays, a jump Markov system has been modeled with the
switching parameters corresponding to LOS/NLOS errors.
An adaptive finite-horizon group estimator (AFGE) has been
proposed, where the horizon size can be adjusted in real time
according to stochastic parameters and random delays. A
numerical example is proposed to verify the effectiveness of
the proposed AFGE scheme. The main contributions of this
research can be highlighted as follows. (i) The observation
model of NNS is a special one that has complementary
property and is affected by switching LOS/NLOS errors and
random transmission delay. (ii) An observation reorganiza-
tion scheme and a complementary fusion strategy have been
introduced to DFIR estimation procedure to mitigate the
impacts of delay and complementary property, respectively.
(iii) The proposed AFGE scheme contains an AHG policy,
which is proposed to manage the horizon size.

The remainder of this paper is organized as follows. In
Section 2, the graph-based network background is intro-
duced, while the NNS model and some preliminaries are
briefly outlined. Section 3 describes the derivation of a new
DFIR estimator. Section 4 proposes the AHG method and
completes the AFGE. In Section 5, an application of clustered
UAVs is given for the designedAFGE. Finally, the conclusions
are drawn in Section 6.

Notation. ‖𝑢‖𝐺 stands for the Euclidean norm of a generic
vector 𝑢; ‖𝑢‖2𝐺 = 𝑢𝑇𝐺𝑢, where𝐺 is a symmetric positive semi-
definite matrix. Given a generic vector 𝑢𝑡, 𝑢𝑡𝑡−𝑁 = 𝑢𝑡−𝑁,𝑡 ≜
col(𝑢𝑡−𝑁, 𝑢𝑡−𝑁+1, . . . , 𝑢𝑡); a generic matrix 𝐴𝑡

𝑡−𝑁 = 𝐴 𝑡−𝑁,𝑡 ≜
col(𝐴 𝑡−𝑁, 𝐴 𝑡−𝑁+1, . . . , 𝐴 𝑡), 𝑡 = 𝑁,𝑁 + 1, . . .; L{𝑦1, . . . , 𝑦𝑛}
denotes the linear space spanned by 𝑦1, . . . , 𝑦𝑛.
2. Preliminaries and Problem Formulation
In this section, we introduce some preliminaries related to the
description of communication network and then present the
problem setup.

2.1. Graph-BasedNetworkDescription. Suppose that𝑁Σ vehi-
cles form into an Ad hoc network, where every vehicle acts as
a networked node and carries out the uniform communica-
tion protocol, that is, [1, 2, 19]. The communication topology
of information flow between networked vehicles is described
by a directed graphG = (C𝑔,E𝑔,R𝑔), whereC𝑔 ∈ {1, . . . , 𝑁Σ}
is the finite set of networked vehicles, E𝑔 ⊆ C𝑔 ×C𝑔 is the set
of edges,R𝑔 = (𝑟𝑖) ∈ R𝑛 is the set of action radius, and 𝑖 ∈ C𝑔

represents the sender. The edge 𝑒[𝑖→𝑗] = (𝑖, 𝑗) ∈ E𝑔 indicates
that node 𝑗 can receive the information from node 𝑖; that is,(𝑖, 𝑗) ∈ E𝑔 ⇒ 𝑑[𝑖→𝑗] ≤ 𝑟𝑖. Specifically, we define the set of
neighbors as follows.

Definition 1. Let 𝑥[𝑖]𝑝 ∈ R3 be the position of node 𝜆 ∈ C𝑔;
the neighbor set of node 𝜆 at time 𝑡 can be defined as

N
[𝜆]
𝑡 = {𝑗 ∈ C𝑔 : 𝑟inf ≤ 󵄩󵄩󵄩󵄩󵄩𝑥[𝑗]𝑝 (𝑡) − 𝑥[𝜆]𝑝 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑟sup, 𝜆
̸= 𝑗, C𝑔 = {1, 2, . . . , 𝑁Σ}} , (1)

where 𝑟sup and 𝑟inf denote the supremum and infimum radii
of available communication range, respectively. Note that the
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Figure 1: Remote sensing neighbors for networked navigation system.

relative distances between node 𝜆 and N[𝜆]
𝑡 are changeable

with time 𝑡; thus the member of N[𝜆]
𝑡 may also be changed

dynamically. Besides, the effective area for cooperative neigh-
bors can be defined by 𝑟sup and 𝑟inf , namely, receive-search
area (RSA), as depicted in Figure 1.

The model of RSA is defined as follows.

Definition 2. Given a generic node 𝜆 ∈ C𝑔, its geographic
neighbor 𝑗 ∈ C𝑔 is defined as in the RSA of node 𝜆, if node𝑗 is in the hollow sphere between 𝑟inf and 𝑟sup, which are
determined by RSS method as

lg (𝑟sup) = (PLdB − 𝛾sup)(10𝜆) − 3.244𝜆 − lg (𝑓MHz) ,
lg (𝑟inf) = (PLdB − 𝛾inf)(10𝜆) − 3.244𝜆 − lg (𝑓MHz) ,

(2)

where 𝛾sup and 𝛾inf denote the received SNRs corresponding
to 𝑟sup and 𝑟inf , respectively, PLdB is the propagation loss
(dB) in free space propagation model [12], 𝜆 is the path loss
exponent, 2 ≤ 𝜆 ≤ 4, and 𝑓MHz is the electromagnetic
frequency.

2.2. NNS Model and Problem Formulation. In this paper, the
NNS is assumed as the essential navigation equipment of a
generic vehicle 𝜆 ∈ C𝑔. The dynamics of node S can be
modeled as the discrete-time linear stochastic system

𝑥𝑡+1 = Φ𝑡𝑥𝑡 + Γ𝑡𝑤𝑡, (3)

where 𝑥𝑡 denotes system state; Φ𝑡 and Γ𝑡 denote the system
matrices which can be used to represent the motions such as
the velocity model and coordinate turn model. The process
noise𝑤𝑡 is zero-mean white Gaussian with covariancematrix𝑄𝑡.

A set of cooperative UAVs that provide two kinds of
observations, (i) navigational states of the observed neigh-
bors, denoted by x{N}

𝑡 = {𝑥̃[𝑖]𝑡 |𝑥̃[𝑖]𝑡 , 𝑖 ∈ N[𝜆]
𝑡 }, 𝑥̃[𝑖]𝑡 = (𝑥̃[𝑖]𝑥,𝑡, 𝑥̃[𝑖]𝑦,𝑡,𝑥̃[𝑖]𝑧,𝑡), and (ii) relative measurements (RM) between 𝜆 and the

neighbors 𝑖 ∈ N[𝜆]
𝑡 , denoted by z{N}

𝑡 = {𝑧[𝑖]𝑡 |𝑧[𝑖]𝑡 , 𝑖 ∈ N[𝜆]
𝑡 },

including relative distance and relative angle, are assumed
to be calculated by RSS and AOA, respectively. The detailed
deductions can be found in [12, 16], with the basic equations
as

𝑧[𝑖]RSS = 𝛼 − 10𝜆 lg 󵄨󵄨󵄨󵄨󵄨𝑥̃[𝑖] − 𝑥̂[𝜆]󵄨󵄨󵄨󵄨󵄨 + 𝜂[𝑖]shad,
𝑧[𝑖]AOA,𝜃 = arctan(𝑥̃[𝑖]𝑦 − 𝑥̂[𝜆]𝑦𝑥̃[𝑖]𝑥 − 𝑥̂[𝜆]𝑥

) + 𝜂[𝑖]AOA,𝜃,
𝑧[𝑖]AOA,𝜙 = arctan( 𝑥̃[𝑖]𝑧 − 𝑥̂[𝜆]𝑧󵄩󵄩󵄩󵄩󵄩𝑥̃[𝑖]𝑥,𝑦 − 𝑥̂[𝜆]𝑥,𝑦

󵄩󵄩󵄩󵄩󵄩) + 𝜂[𝑖]AOA,𝜙,
𝑖 = 1, 2, . . . , ℓ.

(4)

Compared to the previous DSE problems [5, 20, 25], a
typical feature here is that the observations in x{N}

𝑡 and z{N}
𝑡

are mutually complementary; that is, each local observation
of node 𝜆 can only be derived through the fusion of multiple
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𝑥[𝑖]𝑡 and 𝑧[𝑖]𝑡 (𝑖 ∈ N[𝜆]
𝑡 ). The measure noise covariance 𝑅[𝑖]

𝑠 in
Cartesian coordinates is

𝑅[𝑖]
𝑠 = 𝜙 (𝑧[𝑖]RSS, 𝑧[𝑖]AOA,𝜃, 𝑧[𝑖]AOA,𝜙, 𝜂[𝑖]shad, 𝜂[𝑖]AOA,𝜃, 𝜂[𝑖]AOA,𝜙) , (5)

where 𝑧[𝑖]RSS, 𝑧[𝑖]AOA,𝜃, 𝑧[𝑖]AOA,𝜙, 𝜂[𝑖]shad, 𝜂[𝑖]AOA,𝜃, and 𝜂[𝑖]AOA,𝜙 are
defined in (4). In LOS environment, the measurements (4)
are corrupted by the noise 𝜀[𝑖]𝑡 , which can bemodeled as zero-
mean white Gaussian noise; that is, 𝜀[𝑖]𝑡 ∼ 𝑁(𝜀[𝑖]𝑡 ; 0, 𝑅[𝑖]

𝑡,1). In
NLOS environment, the measurement is corrupted by two
kinds of error sources: Gaussian noise 𝜀[𝑖]𝑡 and measurement
bias error 𝑒[𝑖]𝑡 . The bias error can be modeled as a biased
distribution; that is, 𝑒[𝑖]𝑡 ∼ 𝑁(𝑒[𝑖]𝑡 ; 𝜇[𝑖]𝑡 , Σ[𝑖]

𝑡 ). It is also assumed
that 𝜀[𝑖]𝑡 and 𝑒[𝑖]𝑡 are independent. Thus, the CM noise in (4)
can be represented by

𝑢[𝑖]𝑡 = {{{
𝜀[𝑖]𝑡 , LOS condition,

𝜀[𝑖]𝑡 + 𝑒[𝑖]𝑡 , NLOS condition.
(6)

For the sake of notations, the measurement equation (4)
can be represented in a uniform form:

𝑓 (x{N}
𝑡 , z{N}

𝑡 ) ≜ 𝑧[𝑖]𝑡 = 𝜙[𝑖]𝑡 𝑥𝑡 + 𝑢[𝑖]𝑡 (𝛾[𝑖]𝑡 ) ,
𝑖 = 1, 2, . . . , ℓ, (7)

where 𝜙[𝑖]𝑡 is the nonlinearmeasurement function, depending
on specific RM methods; the measurement noise 𝑢[𝑖]𝑡 (𝛾[𝑖]𝑡 ) is
assumed to be zero-mean white Gaussian with covariance
matrix𝑅[𝑖]

𝑡,1 in the LOS condition; that is, 𝑢[𝑖]𝑡,1 ∈ 𝑁(𝑢[𝑖]𝑡 ; 0, 𝑅[𝑖]
𝑡,1);

and it is assumed to be white Gaussian with mean 𝜇[𝑖]𝑡 and
covariance matrix 𝑅[𝑖]

𝑡,2 in the NLOS condition; that is, 𝑢[𝑖]𝑡,2 ∈𝑁(𝑢[𝑖]𝑡 ; 𝜇[𝑖]𝑡 , 𝑅[𝑖]
𝑡,2). 𝛾[𝑖]𝑡 is introduced to indicate the transition

of LOS and NLOS measurement errors; that is, 𝛾[𝑖]𝑡 = 1
represents the LOS condition and 𝛾[𝑖]𝑡 = 2 represents the
NLOS condition. The TPM of 𝛾[𝑖]𝑡 is assumed to be Π(2) =[𝜋(2)

𝑝𝑞 ]2×2 with 𝜋(2)
𝑝𝑞 = Pr{𝛾[𝑖]𝑡 = 𝑞 | 𝛾[𝑖]𝑡−1 = 𝑝}. It should be

pointed out that the two-state Markov chain 𝛾[𝑖]𝑡 is dependent
on the cooperative UAV, since the objective might be in LOS
condition for one UAV but in NLOS condition for another
one.

Under the above mixed LOS/NLOS propagation envi-
ronment, transmission delays (TDs) may decay the accuracy
of relative measurement. To mitigate this disadvantage, the
observed CM with TDs is modeled as

𝑦[𝑖]
𝑡 = ℏ∑

𝜏=0

𝜅[𝑖]𝑡,𝜏𝑧[𝑖]𝑡−𝜏 = 𝜅[𝑖]𝑡,𝜏𝜙[𝑖]𝑡−𝜏𝑥𝑡−𝜏 + 𝜅[𝑖]𝑡,𝜏𝑢[𝑖]𝑡−𝜏 (𝛾[𝑖]𝑡−𝜏) ,
𝑖 = 1, 2, . . . , ℓ

(8)

with 𝜅[𝑖]𝑡,𝜏 defined as a binary random variable indicating the
arrival of the observation packet for state 𝑥(𝑡 − 𝜏); that is,

𝜅[𝑖]𝑡,𝜏 = {{{
1, if 𝑧[𝑖]𝑡−𝜏 is received at the instant 𝑡;
0, otherwise; 𝑖 ∈ {1, 2, . . . , ℓ} . (9)

Assumption 3. Random delay 𝜏(𝑡) is bounded with 0 <𝜏(𝑡) ≤ ℏ, where ℏ is given as the length of memory buffer,
and its probability distributions are Prob(𝜏(𝑡) = 𝜏) = 𝜋𝜏,𝜏 = 1, . . . , ℏ. If the CMs transmitted to the objective with a
delay larger than ℏ, they will be considered as the ones lost
completely. Thus, the property 0 ≤ ∑ℏ

𝜏=1 𝜋𝜏 ≤ 1 is satisfied.
Also 𝜏(𝑡) is independent of 𝑥(0), 𝑤(0), and 𝑢(0).

Obviously, Prob(𝜅[𝑖]𝑡,𝜏 = 1) = 𝜋𝜏, 𝜏 = 1, . . . , ℏ.
Under Assumption 3, we know that the possible received
observations at time 𝑡 (𝑡 ≥ ℏ) are

𝑦̃[𝑖]
𝑡 = [(𝜅[𝑖]𝑡,0𝑧[𝑖]𝑡 )𝑇 (𝜅[𝑖]𝑡,1𝑧[𝑖]𝑡−1)𝑇 ⋅ ⋅ ⋅ (𝜅[𝑖]

𝑡,ℏ
𝑧[𝑖]
𝑡−ℏ
)𝑇]𝑇 . (10)

In the real-timenetworked systems, the state𝑥(𝑡) can only
be observed atmost one time, and thus 𝜅[𝑖]𝑡,𝜏, 𝜏 = 1, . . . , ℏ, must
satisfy the following property:

𝜅[𝑖]𝑡+𝑗,𝑗 × 𝜅[𝑖]𝑡+𝑘,𝑘 = 0, 𝑗 ̸= 𝑘. (11)

When 𝑡 < ℏ, the observation of (10) is written as

𝑦̃[𝑖]
𝑡 = [(𝜅[𝑖]𝑡,0𝑧[𝑖]𝑡 )𝑇 ⋅ ⋅ ⋅ (𝜅[𝑖]𝑡,𝑡𝑧[𝑖]𝑡 )𝑇 0 ⋅ ⋅ ⋅ 0]𝑇 , (12)

where we set 𝑦̃[𝑖]
𝑡 ≡ 0 for 𝑡 < 𝜏 ≤ ℏ. Then the estimation

problems considered in this paper can be stated as follows.

Problem 𝐸𝑡. For a generic node 𝜆 ∈ C𝑔, given the set of
navigation knowledge from the neighbors 𝑥̃[𝑖]𝑠 (𝑖 ∈ N[𝜆]

𝑡 )
with the stamp 𝑠 (𝑠 > 0), the corresponding relative measures𝑦̃[𝑖]
𝑘

(𝑘 ∈ [𝑡 − Ξ[𝑖], 𝑡]) subject to NLOS errors and random
delay, with the information 𝜅[𝑖]

𝑘,𝜏
, find a linear minimummean

square error filter 𝑥̂[𝜆](𝑡 | 𝑡) for navigational state of the target,𝑥(𝑡), such that

𝐽[𝜆] = 𝐸 {󵄩󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥̂[𝜆] (𝑡 | 𝑡)󵄩󵄩󵄩󵄩󵄩 | 𝑥̂[𝑖]𝑠 󵄨󵄨󵄨󵄨󵄨𝑠≥0 ; 𝑦̃[𝑖]
𝑘

󵄨󵄨󵄨󵄨󵄨𝑡𝑘=𝑡−Ξ[𝑖] ;
𝜅[𝑖]𝑘,𝜏󵄨󵄨󵄨󵄨󵄨𝑡𝑘=𝑡−Ξ[𝑖] , 𝑖 ∈N

[𝜆]
𝑡 = {1, 2, . . . , ℓ}} (13)

is minimized, while the filter gain is stochastic.

3. Delay-Aware FIR Estimator with Delayed
Complementary Observations

In this section, we aim to establish a unified framework
to solve the addressed optimal state estimation problem
in the simultaneous presence of network-induced delay
and complementary property under the mixed LOS/NLOS
environment, while the observations are decoded from the
packets of ℓ spatially distributed nodes.

3.1. Delayed Observation Reorganization. In our research, the
remote sensing observations (i.e., {𝑧[𝑖]𝑡 , 𝑥[𝑖]𝑡 }) are impacted
by delay and complementary issues and thus should not be
adopted directly by the estimators. In this subsection, we
focus on the delay issue; more specifically, we propose a
preestimating scheme, including two steps, to reorganize the
delay observations without dimensional augment.
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Step 1. We rearrange the complementary observations{𝑦[𝑖](𝑘)|𝑡
𝑡−Ξ[𝑖]

, 𝑖 ∈ N[𝜆]
𝑡 }, which are received in horizon[𝑡 − Ξ[𝜆], 𝑡], that is, (8), and rewrite them into two parts with

the batch form as

𝑦̃ℏ (𝑠) ≜ [𝑦[𝑗]𝑇
0 (𝑠)󵄨󵄨󵄨󵄨󵄨󵄨ℓ𝑗=1 , 𝑦[𝑗]𝑇

ℏ (𝑠 + ℏ)󵄨󵄨󵄨󵄨󵄨󵄨ℓ𝑗=1]𝑇 ,
𝑡 − Ξ[𝑠] − ℏ ≤ 𝑠 ≤ 𝑡 − ℏ,

𝑦̃𝑡−𝑠 (𝑠) ≜ [𝑦[𝑗]𝑇
0 (𝑠)󵄨󵄨󵄨󵄨󵄨󵄨ℓ𝑗=1 , 𝑦[𝑗]𝑇

𝑡−𝑠 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨ℓ𝑗=1]𝑇 ,
𝑡 − ℏ < 𝑠 ≤ 𝑡.

(14)

Then, reorganized observation 𝑦̃(⋅) is delay-free and
satisfies

𝑦̃ℏ (𝑠) ≜ 𝐻̃ℏ (𝑠) 𝑥 (𝑠) + Ṽℏ (𝑠, 𝛾[𝑖]𝑠,𝑠+ℏ) ,
𝑡 − Ξ[𝑠] − ℏ ≤ 𝑠 ≤ 𝑡 − ℏ,

𝑦̃𝑡−𝑠 (𝑠) ≜ 𝐻̃𝑡−𝑠 (𝑠) 𝑥 (𝑠) + Ṽ𝑡−𝑠 (𝑠, 𝛾[𝑖]𝑠,𝑡 ) , 𝑡 − ℏ < 𝑠 ≤ 𝑡,
(15)

where

𝐻̃ℏ (𝑠) = [(𝜅[𝑖]𝑠,0𝜙[𝑖]𝑠 󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇 (𝜅[𝑖]
𝑠+ℏ,ℏ

𝜙[𝑖]
𝑠+ℎ

󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇]𝑇 ,
𝐻̃𝑡−𝑠 (𝑠) = [(𝜅[𝑖]𝑠,0𝜙[𝑖]𝑠 󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇 (𝜅[𝑖]𝑡,𝑡−𝑠𝜙[𝑖]𝑡 󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇]𝑇 ,
Ṽℏ (𝑠, 𝛾[𝑖]𝑠,𝑠+ℏ)
= [(𝜅[𝑖]𝑠,0𝑢[𝑖]𝑠 (𝛾[𝑖]𝑠 )󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇 (𝜅[𝑖]

𝑠+ℏ,ℏ
𝑢[𝑖]
𝑠+ℏ
(𝛾[𝑖]

𝑠+ℏ
)󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇]𝑇 ,

Ṽ𝑡−𝑠 (𝑠, 𝛾[𝑖]𝑠,𝑡 )
= [(𝜅[𝑖]𝑠,0𝑢[𝑖]𝑠 (𝛾[𝑖]𝑠 )󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇 (𝜅[𝑖]𝑡,𝑡−𝑠𝑢[𝑖]𝑡 (𝛾[𝑖]𝑡 )󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1)𝑇]𝑇 ,

(16)

with Vℏ(𝑠) and V𝑡−𝑠(𝑠) being white noises of zero means and
covariance matrices:

𝑅̃ℏ (𝑠) = diag {𝜅[𝑖]𝑠,0𝑅[𝑖]󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1 , 𝜅[𝑖]𝑠+ℏ,ℏ𝑅[𝑖]󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1} ,
𝑅̃𝑡−𝑠 (𝑠) = diag {𝜅[𝑖]𝑠,0𝑅[𝑖]󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1 , 𝜅[𝑖]𝑠+ℏ,ℏ𝑅[𝑖]󵄨󵄨󵄨󵄨󵄨ℓ𝑖=1} .

(17)

Moreover, we can follow the result in [1] that the following
lemma is true.

Lemma 4. For the given time horizon [𝑡 − Ξ[𝜆], 𝑡], the linear
space L1 ≜ {{𝑦(𝑘)}𝑡

𝑘=𝑡−Ξ[𝜆]
} generated by {𝑦(𝑘)}𝑡

𝑘=𝑡−Ξ[𝜆]
is

equivalent to the linear space of

L2 ≜ {{𝑦̃ℏ (𝑠)}𝑡−ℏ−1𝑠=𝑡−Ξ[𝜆]−ℏ
; {𝑦̃𝑡−𝑠 (𝑠)}𝑡𝑠=𝑡−ℏ} , (18)

which implies thatL2 contains the same information asL1.

Step 2. We further fuse the complementary observations (15)
of the same stamp 𝑠 ∈ [𝑡 − Ξ[𝜆] − ℏ, 𝑡) into one complete
measurement 𝑦̃[𝜆]

𝑚 (𝑠) (𝑚 ∈ {ℏ, 𝑡 − 𝑠}) prior to the local
estimation process, and thus

𝑦̃[𝜆]
𝑚 (𝑠) = 𝑅 ⋅ ℓ∑

𝑖=1

𝑔 (𝑦̃[𝑖]
𝑚 (𝑠) , 𝑥[𝑖]𝑚 (𝑠)) ,

𝑚 ∈ {ℎ, 𝑡 − 𝑠} , 𝑠 = 𝑡 − Ξ[𝜆] − ℏ, . . . , 𝑡,
(19)

where 𝑅 denotes the weighted matrix; 𝑔(𝑦̃[𝑖]
𝑚 (𝑠), 𝑥[𝑖]𝑚 (𝑠)) is

the relative measure function. Thus, the local measurements𝑦̃[𝜆]
𝑚 (𝑠) ∈ R𝑛𝑦 in (19) can be rewritten in the reorganized

linear spaceL2 as

𝑦̃[𝜆]
𝑚 (𝑠) = 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥 (𝑠) + Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 ) , (20)

where 𝜗[𝜆]𝑠 represents the failed fusion of 𝑦̃[𝜆](𝑠) at time stamp𝑠 = 𝑡−Ξ[𝜆]−ℏ, . . . , 𝑡−1, which takes the value of 0 or 1, and is
modeled as Bernoulli distributed white sequences satisfying
Prob{𝜗[𝜆]𝑠 = 1} = 𝜗[𝜆]; 0 < 𝜗[𝜆] ≤ 1.
Remark 5. Note that 𝜗[𝜆]𝑠 (𝑠 = 𝑡 − Ξ[𝜆] − ℏ, . . . , 𝑡 − 1) is intro-
duced to represent the failure of the preestimating algorithm
(19) at time 𝑠, with the reason that the numbers of reorganized
CMs 𝑦̃ℏ|𝑡(𝑠) or 𝑦̃𝑡−𝑠|𝑡(𝑠) are less than a lower limit [9, 12].Thus,
through preestimating transformation, the remote sensing
CMs in (14) with high dimension are transformed into the
data missing in (20) with lower dimension.

Besides, 𝑅 and 𝑔(𝑦̃[𝑖]
𝑚 (𝑠), 𝑥[𝑖]𝑚 (𝑠)) in (19) will be deduced

through a complementary fusion strategy, with the details as
follows.

3.2. Complementary Fusion Strategy. Let {𝑦̃[𝑖]
𝑚 (𝑠), 𝑖 = 1, 2, . . . ,ℓ} be the set of complementary observations generated at

instant 𝑠, the relative measures between objective 𝜆 and its
neighbors 𝑖 ∈ N[𝜆]

𝑠 , that is, relative distance and relative
angle, are calculated through RSS and AOA, respectively, as
depicted in (4), and the measure noise covariance 𝑅̃[𝑖]

𝑚 (𝑠) in
(17).

Hereafter, the fused measurement covariance 𝑅 and the
fused measurement variable 𝑦[𝜆]

𝑚 (𝑠) (𝑚 ∈ {ℏ, 𝑡 − 𝑠}) can be
expressed as

𝑅 = ( ℓ∑
𝑖=1

(𝑅̃[𝑖]

𝑚 (𝑠))−1)−1 , 𝑚 ∈ {ℏ, 𝑡 − 𝑠} (21)

𝑦[𝜆]
𝑚 (𝑠)
= 𝑅
⋅ ℓ∑
𝑖=1

((𝑅̃[𝑖]

𝑚 (𝑠))−1 (𝑦̃[𝑖]
𝑚 (𝑠) + 𝑥[ℓ]𝑚 (𝑠) − 𝑥[𝑖]𝑚 (𝑠))) .

(22)

Besides, the sensitivity matrix of the fused measurement
variable (22) can be written as

𝐻 = 𝑅 ⋅ ℓ∑
𝑖=1

[(𝑅̃[𝑖]

𝑚 (𝑠))−1𝐻[𝑖]] ; (23)
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hereinto, 𝐻[𝑖] is the sensitivity matrix corresponding to𝑦̃[𝑖]
𝑚 (𝑠):

𝐻[𝑖] = [−𝐼3×3 03×3] . (24)

Note that the estimation error in this research may
not always fall within the confidence level of the predicted
covariance boundary. To avoid this problematic scenario, we
introduce a new weighting factor 𝜓𝑖,𝑦 as follows.

Definition 6. Given the CMs 𝑦̃[𝑖]
𝑚 (𝑠),𝑚 ∈ {ℏ, 𝑡 − 𝑠}, sensitivity

matrix 𝐻[𝑖], and the inverse measurement noise variance,(𝑅̃[𝑖]

𝑚 (𝑠))−1, the weighting factor,𝜓𝑖,𝑦, is applied before they are
fused; more specifically, it is defined as

𝜓𝑖,𝑦 = 󰜚2𝑖󰜚𝑇󰜚 , (25)

where ∑ℓ
𝑖=1 𝜓𝑖,𝑦 = 1; 󰜚 = [󰜚1 󰜚2 ⋅ ⋅ ⋅ 󰜚ℓ]𝑇.

Theweighting factor𝜓𝑖,𝑦 is a function of (4). For instance,

RSS vector is defined as P𝑚,rss = [𝑦̃[1]
𝑚,rss ⋅ ⋅ ⋅ 𝑦̃[ℓ]

𝑚,rss]𝑇, 𝑚 ∈{ℏ, 𝑡 − 𝑠}. In the proposed weight strategy, the weighting
factor of each CM is assigned based on the relative measures
between 𝑖 ∈ N[𝜆]

𝑠 and 𝜆. Lower weight is assigned to the
neighbors 𝑖 ∈ N[𝜆]

𝑠 closer to 𝜆. In other words, weighting
factor 𝜓𝑖,𝑦 is selected to be proportional to the relative
measures between the neighbors. The last measure 𝑦̃[ℓ]

𝑚,rss,
which is equivalent to max(P𝑚,rss), has highest 𝜓𝑖,𝑦. Define
the terms ΔP𝑚,rss and 󰜚 as

ΔP[𝑖]
𝑚,rss = 𝑦̃[ℓ]

𝑚,rss − 𝑦̃[𝑖]
𝑚,rss, 𝑚 ∈ {ℏ, 𝑡 − 𝑠} ,

󰜚𝑖 = 1 − ΔP[𝑖]
𝑚,rss󵄩󵄩󵄩󵄩󵄩ΔP[𝑖]
𝑚,rss

󵄩󵄩󵄩󵄩󵄩 , 𝑚 ∈ {ℏ, 𝑡 − 𝑠} , (26)

where ΔP𝑚,rss = [ΔP[1]
𝑚,rss, ΔP[2]

𝑚,rss, . . . , ΔP[ℓ]
𝑚,rss].

Thus, the newly fused measurement noise covariance in
(21) can be rewritten as

𝑅 = ℓ ⋅ ( ℓ∑
𝑖=1

𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1)−1 , 𝑚 ∈ {ℏ, 𝑡 − 𝑠} . (27)

Furthermore, the sensitivity matrix in (23) can be rewrit-
ten as

𝐻 = ( ℓ∑
𝑖=1

𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1)−1

⋅ ℓ∑
𝑖=1

[𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1𝐻[𝑖]] , 𝑚 ∈ {ℏ, 𝑡 − 𝑠} .
(28)

Meanwhile, the newly fused measurement vector in (22)
can be rewritten as

𝑦[𝜆]
𝑚 (𝑠) = 𝑅 ⋅ ℓ∑

𝑖=1

𝑔 (𝑦̃[𝑖]
𝑚 (𝑠) , 𝑥[𝑖]𝑚 (𝑠)) = {{{ℓ

⋅ ( ℓ∑
𝑖=1

𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1)−1}}}
ℓ∑
𝑖=1

{1ℓ
⋅ [𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1 (𝑦̃[𝑖]
𝑚 (𝑠) + 𝑥[ℓ]𝑚 (𝑠) − 𝑥[𝑖]𝑚 (𝑠))]} ,

𝑚 ∈ {ℏ, 𝑡 − 𝑠} ,

(29)

where𝑔 (𝑦̃[𝑖]
𝑚 (𝑠) , 𝑥[𝑖]𝑚 (𝑠))

= 1ℓ
⋅ [𝜓𝑖,𝑦 (𝑅̃[𝑖]

𝑚 (𝑠))−1 (𝑦̃[𝑖]
𝑚 (𝑠) + 𝑥[ℓ]𝑚 (𝑠) − 𝑥[𝑖]𝑚 (𝑠))] ,

𝑚 ∈ {ℏ, 𝑡 − 𝑠} .
(30)

Note that the resulting problem is solved by a robust
recursive scheme, which allows one to determine approxi-
mate estimates with a reduced computational condition. The
details are presented in the following subsection.

3.3. Delay-Aware FIR Estimation Algorithm. In this subsec-
tion, we proposed a novel unbiased FIR estimator, namely,
delay-aware FIR (DFIR) estimation algorithm, to realize
the network-based state estimation of a generic node 𝜆 ∈
C𝑔 based on the cooperative observation of its neighbor-
hood N[𝜆]

𝑠 . Note that several unique network-induced con-
straints are involved, including complementary observations,
Markov jump parameters, and random delay; hereinto, par-
tial constraints have been transformed in Sections 3.1 and 3.2,
which may simplify the design procedure of DFIR.

Prior to themain result of this section, let us recall a useful
lemma that will be useful in DFIR algorithm.

Lemma 7 (see [24]). Suppose that the general trace optimiza-
tion (GTO) problem is given as

min
H

tr [(HA −B)C (HA −B)𝑇 +HDH
𝑇] ,

subject to HE = F, (31)

where A, B, C, D, E, and F denote the constant matrices
with appropriate dimensions: C = C𝑇 > 0 andD = D𝑇 > 0.
tr(J) is the trace of the main diagonal ofJ.

Thus, the unique solution to the GTO problem can be
obtained as
H

= [F B] [[
(E𝑇Λ−1E)−1 E𝑇Λ−1

CA𝑇Λ−1 [𝐼 −E (E𝑇Λ−1E)−1 E𝑇Λ−1]]] ,
(32)

where Λ = ACA𝑇 +D.
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On the recent finite-time horizon [𝑡 − Ξ[𝜆] − ℏ, 𝑡 − 1] of
reorganized linear space L2, the receding horizon filter for
(3) and (20) can be written as

𝑥̂[𝜆]𝑡|𝑡−1 = 𝑡−1∑
𝑘=𝑡−Ξ[𝜆]−ℏ

𝐻̃𝑡−𝑘,𝛾(𝑠)𝑦̃[𝜆]
ℏ (𝑠) = H̃𝛾(𝑠)Ỹ

[𝜆]

𝑡−1, (33)

where H̃𝛾(𝑠) is the gain matrix, Ỹ
[𝜆]

𝑡−1 is the augmented
measurement vector, and 𝛾(𝑠) is the set of switching factors
on the horizon [𝑡 − Ξ[𝜆] − ℏ, 𝑡 − 1] defined by (34)–(36),
respectively, as

H̃𝛾(𝑠) ≜ [𝐻̃Ξ[𝜆]+ℏ,𝛾(𝑠) 𝐻̃Ξ[𝜆]+ℏ−1,𝛾(𝑠) ⋅ ⋅ ⋅ 𝐻̃1,𝛾(𝑠)] , (34)

Ỹ
[𝜆]

𝑡−1 ≜ [𝑦̃[𝜆]𝑇

𝑡−Ξ[𝜆]−ℏ
𝑦̃[𝜆]𝑇

𝑡−Ξ[𝜆]−ℏ+1
⋅ ⋅ ⋅ 𝑦̃[𝜆]𝑇

𝑡−1 ]𝑇 , (35)

𝛾 (𝑠) ≜ {𝛾[𝜆]
𝑡−Ξ[𝜆]−ℏ

, 𝛾[𝜆]
𝑡−Ξ[𝜆]−ℏ+1

, . . . , 𝛾[𝜆]𝑡−1} . (36)

For ease of notation only, we express the horizon size of
estimator Ξ[𝜆] + ℏ as Ξ̃; that is, Ξ̃ ≜ Ξ[𝜆] + ℏ, Ỹ[𝜆]

𝑡−1 can be
rewritten in the batch form as

Ỹ
[𝜆]

𝑡−1 = FΞ̃,𝛾(𝑠)𝑥𝑡−Ξ̃ +HΞ̃,𝛾(𝑠)W𝑡−1 +V𝑡−1,𝛾(𝑠), (37)

where

FΞ̃,𝛾(𝑠) ≜
[[[[[[[[[

𝐻̃𝑡−Ξ̃,𝛾[𝜆]
𝑡−Ξ̃

ϝ𝑡−1
𝑡−Ξ̃...

𝐻̃𝑡−Ξ̃+1,𝛾[𝜆]
𝑡−Ξ̃+1

ϝ𝑡−1𝑡−2𝐻̃𝑡−1,𝛾[𝜆]𝑡−1
Φ−1

𝑡−1

]]]]]]]]]
,

W𝑡−1 ≜
[[[[[[[[

𝑤𝑡−Ξ̃𝑤𝑡−Ξ̃+1...
𝑤𝑡−1

]]]]]]]]
,

V𝑡−1,𝛾(𝑠) ≜
[[[[[[[[

Ṽ𝑡−Ξ̃,𝛾[𝜆]
𝑡−Ξ̃

Ṽ𝑡−Ξ̃+1,𝛾[𝜆]
𝑡−Ξ̃+1...

Ṽ𝑡−1,𝛾[𝜆]𝑡−1

]]]]]]]]
,

HΞ̃,𝛾(𝑠) ≜
[[[[[[[[[

𝐻̃𝑡−Ξ̃,𝛾[𝜆]
𝑡−Ξ̃

Φ−1

𝑡−Ξ̃
Γ𝑡−Ξ̃ 𝐻̃𝑡−Ξ̃,𝛾[𝜆]

𝑡−Ξ̃

ϝ𝑡−Ξ̃+1
𝑡−Ξ̃

Γ𝑡−Ξ̃ ⋅ ⋅ ⋅ 𝐻̃𝑡−Ξ̃,𝛾[𝜆]
𝑡−Ξ̃

ϝ𝑡−1
𝑡−Ξ̃
Γ𝑡−Ξ̃0 𝐻̃𝑡−Ξ̃+1,𝛾[𝜆]

𝑡−Ξ̃+1

Φ−1

𝑡−Ξ̃+1
Γ𝑡−Ξ̃+1 ⋅ ⋅ ⋅ 𝐻̃𝑡−Ξ̃+1,𝛾[𝜆]

𝑡−Ξ̃+1

ϝ𝑡−1
𝑡−Ξ̃+1

Γ𝑡−Ξ̃+1... ... d
...

0 0 ⋅ ⋅ ⋅ 𝐻̃𝑡−1,𝛾[𝜆]𝑡−1
Φ−1

𝑡−1Γ𝑡−1

]]]]]]]]]
,

QΞ̃ ≜ [[diag(
Ξ̃⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑄, 𝑄, . . . , 𝑄)]] ,

RΞ̃ ≜ [[diag(
Ξ̃⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑅̃, 𝑅̃, . . . , 𝑅̃)]] ,

ϝ𝑡−ℎ𝑡−𝑔 ≜ ℎ∏
𝑖=𝑔

Φ−1
𝑡−𝑖 = Φ−1

𝑡−𝑔Φ−1
𝑡−𝑔+1 ⋅ ⋅ ⋅ Φ−1

𝑡−ℎ.

(38)
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The noise terms HΞ̃,𝛾(𝑠)W𝑡−1 + V𝑡−1,𝛾(𝑠) in (37) can be
expressed as zero mean with covariance ΘΞ̃,𝛾(𝑠) by

Θ𝑖,𝛾(𝑠) =H𝑖,𝛾(𝑠) [diag( 𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑄, 𝑄, . . . , 𝑄)]H𝑇
𝑖,𝛾(𝑠)

+ [[diag(
𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑅̃, 𝑅̃, . . . , 𝑅̃)]] .

(39)

Substituting (37) into (33) and taking the expectation on
both sides of (33), the following relations can be obtained:

𝑥̂𝑡|𝑡−1 =HỸ
[𝜆]

𝑡−1

=HFΞ̃,𝛾(𝑠)𝑥𝑡−Ξ̃
+H (HΞ̃,𝛾(𝑠)W𝑡−1 +V𝑡−1,𝛾(𝑠)) ,

𝐸 [𝑥̂𝑡|𝑡−1] =HFΞ̃,𝛾(𝑠)𝐸 [𝑥𝑡−Ξ̃] ,
(40)

with the horizon initial conditions

𝑥̂𝑡−Ξ̃ = 𝜛𝑡−Ξ̃ = 𝐸 [𝑥𝑡−Ξ̃] ,
𝑃̃𝑡−Ξ̃ = 𝑃̃𝑡−Ξ̃ = cov {𝑥𝑡−Ξ̃, 𝑥𝑡−Ξ̃} (41)

determined by Lyapunov equation on the horizon 𝑘 ∈[𝑡0, 𝑡𝑡−Ξ̃) as
𝜛𝑘+1 = Φ𝑘𝜛𝑘,
𝜛𝑡0

= 𝜛0,
𝑃̃𝑘+1 = Φ𝑘𝑃̃𝑘 + Φ𝑇

𝑘 + 𝑄̃𝑘,
𝑃̃𝑡0

= 𝑃̃0.
(42)

Consider the unbiased condition; that is, 𝐸[𝑥̂𝑡|𝑡−1] =𝐸[𝑥𝑡−Ξ̃], and, irrespective of the initial states, constraint (43)
is required:

HFΞ̃,𝛾(𝑠) = 𝐼. (43)

Thus, the objective now turns to obtain the optimal gain
matrix H

𝑜
with the unbiasedness constraint (43), such that

the estimation error 𝑒𝑡 of the estimate 𝑥̂𝑡|𝑡−1 has the following
minimum variance:

H
𝑜 = argmin

H

𝐸 [𝑒𝑇𝑡 𝑒𝑡]
= argmin

H

𝐸 {tr [𝑥𝑡 − 𝑥̂𝑡|𝑡−1]𝑇 [𝑥𝑡 − 𝑥̂𝑡|𝑡−1]}
= argmin

H

(HΞ̃,𝛾(𝑠)W𝑡−1 +V𝑡−1,𝛾(𝑠))𝑇
⋅H𝑇

H (HΞ̃,𝛾(𝑠)W𝑡−1 +V𝑡−1,𝛾(𝑠)) .

(44)

By using Lemma 7, the gain matrix H̃ can be obtained by
the following correspondences:

A←󳨀HΞ̃,
B←󳨀 𝑂,
C←󳨀 QΞ̃,
D←󳨀RΞ̃,
E←󳨀 FΞ̃,𝛾(𝑠),
F←󳨀 𝐼.

(45)

Thus, when {Φ𝑘, 𝐻̃𝑘,𝛾[𝜆]
𝑘
} (𝑘 ∈ [𝑡 − Ξ̃, 𝑡 − 1]) is observable

and Ξ[𝜆] + ℏ ≥ 𝑛, the DFIR for the reorganized system (20)
can be given as

𝑥̂[𝜆]𝑡|𝑡−1 =H
𝑜
Ỹ

[𝜆]

𝑡−1

= [𝐼 0] [[
(F𝑇

Ξ̃,𝛾(𝑠)
Θ−1

Ξ̃,𝛾(𝑠)
FΞ̃,𝛾(𝑠))−1 F𝑇

Ξ̃,𝛾(𝑠)
Θ−1

Ξ̃,𝛾(𝑠)∗ ]] Ỹ
[𝜆]

𝑡−1

= (F𝑇
Ξ̃,𝛾(𝑠)

Θ−1

Ξ̃,𝛾(𝑠)
FΞ̃,𝛾(𝑠))−1 F𝑇

Ξ̃,𝛾(𝑠)
Θ−1

Ξ̃,𝛾(𝑠)
Ỹ

[𝜆]

𝑡−1.
(46)

Remark 8. Thebatch formof RHE (44) requires the inversion
computation of matrices Θ−1

Ξ̃,𝛾(𝑠)
and F𝑇

Ξ̃,𝛾(𝑠)
Θ−1

Ξ̃,𝛾(𝑠)
FΞ̃,𝛾(𝑠),

whose dimensionwill become large as the horizon lengthΞ[𝜆]

increases; besides, the singularity problem will be encoun-
tered due to the impacts of LOS/NLOS condition.

Remark 9. The FIR filter uses finite measurements of the
recent time interval. The length of the interval is called
horizon size, which is also referred to as the window size or
memory size. In (13), the matrices with subscript “Ξ[𝜆]” are
obtained using the information on the recent time interval[𝑡−Ξ[𝜆]−ℏ, 𝑡−1], where the horizon size is Ξ[𝜆]+ℏ.The large
matrices defined in (13) are time-varying.

4. Adaptive Finite-Horizon Group Estimator

In this section, we introduce an adaptive horizon group
(AHG) approach to manage the horizon size in DFIR esti-
mator. Different from the previous horizon group shift policy
[26], AHG policy is designed to adjust the horizon size of
DFIR algorithm according to the dynamic changed cooper-
ative neighbors and the concerned network constraints. The
AHG algorithm was combined with the proposed DFIR esti-
mator and obtained AFGE estimator. The detailed algorithm
of estimating with AHG is presented below.

The first step of estimation with the DFIR is to construct
a group of horizon sizes (i.e., horizon group). The horizon
group at time 𝑠 is denoted byG𝑠 and is defined as

G𝑠 = {Ξ̃ | Ξ̃ = 2Ξ𝑐
𝑠 + (𝜁 × 𝜏[𝑖]𝑠 − ℏ) , 𝜏[𝑖]𝑠

= 0, 1, 2, . . . , ℏ} , (47)
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Figure 2: Adaptive finite-horizon group estimation scheme with AHG.

where Ξ̃ is the horizon size, Ξ𝑐
𝑠 is the center horizon size at

time 𝑠, 𝜁 is the interval between horizon sizes, and ℏ + 1 is
the total number of horizon sizes in a horizon group. Note
that 𝜏[𝑖]𝑠 impliedly reflected the possible transmission delay
from the cooperative neighbor 𝑖 ∈ N[𝜆]

𝑠 , and ℏ denotes the
tolerable maximum transmission delay, which is defined in
Assumption 3.

The second step is to execute the DFIR estimator repeat-
edly with the horizon sizes in G𝑠, which produces a group
of state estimates, 𝑥̂1𝑠 , 𝑥̂2𝑠 , . . . , 𝑥̂ℏ+1𝑠 . The reliable estimate is
then selected by maximizing the likelihood function of𝑦[𝜆]

𝑚 (𝑠) 𝑔𝑌(𝑦[𝜆]
𝑚 (𝑠) | 𝑥 = 𝑥̂𝑠(Ξ̃)) , where 𝑥̂𝑠(Ξ̃) is the state

estimate obtained from (46)with the horizon size Ξ̃. Note that
the density function of Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 ) is 𝑔𝑉(Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 )), where

𝑔𝑉 (Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 )) = 1
√(2𝜋)𝑞 det (𝑅)

⋅ exp {−12 (Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 ))𝑇 𝑅−1
Ṽ[𝜆]𝑚 (𝑠, 𝛾[𝜆]𝑚 )} .

(48)

The state estimates are then evaluated based on their
likelihoods, which can be computed as follows:

𝜉 (𝑥̂𝑖𝑠 (Ξ̃)) = 𝑝 (𝑦[𝜆]
𝑚 (𝑠) | 𝑥̂𝑖𝑠 (Ξ̃)) = 1

√(2𝜋)𝑞 det (𝑅)
× exp{−12 (𝑦[𝜆]

𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ̃))𝑇
⋅ 𝑅−1 (𝑦[𝜆]

𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ̃))} ,
(49)

where 𝜉(𝑥̂𝑖𝑠(Ξ̃)) is the likelihood of the state estimate 𝑥̂𝑖𝑠(Ξ̃)
and 𝐻̃[𝜆]

𝑚 (𝑠) is the measurement matrix defined in (20):

J (𝑥̂𝑠 (Ξ̃)) = 12 [(𝑦[𝜆]
𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ̃))𝑇

⋅ 𝑅−1 (𝑦[𝜆]
𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ̃))] .
(50)

Thus, a reliable estimate is selected by minimizing
J(𝑥̂𝑠(Ξ̃)). We use J(𝑥̂𝑠(Ξ̃)) as a measure of accuracy of the
estimation result. The smaller the cost J(𝑥̂𝑠(Ξ̃)) is, the more
reliable the estimated state is.

The final step is to change the horizon group, which
is called the AHG. If we determine Ξ𝑐

𝑠 , G𝑠 is determined
automatically using (47). The horizon size that produces a
reliable estimate at time 𝑠 is used as the center horizon size
at time 𝑠 + 1. Let 𝑥̂𝑠(Ξ𝑖

𝑠) be the state estimate obtained from
the FIR estimator using the horizon size Ξ𝑖

𝑠. The AHG can
then be described by the following equation:

Ξ𝑐
𝑠+1 = argmax

Ξ𝑐𝑠

𝜉 (𝑥̂𝑠 (Ξ𝑖
𝑠)) . (51)

In this way, the horizon group is moved (or shifted)
toward the horizon size that produces good estimation
performance. In the AHG algorithm, the horizon size varies
over time. Thus, we impose the lower bound Ξ̃min and the
upper bound Ξ̃max on the horizon size. We now summarize
the estimation algorithm with DFIR, as depicted in Figure 2,
whereas the detailed algorithm is presented as follows.

Algorithm 10 (AFGE estimator). Select design parameters of
theAHGalgorithm, such as ℏ, 𝜁, Ξ̃min, and Ξ̃max. Set the initial
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value of the center horizon size as Ξ𝑐
𝑠 = Ξ̃min. For 𝑠 = Ξ̃min +1, Ξ̃min + 2, . . ., perform the following:

(a) Construct horizon group G𝑠 that contains ℏ horizon
sizes using definition (9) as follows:

G𝑠 = {2Ξ𝑐
𝑠 − ℏ, 2Ξ𝑐

𝑠 + 𝜁 − ℏ, . . . , 2Ξ𝑐
𝑠 + 𝜁 × (ℏ − 1)

− ℏ, 2Ξ𝑐
𝑠 + 𝜁 × ℏ − ℏ} = {Ξ1

𝑠 , Ξ2
𝑠 , . . . , Ξ𝑖

𝑠, . . . , Ξℏ+1
𝑠 } . (52)

(b) Using the horizon sizes Ξ𝑖
𝑠 (𝑖 = 1, 2, . . . , ℏ + 1)

contained inG𝑠, perform the following:
for 𝑖 = 1 to ℏ + 1 do

if Ξ𝑖
𝑠 < 𝑠 and Ξ̃min < Ξ𝑖

𝑠 < Ξ̃max; then

(i) Obtain 𝑥̂𝑠(Ξ𝑖
𝑠) by performing DFIR estima-

tor (Algorithm 10) using Ξ𝑖
𝑠 as follows:

𝑥̂[𝜆]𝑠|𝑠−1 (Ξ𝑖
𝑠) = (F𝑇

Ξ𝑖𝑠+ℏ,𝛾(𝑠)
Θ−1

Ξ𝑖𝑠+ℏ,𝛾(𝑠)
FΞ𝑖𝑠+ℏ,𝛾(𝑠)

)−1
⋅F𝑇

Ξ𝑖𝑠+ℏ,𝛾(𝑠)
Θ−1

Ξ𝑖𝑠+ℏ,𝛾(𝑠)
Ỹ

[𝜆]

𝑠−1 (Ξ𝑖
𝑠) , (53)

where FΞ𝑖𝑠+ℏ,𝛾(𝑠)
, ΘΞ𝑖𝑠+ℏ,𝛾(𝑠)

, and Ỹ
[𝜆]

𝑠−1(Ξ𝑖
𝑠)

can be obtained using the horizon size Ξ𝑖
𝑠

and definition (37).
(ii) Compute the likelihood of 𝑥̂𝑠(Ξ𝑖

𝑠) using
(49) as

𝜉 (𝑥̂𝑖𝑠 (Ξ𝑖
𝑠)) = 1

√(2𝜋)𝑞 det (𝑅)
× exp{−12 (𝑦[𝜆]

𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ𝑖
𝑠))𝑇

⋅ 𝑅−1 (𝑦[𝜆]
𝑚 (𝑠) − 𝜗[𝜆]𝑠 𝐻̃[𝜆]

𝑚 (𝑠) 𝑥̂𝑖𝑠 (Ξ𝑖
𝑠))} .

(54)

endif

endfor
(c) The output (i.e., state estimate) of DFIR at time 𝑠,

denoted by 𝑥̂𝑠, is determined as

𝑥̂𝑠 = arg max
𝑥̂𝑠(Ξ
𝑖
𝑠)
𝜉 (𝑥̂𝑠 (Ξ𝑖

𝑠)) . (55)

(d) The center size at time 𝑠 + 1, denoted by Ξ𝑐
𝑠+1, is

determined as follows:

Ξ𝑐
𝑠+1 = argmax

Ξ𝑐𝑠

𝜉 (𝑥̂𝑠 (Ξ𝑖
𝑠)) . (56)

5. An Application to Clustered UAV Systems

5.1. Simulation Configurations and Metrics. In this section,
we illustrate the results proposed in Sections 3 and 4 by

numerical simulations.The position and velocity of a generic
UAV evolve according to the state-space model as follows:

[𝑥𝑝 (𝑡 + 1)𝑥V (𝑡 + 1)] = [
𝐼3 𝛿𝑡 ⋅ 𝐼3
03×3 𝐼3 ][𝑥𝑝 (𝑡)𝑥V (𝑡)]
+ [0.5 ⋅ 𝛿2𝑡 ⋅ 13×1𝛿𝑡 ⋅ 13×1 ]𝑤 (𝑡) ,

(57)

where 𝑥𝑝(𝑡) and 𝑥V(𝑡) denote the position and velocity of a
genericUAVat time 𝑡, respectively, 𝛿𝑡 represents the sampling
period, and 𝛿𝑡 = 0.1𝑠; and 𝑤(𝑡) is a zero-mean white noise
with variance 𝑄𝑤, 𝑄𝑤 = 0.01𝐼6; the initial values are 𝑥̂0|0 =[120, 30, 0, 0, 0, 0]𝑇 and 𝑃0|0 = diag{252I3, 0.12I3}.

Consider a fleet of𝑁Σ = 75UAVs deployed schematically
over a field of [−5, 5] × [−5, 5] × [0, 1] km.The initial network
topology is depicted in Figure 3(a). The objective UAV is set
to track a trajectory as in Figure 3(b) and in flight for 1000 sec.

The objective UAV updates its state essentially based on
cooperative packets of its neighbors, which include the time
stamp 𝑠 and the navigational state of the sender 𝑥̂[𝑖]𝑡 =[𝑥̂[𝑖]𝑇𝑝 (𝑡) 𝑥̂[𝑖]𝑇V (𝑡)]𝑇. The relative position and relative angle
are measured by RSS and AOA methods, respectively, with
the observation models as in (4).

For RSS measurements, the transmission power is taken
as 𝐾 = 20 dBm, the path loss exponent is 𝜆 = 2.1, and 𝛼 =32.44.The standard deviation formeasurement noise of AOA
is 0.1 degrees. The variances of LOS and NLOS measurement
noises are taken as 𝑅[𝑖]

𝑡,1 = 64 and 𝑅[𝑖]
𝑡,2 = 100, respectively.

The bias of the NLOS measurement error is assumed to be𝜇[𝑖]𝑡 = −5. The occurrence probability of NLOS measurement
error is taken as𝑃NLOS = 0.5 for each neighbor.The transition
probabilities of Markov chain 𝜆[𝑖]𝑡 are set as 𝜋(2)

11 = 𝜋(2)
22 = 0.9

and 𝜋(2)
12 = 𝜋(2)

21 = 0.1. To reduce the computational cost, not
all the cooperative measurements are used; instead, only ℓ =5 strongest received signals are adopted for state update of the
objective UAV.

As to the random delay, it is assumed that 𝜏(𝑡) ∈{0, 1, 2, 3}. 𝜏(𝑡) is a prior known to the estimator and its paths
can be described by 𝜅[𝑖]𝑡,𝜏 (𝑖 = 1, 2, . . . , ℓ) with the restriction𝜅[𝑖]𝑡+𝜏1 ,𝜏1 ×𝜅[𝑖]𝑡+𝜏2 ,𝜏2 = 0 if 𝜏1 ̸= 𝜏2. Hereinto, it is assumed that 𝜏(𝑡)
is of the probabilities

Prob {𝜏 (𝑡) = 0} = 0.4,
Prob {𝜏 (𝑡) = 1} = 0.3,
Prob {𝜏 (𝑡) = 2} = 0.2,
Prob {𝜏 (𝑡) = 3} = 0.1.

(58)

A distributed fusion receding horizon estimator (DRHE)
in [25] is adopted to compare with DFIR in Section 3 and the
AFGE in Section 4. Let RMSE denote the root mean square
error for the estimation of 𝑥[𝑖]𝑡 ; that is, ((1/M) ∑𝑀

𝑗=1(𝑥[𝑗]𝑡 −𝑥̂[𝑗]
𝑡|𝑡
)2)0.5, whereM = 500 is theMonte Carlo simulation runs.

5.2. Simulation Results and Analysis. In this subsection,
several key properties of the proposed AFGE approach, that
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Figure 3: Initial settings of network topology and ideal trajectory. (a) Initial topology of the networked vehicles. (b) Ideal trajectory of
objective vehicle.
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is, AHG scheme and estimation errors, are tested on the
networked UAVs with the models in Section 5.1. The design
parameters of the AFGE algorithm are taken as ℏ = 3, 𝜁 = 1,Ξmin = 2, and Ξmax = 40.

First, we verify that AHG improves the estimation per-
formance of the DFIR estimator by adapting the horizon
size. To this end, we compare the AFGE with DFIR and
DRHE. While the DFIR uses a constant horizon size, the
AFGE uses the adaptive horizon size. Figure 4 depicts the
RMSE comparisons among DFIR, DRHE, and AFGE for
diverse horizon sizes in the rectilinear orbit determination
problem. In addition, this figure shows the RMSE of the
AFGE estimator.TheDFIR estimator produces theminimum
RMSE of 0.216 when the horizon size is 12, whereas the
minimum RMSE of DRHE is 0.320, with the horizon size of

13. The RMSE of the AFGE is 0.196, which is smaller than
that of DFIR and DRHE. AFGE outperforms the DFIR using
the best constant horizon size. Thus, it is verified that AHG
improves the estimation performance of the DFIR.

Next, we consider the UAV navigation scenario with the
initial settings as in Section 5.1. Besides, we set the horizon
size of DFIR to Ξ[𝜆] = 12, according to the analysis in
Figure 4.The simulation results can be found in Figures 5 and
6.

Hereinto, Figure 5(a) reports the localization results
based on RSS/AOA relative measurement and the CPs of its
neighbors, while the related parameters are recorded in Fig-
ures 5(b) and 5(c). It is clear fromFigure 5(b) that the number
of received CPs in each step is greater than four, whichmeans
the observations are sufficient for the geometric localization
in three-dimension space [9]. One path of 𝜏(𝑡) is given in
Figure 5(c), based on which the optimal filter can be obtained
directly by using the scheme in Sections 3 and 4. As expected,
the localization result in Figure 5(a) demonstrates the validity
of the proposed AFGE algorithm and navigation scheme.

More specifically, Figures 6(a) and 6(b) present the
comparison of estimation results on location and velocity
errors, respectively. The estimators of DFIR in Section 3 and
DRHE [25] are chosen as the comparison with our proposed
AFGE algorithm.

As shown in the simulation results, the convergence
rate of the DRHE is faster than that of DFIR due to the
fact that DRHE adopts a distributed fusion structure in the
design of estimator; however, the convergence error of the
DFIR is smaller than that of DRHE, which is partly due to
its reorganization of delayed observations and is also due
to the design of DFIR considering the Markov jumping of
LOS/NLOS errors. Furthermore, the performance of AFGE
outperforms DRHE and DFIR; the reason can be owed to its
reorganization scheme for delayed observation on one hand
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Figure 5: Localization results comparison and the related parameters. (a) Localization trajectories based on DRHE, DFIR, and AFGE. (b)
Number of corresponding observable neighbors. (c) Random delay 𝜏(𝑡) ∈ {0, 1, 2, 3} and the transition of NOS/NLOS errors 𝛾(𝑡) ∈ {0, 1}.

and considering the Markov jumping of LOS/NLOS errors
on the other hand. Besides, the proposed AFGE also benefits
from the AHG policy, which can manage the horizon size,
thus acquiring the fastest convergence rate with the smallest
estimation error.

6. Conclusions and Discussions
In this paper, an adaptive horizon estimator has been
addressed to solve the state estimation of NNS with the fea-
tures of remote sensing complementary observations (RSOs)
under mixed LOS/NLOS environments. An adaptive finite-
horizon group estimator (AFGE) has been proposed, where
the horizon size can be adjusted in real time according to

stochastic parameters and randomdelays. First, a delay-aware
FIR (DFIR) estimator has been derived with observation
reorganization and complementary fusion strategies. Second,
an adaptive horizon group (AHG) policy has been proposed
to manage the horizon size. The AFGE algorithm is thus
realized by combining AHG policy and DFIR estimator. A
numerical simulation example has been used to demonstrate
the potential of the proposed approach to robust estimation
in terms of both performances and computational tractabil-
ity.

Future research will focus on other typical issues of NNS
in terms ofmultirate fusion problem and cooperative attitude
estimation problem.
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Figure 6: Performance comparison of estimation results between DRHE, DFIR, and AFGE. (a) Localization results. (b) Velocity results.
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