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The stabilization problem is investigated for a class of nonlinear discrete-time networked control systems (NCSs). Nonideal network
Quality of Services (QoS) are considered, more specifically data packet dropouts and network-induced delays. A state feedback
controller for a class of NCSs is proposed. Subsequently, an observer is designed to estimate the state space. Based on the Lyapunov-
Krasovskii functional, sufficient conditions (expressed in terms of LMIs) for the existence of a dynamic output feedback controller
are derived. The stabilization is achieved without mathematical transformations or fuzzy logic approximations and without state
space augmentation. Finally, illustrative examples are provided to show the effectiveness of the proposed method.

1. Introduction

Control systems in which control loops are closed via some
form of communication network are called networked con-
trol systems (NCSs) [1].

In the past few decades, increasing attention has been
focused on NCSs because of their great advantages over
traditional point to point networks, such as simplicity of
installation and maintenance, system flexibility, reduction of
the necessary budgets for wiring, several benefits of resources
sharing, easier expansion, and reliability improvement.

These advantages have givenNCSs great practical interest
and allowed their wide use in several industrial environ-
ments [2], such as unmanned aerial vehicles and automated
highway systems [3, 4], networks with mobile sensors [5],
haptic collaboration in Internet [6–8], and remote surgical
interventions [9], to name a few.

However, the incorporation of communication networks
in feedback control loops results in many new emerged
problems. Some factors, such as bandwidth constraints,
network-induced delays, quantization, and packet dropping

effects, may often degrade the performance of a NCS or even
cause instability of the feedback control loops. In order to
overcome the negative effects of such problems, modeling,
stability analysis, safety, security, and control design of NCSs
have drawn considerable attention in recent years (e.g., [10–
19] and the references therein).

Li et al. derived sufficient conditions for stability based
on linear matrix inequality (LMI) in [20], by choosing the
proper Lyapunov-Krasovskii functionals and using a descrip-
tormodel transformation of the system. By considering all the
possibilities of delays, an augmented state space model of the
closed-loop system, which characterizes all the delay cases,
was obtained in [21].

A control scheme which is constituted by a control
prediction generator and a network delay compensator was
proposed in [22]. In [23], Xiong and Lammodeled the closed-
loop system as new Markovian jump linear system with an
extended state space, by considering the time varying state
delay and the constant time delay in the mode signal.

A sufficient condition for exponential mean-square sta-
bility of the NCSs was obtained in [24], by designing an
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observer and an augmented model for NCSs, based on
Lyapunov stability theory with LMIs techniques.

The problem of the robust memoryless 𝐻
∞

controllers
for uncertain NCSs with the effects of both networked-
induced delay and data dropout was considered in [25].
A class of discrete-time networked nonlinear systems with
mixed random delays and packet dropouts was introduced
in [26], and the filtering problem was investigated. Sufficient
conditions for the existence of an admissible filter were
established, which ensured the asymptotical stability as well
as a prescribed𝐻

∞
performance.

In [27, 28], the logarithmic quantization scheme was
employed in the network-based information communica-
tion, and a reset state observer was introduced to suppress
sensor quantization effects. The extension of this method to
nonlinear NCS with both transmission delays and packet
dropouts could be very interesting.

In [29], the output tracking problem for sampled-data
nonlinear system was investigated using adaptive neural
network (NN) control. Then, considering the dynamics of
the overall closed-loop system, a nonlinear model predictive
control method was proposed to guarantee the stability
of the local nonlinear industrial system and compensate
the network-induced delays and packet dropouts. However,
the presented results are obtained through mathematical
transformations that transform the nonlinear system to a
linear one; thus the results are local and not global.

Since it has been proved that any smooth nonlinear
system can be approximated by a set of local linear systems
using the fuzzy model, increasing attention has been focused
on fuzzy controller techniques [30–33]. In [34], a stabilizing
controller design based on approximate discrete-timemodels
for nonlinear NCSs was developed.

Most papers in the literature deal only with one of the two
major problems in NCSs, packet dropouts or transmission
delays, while ignoring the other. The few papers that address
this issue concern mainly linear NCSs (in addition to [25,
26]; we may refer the reader to [22, 35, 36]). The fact that
relatively few papers discussed the stability analysis and
control synthesis of nonlinear discrete-time NCSs in the
simultaneous presence of network-induced delays and data
packet dropouts is one of themotivations of the present study.

As it can be noticed in the references above, most of
the papers that addressed the problem of control design for
NCS have mainly focused on two approaches: first, using
fuzzy approximations or mathematical transformations to
transform the original nonlinear system into a linear system
and second, augmenting the state space ofNCSwith network-
induced delays to obtain a system without delay.

Considering the observations above, the key contribu-
tions of this paper can be summarized as follows:

(1) The developed method can be considered as an
extension of the Jurdjevic-Quinn controller and the
passivity theory in nonlinear systems [37, 38] to this
class of nonlinear NCS.

(2) We focus on the stabilization of a discrete-time
nonlinear NCS dealing simultaneously with both

NCS negative effects, namely, packet dropouts and
transmission delays.

(3) In order to keep a low computation complexity, the
proposed method does not use any mathematical
transformations or fuzzy logic approximations, nor
does it augment the system state space.

(4) From an appropriate Lyapunov-Krasovskii func-
tional, sufficient conditions that guarantee the conver-
gence of the state variables and state estimation errors
to the origin are deduced and expressed in terms of
LMIs.

The outline of the paper is as follows: the problem formula-
tion and modeling are presented in Section 2. Section 3 deals
with state feedback stabilization. In Section 4, we introduce
the observer to estimate the state space. Section 5 is devoted
to the dynamic output feedback stabilization. Simulation
results are presented in Section 6 and concluding remarks are
given in Section 7.

2. Problem Formulation

A NCS structure as considered in the literature is presented
in Figure 1.

Consider a discrete nonlinear time-invariant delay system
in the following state space form:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐴
𝑑
𝑥
𝑘−ℎ

+ 𝑔 (𝑥
𝑘
) 𝑢
𝑘
,

𝑦
𝑘
= 𝐶𝑥
𝑘
,

(1)

where 𝑥
𝑘
∈ R𝑛, 𝑢

𝑘
∈ R𝑚, and 𝑦

𝑘
∈ R𝑞 denote the state,

input, and output vectors, respectively, at time instant 𝑘. 𝐴,
𝐴
𝑑
, and 𝐶

𝑑
are constant matrices of appropriate dimensions.

𝑔(𝑥
𝑘
) is a nonlinear map of appropriate dimension and ℎ

is a constant positive number representing the delay. For
simplicity of notations, we replace 𝑔(𝑥

𝑘
) by 𝑔

𝑘
in the rest of

the paper.
The control of a networked control system means that

communication will occur through the network from the
sensor to the controller and from the controller to the
actuator. So delay may occur in both communications: the
controller signal (ℎ

1
) and the measurement outputs (ℎ

2
).

Suppose that ℎ
1
< ℎ and ℎ

2
< ℎ.

A buffer is added into the acceptance port of the actuator
and another one in the acceptance port of the observer so
that the output delay and the control delay are changed into
a constant delay. Without loss of generality we consider that
the value of this constant delay is equal to the state delay ℎ.

The measurement data packet dropouts from the sensors
to the controller are modelled as Bernoulli process 𝜆

𝑘
with

the probability distribution as follows:

Prob {𝜆
𝑘
= 1} = 𝐸 {𝜆

𝑘
} = 𝜆,

Prob {𝜆
𝑘
= 0} = 1 − 𝐸 {𝜆

𝑘
} = 1 − 𝜆,

Var {𝜆
𝑘
) = 𝐸 {(𝜆

𝑘
− 𝜆)
2

} = 𝜆 (1 − 𝜆) = 𝜆,

(2)

where 𝜆
𝑘

= 1 means that the packet transmission will
be successful, 𝜆

𝑘
= 0 means that the packet will be lost,
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Figure 1: Structure of NCS.
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Figure 2: Structure of dynamic output feedback for NCS.

the positive constant 0 < 𝜆 < 1 is the probability of successful
packet transmission, and 𝜆 is the variance of 𝜆

𝑘
.

Since the system states are not measurable, we will use
an observer to estimate these states variables through the
measured system outputs. If the transmission of system
outputs to the observer through the network is successful,
then the data 𝑦(𝑘) will be used by the observer. Or, if the
output data is lost then the most recent delayed data 𝑦(𝑘 − ℎ)
will be used. Thus, the system output can be rewritten

𝑦
𝑐
(𝑘) = 𝜆𝑦 (𝑘) + (1 − 𝜆) 𝑦 (𝑘 − ℎ) . (3)

Similarly as for the output data, the controller signal can also
be delayed or lost through network, and then we have

𝑢 (𝑘) = 𝑢
𝑘
(𝑥
𝑘
, 𝑥
𝑘−ℎ

) = 𝜂𝑢
𝑐
(𝑥
𝑘
) + (1 − 𝜂) 𝑢

𝑐𝑑
(𝑥
𝑘−ℎ

) ; (4)

𝑢
𝑐
(𝑥
𝑘
) and 𝑢

𝑐𝑑
(𝑥
𝑘−ℎ

) will be detailed later (inTheorem 1). So,
the control data transfer from the controller to the actuator
is also modelled as Bernoulli process 𝜂

𝑘
with the probability

distribution as follows:

Prob {𝜂
𝑘
= 1} = 𝐸 {𝜂

𝑘
} = 𝜂,

Prob {𝜂
𝑘
= 0} = 1 − 𝐸 {𝜂

𝑘
} = 1 − 𝜂,

Var {𝜂
𝑘
} = 𝐸 {(𝜂

𝑘
− 𝜂)
2

} = 𝜂 (1 − 𝜂) = 𝜂,

(5)

where 𝜂
𝑘
= 1 when the packet is transferred successfully (in

real time), 𝜂
𝑘
= 0 when the packet is lost, the known positive

constant 0 < 𝜂 < 1 is the probability of packet successful
transmission, and 𝜂 is the variance of 𝜂

𝑘
.

As a result, we obtain the following networked control
system (shown in Figure 2):

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐴
𝑑
𝑥
𝑘−ℎ

+ 𝑔 (𝑥
𝑘
) 𝜂𝑢
𝑐
(𝑥
𝑘
)

+ 𝑔 (𝑥
𝑘
) (1 − 𝜂) 𝑢

𝑐𝑑
(𝑥
𝑘−ℎ

) ,

(6)

𝑦
𝑐
(𝑘) = 𝜆𝐶𝑥

𝑘
+ (1 − 𝜆)𝐶𝑥

𝑘−ℎ
. (7)

This approach takes account of both of the main problems
in NCSs, namely, data packet dropouts and network-induced
delays. Our approach considers that the data signal may
arrive in real time, or, if it is lost or delayed, the last signal
that arrived will be used after it is placed in the acceptance
buffer in order to have a signal with constant delay for all
measurement and control signals.

3. State Feedback Stabilization

Before proceeding, let us define the sets

Ω = {𝑥
𝑘
∈R
𝑛

: 𝑥
𝑇

𝑘
(𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴
𝑑
𝑀
−1

𝐴
𝑇

𝑑
𝑃𝐴) 𝑥

𝑘
= 0, 𝑘 = 0, 1, . . . } ,

𝑆1 = {𝑥
𝑘
∈R
𝑛

: 𝑔
𝑇

𝑘
𝑃𝐴𝑥
𝑘
= 0, 𝑘 = 0, 1, . . .} ,

𝑆2 = {𝑥
𝑘
∈R
𝑛

: 𝑔
𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ

= 0, 𝑘 = ℎ, ℎ + 1, . . .} ,

𝐻 = {𝑥
𝑘
∈R
𝑛

: 𝐴
𝑇

𝑑
𝑃𝐴𝑥
𝑘
− (𝑄 − 𝐴

𝑇

𝑑
𝑃𝐴
𝑑
) 𝑥
𝑘−ℎ

= 0, 𝑘 = ℎ, ℎ + 1, . . . } .

(8)

Theorem 1. Suppose that there exist an 𝑛 × 𝑛 positive-definite
matrix𝑃 and an 𝑛×𝑛 nonnegative-definite matrix𝑄, such that

[
𝑃 − 𝐴

𝑇

𝑃𝐴 − 𝑄 𝐴
𝑇

𝑃𝐴
𝑑

𝐴
𝑇

𝑑
𝑃𝐴 𝑀

] ≥ 0, (9)

where

𝑀 = 𝑄 − 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
> 0. (10)
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If Ω ∩ 𝑆1 ∩ 𝑆2 ∩ 𝐻 = {0}, then the nonlinear discrete-time
NCS (6) is globally asymptotically stabilized by the bounded-
state feedback (4), where

𝑢
𝑐
(𝑥
𝑘
) = −𝛼

1
[𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
]
−1 𝑔

𝑇

𝑘
𝑃𝐴𝑥
𝑘

1 +
𝑔
𝑇

𝑘
𝑃𝐴𝑥
𝑘



,

𝑢
𝑐𝑑
(𝑥
𝑘−ℎ

) = −𝛼
2
[𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
]
−1 𝑔

𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ

1 +
𝑔
𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ



,

(11)

(for any 0 < 𝛼
1
< 1 and 0 < 𝛼

2
< 1).

Proof. Set

𝛾
1
=

𝛼
1
∗ 𝜂

1 +
𝑔
𝑇

𝑘
𝑃𝐴𝑥
𝑘



,

𝛾
2
=

𝛼
2
∗ (1 − 𝜂)

1 +
𝑔
𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ



;

(12)

then, the control bounded-state feedback can also be written

𝑢
𝑘
= 𝑢 (𝑘) = −𝛾

1
𝐾
1
𝑥
𝑘
− 𝛾
2
𝐾
2
𝑥
𝑘−ℎ

. (13)

To show the stability of the closed-loop system (6)–(13), we
consider the following Lyapunov-Krasovskii functional:

𝑉
𝑘
= 𝑥
𝑇

𝑘
𝑃𝑥
𝑘
+

𝑘−1

∑

𝑖=𝑘−ℎ

𝑥
𝑇

𝑖
𝑄𝑥
𝑖
. (14)

Notice that, since 𝑃 is positive definite and 𝑄 nonnegative
definite, 𝑉

𝑘
is then positive definite.

The difference of this Lyapunov-Krasovskii functional
along the trajectory of the closed-loop (6)–(13) is given by

Δ𝑉
𝑘
= 𝑥
𝑇

𝑘+1
𝑃𝑥
𝑘+1

+ 𝑥
𝑇

𝑘
𝑄𝑥
𝑘
− 𝑥
𝑇

𝑘
𝑃𝑥
𝑘
− 𝑥
𝑇

𝑘−ℎ
𝑄𝑥
𝑘−ℎ

. (15)

Using (6) and (13) and after some matrix manipulations, we
get

Δ𝑉
𝑘
= 𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄] 𝑥
𝑘

+ 2𝑥
𝑇

𝑘
𝐴
𝑇

𝑃 [𝐴
𝑑
− 𝛾
2
𝑔
𝑘
𝐾
2
] 𝑥
𝑘−ℎ

− 𝑥
𝑘−ℎ

𝑀𝑥
𝑘−ℎ

− 2𝛾
1
𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
2

1
𝑥
𝑇

𝑘
𝐴𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
1
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
1
𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

+ 𝛾
2

2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

− 𝑢
𝑇

𝑘
𝑢
𝑘
,

(16)

with𝑀 = 𝑄 − 𝐴
𝑇

𝑑
𝑃𝐴
𝑑
.

Adding and subtracting 𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴𝑥
𝑘
to and

from inequality (16), we have

Δ𝑉
𝑘
= 𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴] 𝑥
𝑘

− 2𝛾
1
𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
2

1
𝑥
𝑇

𝑘
𝐴𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
1
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
1
𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

+ 𝛾
2

2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

− 𝑢
𝑇

𝑘
𝑢
𝑘

+ 2𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝐴𝑥
𝑘−ℎ

− 𝑥
𝑘−ℎ

𝑀𝑥
𝑘−ℎ

− 𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴𝑥
𝑘
,

(17)

where 𝐴 = 𝐴
𝑑
− 𝛾
2
𝑔
𝑘
𝐾
2
. Furthermore

Δ𝑉
𝑘
= 𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴] 𝑥
𝑘

− 2𝛾
1
𝑥
𝑇

𝑘
𝐴
𝑇

𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
2

1
𝑥
𝑇

𝑘
𝐴𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
1
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘
+ 𝛾
1
𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
1
𝑥
𝑘

− 2𝛾
2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑇

𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

+ 𝛾
2

2
𝑥
𝑇

𝑘−ℎ
𝐴
𝑑
𝑃𝑔
𝑘
𝐾
2
𝑥
𝑘−ℎ

− 𝑢
𝑇

𝑘
𝑢
𝑘

− [𝑀
−1/2

𝐴
𝑇

𝑃𝐴𝑥
𝑘
−𝑀
1/2

𝑥
𝑘−ℎ

]
𝑇

⋅ [𝑀
−1/2

𝐴
𝑇

𝑃𝐴𝑥
𝑘
−𝑀
1/2

𝑥
𝑘−ℎ

] .

(18)

Since 0 < 𝜂 < 1, 0 < 𝛼
1
< 1, and 0 < 𝛼

2
< 1, we have

2𝛾
1
> 𝛾
2

1
,

2𝛾
1
> 𝛾
1
𝛾
2
,

2𝛾
2
> 𝛾
2

2
.

(19)

Then, from (18), we obtain the following inequality:

Δ𝑉
𝑘
≤ 𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴] 𝑥
𝑘
. (20)

A sufficient condition to have Δ𝑉
𝑘
≤ 0 is

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴 ≤ 0. (21)

Let us compute 𝐴

𝐴 = 𝐴
𝑑
− 𝛾
2
𝑔
𝑘
𝐾
2
,

𝐴 = 𝐴
𝑑
− 𝛾
2
𝑔
𝑘
(𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
)
−1

𝑔
𝑇

𝑘
𝑃𝐴
𝑑
,

𝐴 = (𝐼 − 𝛾
2
𝑔
𝑘
(𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
)
−1

𝑔
𝑇

𝑘
𝑃)𝐴
𝑑
,

𝐴 = 𝑃
−1

(𝑃 − 𝑃𝛾
2
𝑔
𝑘
(𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
)
−1

𝑔
𝑇

𝑘
𝑃)𝐴
𝑑
.

(22)
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Since 𝑃 − 𝑃𝛾
2
𝑔
𝑘
(𝐼 + 𝑔

𝑇

𝑘
𝑃𝑔
𝑘
)
−1

𝑔
𝑇

𝑘
𝑃 ≤ 𝑃 we conclude that

𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴𝑀
−1

𝐴
𝑇

𝑃𝐴

≤ 𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴
𝑑
𝑀
−1

𝐴
𝑇

𝑑
𝑃𝐴.

(23)

So, if the LMI (9) is verified, then

Δ𝑉
𝑘
= 𝑉
𝑘+1

− 𝑉
𝑘
≤ 0. (24)

This proves that the closed loop (6)–(13) is Lyapunov stable.
To show the asymptotic stability of the origin, it suffices to
show that the largest subset of Δ𝑉

𝑘
= 0 invariant under

closed-loop dynamics is {0}.
Setting Δ𝑉

𝑘
= 0, it follows from (18) that

𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴
𝑑
𝑀
−1

𝐴
𝑇

𝑑
𝑃𝐴] 𝑥

𝑘
= 0, (25)

𝑔
𝑇

𝑘
𝑃𝐴𝑥
𝑘
= 0, (26)

𝑔
𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ

= 0, (27)

𝑀
−1/2

𝐴
𝑇

𝑑
𝑃𝐴𝑥
𝑘
−𝑀
1/2

𝑥
𝑘−ℎ

= 0, (28)

𝑢 (𝑘) = 0. (29)

Using (29), (25), (26), (27), and (28) become

𝑥
𝑇

𝑘
[𝐴
𝑇

𝑃𝐴 − 𝑃 + 𝑄 + 𝐴
𝑇

𝑃𝐴
𝑑
𝑀
−1

𝐴
𝑇

𝑑
𝑃𝐴] 𝑥

𝑘
= 0,

𝑔
𝑇

𝑘
𝑃𝐴𝑥
𝑘
= 0,

𝑔
𝑇

𝑘
𝑃𝐴
𝑑
𝑥
𝑘−ℎ

= 0,

𝐴
𝑇

𝑑
𝑃𝐴𝑥
𝑘
− (𝑄 − 𝐴

𝑇

𝑑
𝑃𝐴
𝑑
) 𝑥
𝑘−ℎ

= 0.

(30)

Thus, we can conclude from the assumption

Ω ∩ 𝑆1 ∩ 𝑆2 ∩ 𝐻 = {0} (31)

that

Δ𝑉 (𝑥
𝑘
) = 0, (32)

for

𝑘 = 0, 1, . . . , (33)

implies

𝑥
𝑘
≡ 0. (34)

The asymptotic stability is, then, proved because all the
conditions of LaSalle’s invariance principle are verified.

Therefore, the origin is an asymptotically stable equilib-
rium of the closed-loop system (6)–(13) since 𝑉(𝑥

𝑘
) → ∞

as ‖𝑥
𝑘
‖ → ∞.

4. Observer Design

In this section a simple and a useful observer design, without
state augmentation, for a nonlinear discrete-timeNCSwill be
given.

Theorem 2. Suppose that the function 𝑔
𝑘
is globally Lipschitz

on R𝑛×𝑛 with a Lipschitz constant 𝛽; that is


𝑔 (𝑥
1

𝑘
) − 𝑔 (𝑥

2

𝑘
)

≤ 𝛽


𝑥
1

𝑘
− 𝑥
2

𝑘


. (35)

If there exists an 𝑛 × 𝑛 positive-definite matrix 𝑆, and an 𝑛 × 𝑛
nonnegative-definite matrix 𝐹, the following LMI holds:

[
[
[
[
[
[

[

Π
1
Π
2

−𝜆𝐶
𝑇

𝐿
𝑇

𝑆 0

∗ Π
3
(1 − 𝜆) 𝐶

𝑇

𝐿
𝑇

𝑆 (1 − 𝜆) 𝐶
𝑇

𝐿
𝑇

𝑆

∗ ∗ 𝑆 0

∗ ∗ ∗ 𝑆

]
]
]
]
]
]

]

≥ 0, (36)

where

Π
1
= 𝑆 − 𝐴

𝑇

𝑆𝐴 − 𝐹 + 𝐼 + 𝜆𝐴
𝑇

𝑆𝐿𝐶 + 𝜆𝐶
𝑇

𝐿
𝑇

𝑆𝐴,

Π
2
= 𝐴
𝑇

𝑆𝐴
𝑑
− (1 − 𝜆)𝐴

𝑇

𝑆𝐿𝐶 − 𝜆𝐶
𝑇

𝐿
𝑇

𝑆𝐴
𝑑
,

Π
3
= 𝐹 − 2𝐴

𝑇

𝑑
𝑆𝐴
𝑑
+ 2 (1 − 𝜆)𝐴

𝑇

𝑑
𝑆𝐿𝐶

+ 2 (1 − 𝜆) 𝐶
𝑇

𝐿
𝑇

𝑆𝐴
𝑑
.

(37)

Then, the following observer,

𝜉
𝑘+1

= 𝐴𝜉
𝑘
+ 𝐴
𝑑
𝜉
𝑘−ℎ

+ 𝑔 (𝜉
𝑘
) 𝑢 (𝑘)

+ 𝐿 [𝑦
𝑐
(𝑘) − 𝜆𝐶𝜉

𝑘
− (1 − 𝜆)𝐶𝜉

𝑘−ℎ
] ,

(38)

is an asymptotic observer for system (6) and (7).

Proof. Let

𝑒
𝑘
= 𝑥
𝑘
− 𝜉
𝑘
; (39)

then,

𝑒
𝑘+1

= (𝐴 − 𝜆𝐿𝐶) 𝑒
𝑘
+ (𝐴
𝑑
− (1 − 𝜆) 𝐿𝐶) 𝑒

𝑘−ℎ

+ [𝑔 (𝑥
𝑘
) − 𝑔 (𝜉

𝑘
)] 𝑢 (𝑘) .

(40)

Let𝐴 = 𝐴−𝜆𝐿𝐶,𝐴 = 𝐴
𝑑
− (1−𝜆)𝐿𝐶, and 𝜙 = 𝑔(𝑥

𝑘
) −𝑔(𝜉

𝑘
).

The Lyapunov-Krasovskii functional is given by

𝑊
𝑘
= 𝑒
𝑇

𝑘
𝑆𝑒
𝑘
+

𝑘−1

∑

𝑖=𝑘−ℎ

𝑒
𝑇

𝑖
𝐹𝑒
𝑖
; (41)

then,

Δ𝑊
𝑘
= 𝑊
𝑘+1

−𝑊
𝑘
,

= 𝑒
𝑇

𝑘+1
𝑆𝑒
𝑘+1

+ 𝑒
𝑇

𝑘
𝐹𝑒
𝑘
− 𝑒
𝑇

𝑘
𝑆𝑒
𝑘
− 𝑒
𝑇

𝑘−ℎ
𝐹𝑒
𝑘−ℎ

;

(42)
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or, equivalently,

Δ𝑊
𝑘
= 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹] 𝑒
𝑘
+ 𝑒
𝑇

𝑘−ℎ
[𝐴
𝑇

𝑆𝐴 − 𝐹] 𝑒
𝑘−ℎ

+ 𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘) + 𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘)

+ 𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝐴𝑒
𝑘
+ 𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

+ 𝑒
𝑇

𝑘−ℎ
𝐴
𝑇

𝑆𝐴𝑒
𝑘
+ 𝑒
𝑇

𝑘−ℎ
𝐴
𝑇

𝑆𝜙𝑢 (𝑘)

+ 𝑢 (𝑘)
𝑇

𝜙𝑆
𝑇

𝐴𝑒
𝑘−ℎ

;

(43)

then,

Δ𝑊
𝑘
= 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹] 𝑒
𝑘
+ 𝑢 (𝑘)

𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘)

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) − 𝑒
𝑇

𝑘−ℎ
𝑀1𝑒
𝑘−ℎ

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

+ 2𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝐴𝑒
𝑘−ℎ

,

(44)

with𝑀1 = 𝐹 − 𝐴
𝑇

𝑆𝐴.
Since 2𝑧𝑇𝐷𝑦 ≤ 𝑧𝑇𝐷𝑧 + 𝑦𝑇𝐷𝑦, we have

Δ𝑊
𝑘
≤ 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹] 𝑒
𝑘
+ 𝑢 (𝑘)

𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘)

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) − 𝑒
𝑇

𝑘−ℎ
𝑀1𝑒
𝑘−ℎ

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

+ 𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘)

+ 𝑒
𝑇

𝑘−ℎ
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

;

(45)

then,

Δ𝑊
𝑘
≤ 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹] 𝑒
𝑘

+ 𝑢 (𝑘)
𝑇

(𝜙
𝑇

𝑆𝜙 + 𝜙
𝑇

𝑆𝜙) 𝑢 (𝑘)

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) − 𝑒
𝑇

𝑘−ℎ
(𝑀1 − 𝐴

𝑇

𝑆𝐴) 𝑒
𝑘−ℎ

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

,

(46)

or

Δ𝑊
𝑘
≤ 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹] 𝑒
𝑘
+ 2𝑢 (𝑘)

𝑇

𝜙
T
𝑆𝜙𝑢 (𝑘)

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) − 𝑒
𝑇

𝑘−ℎ
𝑁𝑒
𝑘−ℎ

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑒
𝑘−ℎ

,

(47)

with𝑁 = 𝑀1 − 𝐴
𝑇

𝑆𝐴 = 𝐹 − 2𝐴
𝑇

𝑆𝐴.
Adding and subtracting 𝑒𝑇

𝑘
𝐴
𝑇

𝑆𝐴𝑁
−1

𝐴
𝑇

𝑆𝐴𝑒
𝑘
, we have

Δ𝑊
𝑘
≤ 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹 + 𝐴
𝑇

𝑆𝐴𝑁
−1

𝐴
𝑇

𝑆𝐴] 𝑒
𝑘

+ 2𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘) + 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘)

− [𝑁
−1/2

𝐴
𝑇

𝑆𝐴𝑒
𝑘
− 𝑁
1/2

𝑒
𝑘−ℎ

]
𝑇

⋅ [𝑁
−1/2

𝐴
𝑇

𝑆𝐴𝑒
𝑘
− 𝑁
1/2

𝑒
𝑘−ℎ

] .

(48)

This, in turn, implies that

Δ𝑊
𝑘
≤ 𝑒
𝑇

𝑘
[𝐴
𝑇

𝑆𝐴 − 𝑆 + 𝐹 + 𝐴
𝑇

𝑆𝐴𝑁
−1

𝐴
𝑇

𝑆𝐴] 𝑒
𝑘

+ 2𝑢 (𝑘)
𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘) + 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) .

(49)

Using the LMI (36), we have

Δ𝑊
𝑘
≤ −𝑒
𝑇

𝑘
𝑒
𝑘
+ 2𝑢 (𝑘)

𝑇

𝜙
𝑇

𝑆𝜙𝑢 (𝑘) + 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆𝜙𝑢 (𝑘) , (50)

or

Δ𝑊
𝑘
< −𝑒
𝑇

𝑘
𝑒
𝑘
+ 2𝑢 (𝑘)

𝑇

[𝑔 (𝑥
𝑘
) − 𝑔 (𝜉

𝑘
)]
𝑇

⋅ 𝑆 [𝑔 (𝑥
𝑘
) − 𝑔 (𝜉

𝑘
)] 𝑢 (𝑘)

+ 2𝑒
𝑇

𝑘
𝐴
𝑇

𝑆 [𝑔 (𝑥
𝑘
) − 𝑔 (𝜉

𝑘
)] 𝑢 (𝑘) .

(51)

From the Lipschitz condition of𝑔(⋅) and the boundness of the
state feedback 𝑢(𝑘) (𝑢(𝑘) < 𝛼 = 𝛼

1
+ 𝛼
2
), we deduce that

Δ𝑊
𝑘

< −
𝑒𝑘



2

(1 − 2𝛼
2

𝛽
2

‖𝑆‖ − 2𝛼𝛽 ‖(𝐴 − 𝜆𝐿𝐶) 𝑆‖) ,

(52)

where 𝛽 is the Lipschitz constant associated with 𝑔(⋅).
Obviously it is possible to choose 𝛼 > 0 sufficient small

so that for some 𝜃, 0 < 𝜃 < 1

Δ𝑊
𝑘
= 𝑊
𝑘+1

−𝑊
𝑘
< −𝜃𝑒

𝑇

𝑘
𝑆𝑒
𝑘
; (53)

then, we ensure the global asymptotic stability of system (40).
We can conclude also that

𝑒𝑘
 ≤ 𝜎, for 𝑘 = 1, 2, 3, . . . , 𝜎 > 0. (54)

5. Dynamic Output Feedback

Theorem 3. Under assumption that Ω ∩ 𝑆1 ∩ 𝑆2 ∩ 𝐻 = {0}

and if the LMI (9) is verified, then a nonlinear discrete-time
NCS (6) and (7) can be globally asymptotically stabilized by
the dynamic compensator (38) with the control input

𝑢 (𝑘) = 𝑢
𝑘
(𝜉
𝑘
, 𝜉
𝑘−ℎ

) , (55)

defined as in (4) and (11) for a sufficient small 𝛼 > 0 (𝛼 =

𝛼
1
+ 𝛼
2
). 𝑔(𝜉) is globally Lipschitz and 𝐿 is such that the LMI

(36) is verified.

Proof. By Theorem 1, for a given positive matrix 𝐵, the
following inequality,
𝐴𝜉𝑘 + 𝐴𝑑𝜉𝑘−ℎ + 𝑔 (𝜉𝑘) 𝑢 (𝑘)



2

𝐵
≤
𝜉𝑘



2

𝐵
,

𝑘 = 1, 2, 3, . . . ,

(56)

is satisfied.
Without loss of generality, let 𝐵 = 𝐼 in (56). We deduce

from (38), (40), and (56) that
𝜉𝑘+1

 ≤
𝐴𝜉𝑘 + 𝐴𝑑𝜉𝑘−ℎ + 𝑔 (𝜉𝑘) 𝑢 (𝑘)

 +
𝐿𝐶𝑑𝑒𝑘−ℎ



≤
𝜉𝑘

 + 𝜎 ≤ ⋅ ⋅ ⋅ ≤
𝜉0

 + 𝜎.

(57)
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Inequalities (54) and (57) allow us to conclude that all
trajectories of the closed-loop system (38)–(40) are bounded.

Now, we consider that (𝑒
𝑘
, 𝜉
𝑘
) is a trajectory of system

(38)–(40) with the initial value (𝑒
0
, 𝜉
0
).

Let 𝑚𝑜 denote its 𝜔-limit set. It is clear that 𝑚𝑜

is nonempty, compact, and invariant because (𝑒
𝑘
, 𝜉
𝑘
) is

bounded for 𝑘 = 1, 2, 3, . . .. In addition, we conclude from
Theorem 2 that lim

𝑘→∞
𝑒(𝑘) = 0.

Then, any point in 𝑚𝑜 must be of the form (0, 𝜉
𝑘
). Let

(0, 𝜉) ∈ 𝑚𝑜 and (0, 𝜉
𝑘
) be the corresponding trajectory. This

trajectory is described by the following equation:

𝜉
𝑘+1

= 𝐴𝜉
𝑘
+ 𝐴
𝑑
𝜉
𝑘−ℎ

+ 𝑔 (𝜉
𝑘
) 𝑢
𝑘
. (58)

We already proved that this trajectory is globally asymptoti-
cally stable at 𝜉 = 0. This means that the global asymptotic
behavior of the closed-loop system (38)–(40) at (𝑒, 𝜉) =

(0, 0) is determined by the flow on the invariant manifold
governed by system (58) [39]. Since this last system is globally
asymptotically stable, so is the closed-loop system (38)–
(40).

Remark 4. The obtained results can be applied to a system of
the form:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
1

𝑘
+ 𝑔 (𝑥

𝑘
) 𝑢
2

𝑘
, (59)

where

𝑢
1

𝑘
= 𝐾𝑥
𝑘−ℎ

. (60)

Remark 5. Compared with other approaches in the literature,
note the following:

(1) The approach proposed in this paper has the advan-
tage of taking into account the twomajor problems in
the NCS, namely, data packet dropouts and network-
induced delays, from both the sensor-to-controller
and the controller-to-actuator.

(2) In the NCS literature, as mentioned in the introduc-
tion, a significant method for the stability analysis
is the state augmentation. This approach reduce the
closed-loop stability problem to the analysis of a finite
dimensional time varying system by augmenting
the system model to include delayed variables (past
values of plant state, input, or output) as additional
states which allow obtaining an augmented delay-
free system. In the method we developed, the state
space was not augmented. This allows to not increase
the computational complexity, especially for large
systems.

6. Illustrative Examples

In this section, two examples are provided to illustrate the
results developed in this paper. The first example is a numer-
ical illustration of the applicability and the effectiveness of
the proposed method. The second example is a well known
practical example in nonlinear filed, that is, the inverted
pendulum system.

6.1. Example 1. Consider system (6) and (7) with the follow-
ing matrices:

𝐴 = [

0.73624 0.0452

0.0915 0.4462
] ,

𝐴
𝑑
= [

0.2456 0.0151

0.0305 0.1487
] ,

𝑔 (𝑥
𝑘
) = (

𝑔
1
(𝑥
𝑘
)

𝑔
2
(𝑥
𝑘
)
) ,

(61)

where

𝑔
1
(𝑥
𝑘
) =

𝑥
1
(𝑘)

1 + 𝑥
2

1
(𝑘) + 𝑥

2

2
(𝑘)

,

𝑔
2
(𝑥
𝑘
) =

𝑥
2
(𝑘)

1 + 𝑥
2

1
(𝑘) + 𝑥

2

2
(𝑘)

,

𝐶 = [1 0] ,

(62)

with

𝑥
0
= (

−3.5

2.8
) ,

𝜉
0
= (

2.5

−2.3
) ,

(63)

and delay ℎ = 4.
Resolution of the LMI (9) gives

𝑃 = [

614.0062 −48.2905

−48.2905 456.6416
] ,

𝑄 = [

162.4833 −41.6186

−41.6186 212.3097
] .

(64)

And resolution of the LMI (36) gives the following results:

𝑆 = [

2.2751 −0.0006

−0.0006 2.2766
] ,

𝐹 = [

1.8578 −0.0200

−0.0200 1.6645
] .

(65)

We obtain then an observer gain

𝐿 = (

0.0248

0.0186
) . (66)

Verification of the assumption Ω ∩ 𝑆1 ∩ 𝑆2 ∩ 𝐻 = {0} shows
that the only point of intersection is 0.

Applying the control law (55) with the observer (38), with
𝜆 = 0.5 and 𝜂 = 0.5, we ensure, as shown in Figures 3–6,
the decrease of the Lyapunov-Krasovskii functionals (14) and
(41) and that (𝑥, 𝑒) = (0, 0) is a globally asymptotically stable
equilibrium of (38)–(40).
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Figure 3: 𝑉(𝑥
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) with respect to sampling time 𝑘.

This numerical example illustrate how the developed
method is simple to be implemented and the practical appli-
cability of LMI conditions (9) and (36) in the stabilization of
this class ofNCS.We can see on the figures that the systemhas
been effectively stabilized by the designed dynamic output
feedback controller.

6.2. Example 2. In this example, the inverted pendulum is
used to emphasize the applicability of the proposed results.
Consider the model of the inverted pendulum presented in
[40]

(

̇𝜃

�̇�

�̇�

V̇

)=

[
[
[
[
[
[
[
[

[

0 1 0 0

((𝑀 + 𝑚) ⋅ 𝑔)

(𝑀 ⋅ 𝑙)
0 0 0

0 0 0 1

−
(𝑚 ⋅ 𝑔)

𝑀
0 0 0

]
]
]
]
]
]
]
]

]

(

𝜃

𝜔

𝑥

V

)

+

[
[
[
[
[
[
[
[
[

[

0

−
1

(𝑀 ∗ 𝑙)

0

1

𝑀

]
]
]
]
]
]
]
]
]

]

𝑢 (𝑡) ,

(67)

where 𝑀 = 2 kg, 𝑚 = 0.1 kg, 𝑙 = 0.5m, and 𝑔 = 9.81m/s.
The system is sampled with the sampling period 𝑇 = 20ms
and a digital state feedback control that is affected by delays:

𝑢 (𝑡) = 𝐾𝑥 (𝑘 − 𝜏) , ∀𝑡 ∈ [𝑘𝑇, (𝑘 + 1) 𝑇] , (68)
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Figure 5: 𝑥
1
(𝑘) and 𝜉

1
(𝑘) with respect to sampling time 𝑘.
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Figure 6: 𝑥
2
(𝑘) and 𝜉

2
(𝑘) with respect to sampling time 𝑘.

where

𝐾 = [56 12 0.45 1.4] . (69)

For simulation we add a second input channel of the form
𝑢
2

𝑘
= 𝑔(𝑥

𝑘
)𝑢
𝑘
. The resulting system is of the form (6).

Let

𝑔 (𝑥
𝑘
) = (

𝑔
1
(𝑥
𝑘
)

𝑔
2
(𝑥
𝑘
)

𝑔
3
(𝑥
𝑘
)

𝑔
4
(𝑥
𝑘
)

) , (70)

where

𝑔
1
(𝑥
𝑘
) =

𝑥
1
(𝑘)

1 + 𝑥
2

1
(𝑘) + 𝑥

2

2
(𝑘)

,

𝑔
2
(𝑥
𝑘
) =

𝑥
2
(𝑘)

1 + 𝑥
2

1
(𝑘) + 𝑥

2

2
(𝑘)

,

𝑔
3
(𝑥
𝑘
) =

𝑥
3
(𝑘)

1 + 𝑥
2

3
(𝑘) + 𝑥

2

4
(𝑘)

,

𝑔
4
(𝑥
𝑘
) =

𝑥
4
(𝑘)

1 + 𝑥
2

3
(𝑘) + 𝑥

2

4
(𝑘)

,

𝐶 = [1 0 1 0]

(71)
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with

𝑥
0
=(

−2.4

−1.8

2

2.8

) ,

𝜉
0
=(

1.5

1.8

−2.2

−1.7

)

(72)

and the delay ℎ = 5.
Solving the LMIs (9) and (36), we obtain

𝑃 =

[
[
[
[
[

[

31.2711 0.8623 1.9844 1.4253

0.8623 45.9557 −0.1260 4.3524

1.9844 −0.1260 17.4690 0.2475

1.4253 4.3524 0.2475 37.3286

]
]
]
]
]

]

,

𝑄 =

[
[
[
[
[

[

11.2285 0.5903 1.1660 1.6855

0.5903 9.6467 0.0033 1.1667

1.1660 0.0033 10.9369 0.2660

1.6855 1.1667 0.2660 12.2965

]
]
]
]
]

]

,

𝑆 =

[
[
[
[
[

[

11.1095 −0.4943 −0.0174 0.4746

−0.4943 16.8389 −0.6588 1.1418

−0.0174 −0.6588 5.8880 0.0581

0.4746 1.1418 0.0581 12.4568

]
]
]
]
]

]

,

𝐹 =

[
[
[
[
[

[

4.5491 0.6204 0.6320 1.1922

0.6204 2.9264 0.0878 0.7341

0.6320 0.0878 2.9112 0.2304

1.1922 0.7341 0.2304 3.6032

]
]
]
]
]

]

,

𝐿 = (

0.0712

0.1144

0.0466

0.0348

) .

(73)

For this example also, it can be seen that the verification of
the assumptionΩ∩ 𝑆1 ∩ 𝑆2 ∩𝐻 = {0} indicates that the only
possible point of intersection is 0.

The nonlinear discrete-time system was simulated using
the developed dynamic output feedback controller (55).
Simulation results illustrated in Figures 7–12 show that the
closed-loop system is stable.

The above illustrative examples show that the dynamic
output feedback we proposed is effective in controlling this
class of nonlinear NCS.

Remark 6. Since the robustness of data-based control is
extremely important, recent interesting results on control and

15 20 25 30 35 40 4510
k

0
50
100
150
200
250
300
350
400
450
500

V
(x

k
)

Figure 7: 𝑉(𝑥
𝑘
) with respect to sampling time 𝑘.
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Figure 8:𝑊(𝑒
𝑘
) with respect to sampling time 𝑘.
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Figure 9: 𝑥
1
(𝑘) and 𝜉

1
(𝑘) with respect to sampling time 𝑘.
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Figure 10: 𝑥
2
(𝑘) and 𝜉

2
(𝑘) with respect to sampling time 𝑘.

monitoring in the data-based techniques [41–44] could be
further studied and integrated into the proposed dynamic
output feedback control scheme to achieve more promising
results from a practical point of view.
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7. Conclusion

This paper investigated the stabilization problem of a class
of discrete-time nonlinear NCS with simultaneous consider-
ation of network-induced delays and data packet dropouts.
A state feedback that guarantees the convergence of the
state space to the origin was presented. Then, we presented
an observer that estimates the state variables of this class
of systems. A dynamic output feedback that stabilizes this
class of nonlinear NCS was also achieved. LMI sufficient
conditions to characterize the state feedback controller, the
observer, and dynamic output feedback have been developed.
The developed method can be considered as an extension of
Jurdjevic Quinn theory and the passivity theory for nonlinear
systems to this class of nonlinear NCS. Finally, two examples
have been presented to demonstrate the effectiveness of the
proposed method. Future work would attempt to extend the
developedmethod to a class of nonlinearNCSwith nonlinear
free dynamics.
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