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An effective fault diagnosis method for induction motors is proposed in this paper to improve the reliability of motors using a com-
bination of entropy feature extraction, mutual information, and support vector machine. Sample entropy and multiscale entropy are
used to extract the desired entropy features from motor vibration signals. Sample entropy is used to estimate the complexity of the
original time series while multiscale entropy is employed to measure the complexity of time series in different scales. The entropy
features are directly extracted from the nonlinear, nonstationary induction motor vibration signals which are then sorted by using
mutual information so that the elements in the feature vector are ranked according to their importance and relevant to the faults. The
first five most important features are selected from the feature vectors and classified using support vector machine. The proposed
method is then employed to analyze the vibration data acquired from a motor fault simulator test rig. The classification results con-
firm that the proposed method can effectively diagnose various motor faults with reasonable good accuracy. It is also shown that the
proposed method can provide an effective and accurate fault diagnosis for various induction motor faults using only vibration data.

1. Introduction

Induction motors are one of the most critical machine
components in industry today. A breakdown of the motor can
lead to the shutdown of a whole production line and results
in expensive downtime. It is thus important to have a reliable
condition monitoring (CM) and fault diagnosis system in
place to continuously monitor the healthy condition of such
machine components. Early fault detection of the motor can
increase the machine performance and availability, reduce
the consequential damage, prolong the machine useful lifes-
pan, reduce spare parts inventories, prevent unexpected
breakdown, and ensure timely maintenance schedules [1].
Induction motor fault diagnosis has attracted considerable
attention from researchers in recent years.

Table1 summarizes the most typical faults and their
occurrence possibilities of induction motors from the sta-
tistical studies conducted by the Institute of Electrical and

Electronics Engineers (IEEE) and by Electric Power Research
Institute (EPRI) through General Electric Corporation [2].
The study identified that faulty bearings are the most com-
mon induction motor fault (representing more than 40% of
motor faults). This is followed by the stator fault (over 28%),
rotor fault (over 8%), and other unspecified faults (more than
12%).

Several CM techniques such as vibration analysis, acous-
tic analysis [3], motor current signature analysis [4-7],
electromagnetic field monitoring [8], chemical analysis, and
temperature analysis [9, 10] have been developed in the last
two decades for the detection and diagnosis of the induction
motor faults. Vibration technique is one of the most fre-
quently employed techniques for motor faults detection due
to its ease of use, high accuracy, and reliability. Nevertheless,
vibration signals from induction motors are usually nonlinear
and nonstationary and have weak signal energies. Traditional



TaBLE 1: Typical induction motor faults and the corresponding
occurrence possibilities.
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frequency domain analysis techniques such as fast Fourier
transform (FFT) are thus not suitable to be directly employed
for the analysis of motor vibration signals. To overcome this
problem, other data analysis techniques such as short time
Fourier transform, wavelet transform, and Hilbert-Huang
transform (HHT) techniques as well as artificial intelligent
techniques such as neural network have been developed.
For instance, Talhaoui et al. [11] used a combined FFT and
discrete wavelet transform (DWT) technique to evaluate
faults due to broken rotor bars of an induction motor. Roveri
et al. [12, 13] proposed a HHT-based method for damage
detection of a bridge structure under moving loads. EMD
technique, the main functionality of HHT, has attracted great
attention in recent years and has been widely employed for
fault diagnosis of rotating machinery. EMD technique still
has several shortcomings though such as mode mixing and
the end effect. To alleviate the mode mixing problem, an
improved method, ensemble empirical mode decomposition
(EEMD), was developed [14], which has been successfully
employed by Lei et al. [15] for fault diagnosis of rotating
machinery. On the other hand, Liang et al. [16] used a combi-
nation of power spectrum, cepstrum, bispectrum, and neural
network for the data analysis and fault diagnosis of induction
motors. Seera et al. [17] employed a hybrid computer model
comprising a Fuzzy Min-Max (FMM) neutral network and a
Classification and Regression Tree (CART).

Entropy, a measure of the uncertainty of a process [18]
which was first applied in thermodynamics, has been suc-
cessfully employed to analyze the physiological, biological,
and electrocardiogram signals [19]. Lin et al. [20] utilized a
multiscale entropy method combining with wavelet denois-
ing to detect a motor shaft misalignment. Zheng et al. [21]
developed a rolling bearing fault diagnosis method based
on local characteristic-scale decomposition (LCD) and fuzzy
entropy (FuzzyEn). Zhu et al. [22] proposed a feature extrac-
tion method based on hierarchical entropy (HE) to effectively
identify various faulty bearing conditions. Sample entropy
(SampEn) and multiscale entropy (MSE) were introduced in
their paper to extract features from the vibration data.

The variation of parameters used in the entropy algo-
rithms can lead to redundant entropy features causing
excessive training time and affect the system accuracy. To
overcome this problem, a mutual information (MI) technique
originally proposed by [23] is adopted in this study to select
the most effective features from the extracted entropies to
improve the efficiency and accuracy of the induction motor
fault diagnosis process.

Once a fault feature vector has been selected, a multifault
classifier is needed to identify the faulty conditions of an
induction motor. Several pattern recognition techniques
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FIGURE 1: The flowchart of the fault diagnosis algorithm for induc-
tion motors.
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such as artificial neural networks (ANN) and support vec-
tor machines (SVM) have been developed in recent years
for mechanical fault classification. SVM has recently been
successfully applied to face detection, object detection and
recognition, pattern recognition, and information and image
retrieval due to its high accuracy and good generalization
with a smaller number of samples [24]. It is used in this
study for fault diagnosis of an induction motor due to the
consideration that large fault samples are difficult to obtain in
practice. An induction motor fault test rig is also built in the
laboratory to validate the fault diagnosis technique proposed
in this paper.

The remainder of the paper is organized as follows.
Section 2 briefly discusses the concept of SampEn, MSE,
MI, and SVM algorithms used in this paper and introduces
the fault diagnosis system proposed in the study. Section 3
describes the experimental setup of the induction motor
fault simulation test rig. Section 4 presents the analysis of
the experimental data for motor fault diagnosis using the
proposed method. The main findings from this study are
summarized in Section 5.

2. The Procedure of the Proposed Motor Fault
Diagnosis Method

The flowchart of the proposed induction motor diagnosis
algorithm is shown in Figure 1. The first step of the algorithm
is to calculate the entropy values from the vibration data
acquired from an induction motor utilizing SampEn and
MSE. Mutual information technique is then employed to
select the effective entropy features in the second step. SVM is
applied to discriminate the motor faults in the last step from
the selected entropy features.

For a better understanding of the theoretical foundation
and process, the procedure and techniques involved in each
step of the proposed fault diagnosis algorithm are briefly
discussed and explained in the following text.

2.1. Sample Entropy. Online diagnosis systems are gaining
popularity in industry applications nowadays due to their
capability to detect incipient faults at an early stage. However,
directly measured CM signals are not suitable for online
analysis as a small dataset is not good enough for a reliable
diagnosis. On the other hand, a larger dataset poses a burden
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for data processing. Feature extraction is thus a critical initial
step in a monitoring and fault diagnosis system. The accuracy
of feature extraction has a direct effect on the accuracy
of the final diagnosis outcome. An important criterion is
that a feature extraction method should be able to preserve
the critical information for decision-making. Based on this
consideration, SampEn and MSE algorithms are adopted in
this paper to extract the usable effective features from the
vibration data.

Pincus [25] proposed a statistical measure, Approximate
Entropy (ApEn), to quantify the regularity in a short and
noisy time series. ApEn reflects the likelihood of sequences
that are close to each other. That is to say, within given
tolerance r, m consecutive data points remain close when one
more data point is known [26]. In general, lower values of
ApEn reflect more regular time series, while higher values are
associated with less predictable time series. ApEn measures
the time series for similar segments, and a large number
of such segments yield a small value of ApEn. Importantly,
the ApEn algorithm counts each sequence as matching itself
to avoid the occurrence of In(0) in the calculations. This
condition has led to bias in the calculation of ApEn. In
practice, the bias causes ApEn to lack two important expected
properties: (1) ApEn is heavily dependent on the record
length and is uniformly lower than the expected value for
short records and (2) it lacks relative consistency; that is to
say, if ApEn of one dataset is higher than that of another, it
should, but does not, remain higher for all tested conditions.

To overcome the shortcomings of ApEn, Richman and
Moorman [27] developed and characterized a new family
of statistical measures, sample entropy (SampEn), which
do not count the self-matches. SampEn is precisely the
negative natural logarithm of the conditional probability
that two sequences with similar m points remain similar
at the next point, where self-matches are not included in
calculating the probability. Thus, a lower value of SampEn
also indicates more self-similarity in a time series. In addition
to the benefit of eliminating self-matches, SampEn algorithm
is also simpler and uses only about one-half of the time
compared with ApEn algorithm for the same calculation.
SampkEn is largely independent of the data record length and
displays relative consistency under various circumstances.
Mathematically, SampEn algorithm can be summarized as
follows.

Let X be a time series of length N
{x(1), x(2),...,x(N)}:

X =

(1) Construct template vectors with dimension m by
using the following equation:

X" =[x@),x@{+1),...

i s x(@+m—1)],

(2) A match occurs when the distance between two
template vectors (X}", X'") is smaller than predefined
tolerance r. A schematic illustration of the distance
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FIGURE 2: A schematic illustration of the distance calculation (m =
2).

calculation is shown in Figure2. The distance
between the two vectors is calculated using

d[x; X ] = Jnax (|xG+k)—x(G+k)|],
2)
i j=12...N—m i+].

(3) Let " (r) be the number of distances within r and let
B"(r) be the total number of m-dimension matched
vector pairs:

By = )

(4) Define the average value of B} (r) such that

B ()

B"(r)= ) Nom)’ (4)

i=1

(5) Repeat steps (1)-(4) for m + 1, and B™(+) can be
obtained.

(6) For finite N, SampEn is defined as the logarithm of the
ratio of B™"(r) and B™(r):
m+1

SampEn (m,r,N) = —In [B—(r)]

B™ (1’) (5)

=InB" (r)-In B (r),

where N is the length of the time series, m is the
dimension of sequences to be compared, and r is the
tolerance level for accepting matches. It is convenient
to set the tolerance as r x SD, where SD is the
standard deviation of the dataset. It is worth noting
that the parameters m, r, and N must be fixed for each
calculation.

2.2. Multiscale Entropy (MSE). Regularity in a time series
is sometimes presented as coarse granularity; thus, the time
series needs to be explored using different scales. Costa et al.
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FIGURE 3: A schematic illustration of the coarse-graining procedure.

[28] suggested that it is generally difficult to distinguish the
interbeat interval time series of different diseased and healthy
states when only a single-scale SampEn is used. Therefore, the
concept of MSE is proposed to resolve this difficulty. For the
sake of brevity, only the two main steps of MSE algorithm are
discussed here:

(1) A coarse-graining step, which is used to obtain the
representations of the original time series on different
time scales.

(2) The SampEn step, which is used to quantify the
regularities of the coarse-grained time series.

To obtain the coarse-grained time series at a scale factor,
7, the original time series is divided into nonoverlapping
windows of length 7, and the data points inside each window
are averaged. A coarse-grained time series in MSE is defined
using
JjT
y@=1 Y xa), 1sjs§. ©)

i=(j-1)T+1

For T = 1, the coarse-grained time series is the original
time series. As T increases, the length of the resulting coarse-
grained time series decreases. Figure 3 describes 7 coarse-
grained time series divided from the original time series for
a scale factor of 7. In the conventional MSE algorithm, the
MSE at a scale factor of 7 is defined as the SampEn of the
first coarse-grained time series. The SampEn for each coarse-
grained time series is calculated and plotted as a function of
the scale factor 7 in the final step to complete the procedure
of multiscale entropy analysis.

2.3. Mutual Information for Feature Selection. The extracted
SampEn and MSE features are able to discriminate different
types of motor faults. Nevertheless, a feature vector with high
dimension will be very time consuming to analysis. There-
fore, it is our aim to reduce the feature space by selecting only
the most effective features containing the fault information
to improve the performance of SVM classification and the
effectiveness of fault diagnosis.

Mutual information (MI) is a measure of the variables’
mutual dependence. One major advantage of MI for fea-
ture selection is its ability to detect nonlinear relationships
between variables. MI can also be defined for groups of
variables (or equivalently for multidimensional variables),
which allows one to take the joint relevance and redundancy
of features into account during the feature selection process.
Mutual information I(X,Y) is the amount of uncertainty in
X due to the knowledge of Y. Mathematically, MI can be
calculated as [23]

p(x,y)

p)p(y) @

[(X,Y) =) p(x, y)log
Xy

where p(x, ) is the joint probability distribution function
of X and Y and p(x) and p(y) are the marginal probability
distribution functions for X and Y. MI is employed in this
study to select a subset of relevant features, which considers
feature-class mutual information to determine an optimal set
of features by sorting entropy features in descending order.
It is noted that MI has not been employed previously for
induction motor fault diagnosis. It is used in this study to
select the effective entropy features closely related to a motor
fault.

2.4. Support Vector Machine. SVM algorithm is capable of
handling large feature spaces since the training of SVM
is carried out in such a manner that the dimension of
classified vectors does not have any distinct influence on the
performance of SVM as it does on the performance of other
conventional classifiers. This property is very useful for fault
classification since the number of features for fault diagnosis
need not be limited. Furthermore, SVM-based classifier also
has better generalization properties than other conventional
classifiers attributed to the minimum structural misclassifi-
cation risk when training the SVM classifier, whereas other
traditional classifiers are usually trained to minimize the
empirical risk [29, 30]. SVM can also be used in nonlinear
classification tasks with the selection of the kernel functions.
The definition of a legitimate kernel function is given by
Mercer’s theorem which states that the function must be
continuous and positive definite. Any function that satisfies
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TABLE 2: Formulation of kernel functions.
K (xi,xj)
K(x,.,xj) = x,.T X X;
K(xl-,xj) = (gxl.T XX; + e, g>0

K(g,xj):exp(ﬂ&ﬂ)

2g

Kernel

Linear function

Polynomial function

Radial basis function

Mercer’s theorem can be used as a kernel function to compute
the dot product in the feature space. Various kernel functions
such as linear, polynomial, and radial basis functions are used
in SVM classification. The selection of an appropriate kernel
function is very important in the classification process as
the kernel defines the feature space in which the training set
examples are classified. Linear, polynomial, and radial basis
functions are evaluated and formulated in this paper and
listed in Table 2, where parameter g is the kernel parameter.

The fault diagnosis of an induction motor is a multifault
classification since there are various fault types for the motor
(also see Table 1). Commonly used techniques for multiclass
classification include “one-against-all” or “one-against-one”
techniques. The “one-against-one” technique is adopted in
this paper. For this technique, if k is the number of classes,
it constructs k(k — 1)/2 classifiers and each one is trained on
the data from two classes. For the training data from the ith
and jth classes, the two-class classification problem is solved
as follows:

Minimize:

D+ ey (@)
t

subject to: (wij)T(p (x,) + bi>1- ij,

() @ (x,) + b 2 & -1,

ij
! >0,

(8)

where parameter ¢ is the penalty parameter of the error
classification. The Max Win Strategy [22] is utilized during
the classification as follows: if sign((w’j yr flx)+ b7 indicates
that x is in the ith class, the vote for the ith class is increased
by one; otherwise, the jth class is increased by one. Then, x
is designated to be in a class with the maximum number of
votes.

The fault diagnosis procedures described in this section
will be employed to analyze the experimental data from an
induction motor fault simulation test rig to be elaborated in
the following sections.

3. A Description of the Fault Simulation Test
Rig and the Experimental Setup

The induction motor test rig was designed to carry out
the fault simulation as shown in Figure 4. It consists of an
induction motor, a pulley and pulley belt, a shaft and a fan

Motor

Accelerometer

Pulley

FIGURE 4: A description of the fault simulation test rig and the
instrumentation.

with changeable pitch blades, bearings, and the supporting
structure.

Six 0.5kW, 60 Hz, 4-pole induction motors (1 healthy
and 5 faulty) were used in the experiment to generate the
required dataset under the full-load condition. Data from the
healthy motor is used as a benchmark for comparison with
the experimental data from other faulty motors. The faulty
motors each have a specific fault: (1) unbalance rotor (MUN),
(2) broken rotor bar (BRB), (3) faulty bearing (outer race,
FBO), (4) bowed rotor (BR), and (5) eccentricity (angular
misalignments (AMIS) and parallel misalignments (PMIS))
as shown in Figure 5. Furthermore, phase unbalance (PUN)
is also simulated in the experiment by adding windings on
one of the phases of the healthy motor (NOR). The faulty
conditions of these motors are also listed in Table 3.

Three accelerometers are used in the experiment to mea-
sure the vibration signals in the three coordinate directions
(i.e., horizontal, vertical, and axial) of the motors to evaluate
the effectiveness and the functionality of the proposed fault
diagnosis algorithm. The frequency range of the vibration
signals in the setup is up to 5kHz and the total number
of data samples acquired is 16384. Figure 6 displays a set of
time waveforms of the measured vibration signals for the
simulated induction motor faults investigated in this study.
It is observed that the difference between the vibration time
waveforms for the normal, unbalance rotor, broken rotor bar,
and phase unbalance cases is insignificant. For these cases,
the waveforms appear to be slightly distorted from a pure
sine wave having the fundamental frequency of the shaft
rotating speed. For the eccentricity cases, the waveforms are
mainly composed of the vibration from the fundamental shaft
rotating frequency and are superimposed with vibration from
higher order components. For the bowed rotor and faulty
bearing cases, the vibration waveforms are largely distorted
by impact components.
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TABLE 3: A description of the faulty induction motors.

Fault condition

Fault description

Others

Unbalance rotor (MUN) Unbalance mass on the rotor: 8.4 g
Broken rotor bar (BRB) Number of broken bars: 12 Total number of 34 bars
Faulty bearing (FBO) Spall on the outer race NSK-6203
Bowed rotor (BR) Rotor deflection: 0.075 mm Air gap: 0.25mm
Eccentricity (AMIS) Angular misalignments Adjusting the bearing pedestal
Eccentricity (PMIS) Parallel misalignments Adjusting the bearing pedestal
Phase unbalance (PUN) Adding windings on one of the phases Using the normal motor
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FIGURE 7: Consistency analysis of the two chosen entropy features. (a) Consistency analysis of SampEn (tolerance, » = 0.2) and (b) consistency

analysis of MSE (scale factor, 7 = 2).

4. Application of the Proposed Algorithm for
Motor Fault Diagnosis

4.1. Consistency Analysis for Each Fault Condition. An effec-
tive feature should be able to distinguish different induction
motor fault conditions and satisfy the consistency require-
ment for each induction motor fault. A consistency analysis is
thus required before the use of entropy features for induction
motor fault diagnosis since motor vibration data typically
contains nonlinear components and noise. Random errors
in the experiment can cause variation of the calculated
entropy feature values. A large variation of the calculated
entropy values will render the features inappropriate for fault
classification. The “3s” rule in statistics is adopted in this
study to evaluate the consistency of the two entropy features,
SampEn and MSE.

Figure 7 shows the consistency analysis of the two entropy
features for the simulated motor faults. The black dots are the
entropy values of 20 data samples for each simulated motor

fault, and the green line represents the mean entropy value for
each fault. The analysis of the distribution of the two entropy
features using the “3s” criteria indicates that both SampEn
and MSE satisfy the consistency requirement.

4.2. Entropy Calculation and Feature Selection. As described
in Section 2, three parameters, namely, the tolerance r, the
dimension of sequences m, and the length of the time series N,
are used in the calculation of SampEn. The length of each data
sample is automatically determined by the data acquisition
setup, which is N = 4096. The dimension of sequences,
m = 2,is used in this calculation. The tolerance r is commonly
expressed as a fraction of the standard deviation (SD) of
the time series that affects the SampEn value. A small r will
lead to a poor conditional probability, while a large r will
result in losing too much system information. In principle,
r should be a value that minimizes the effect of noise on
the calculation of the SampEn. The value of r chosen in this
study ranges between 0.1SD and 0.7SD. Figure 8 illustrates
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FIGURE 8: The effect of chosen tolerance values on the entropy
feature, SampEn.

the effect of r value on the calculated SampEn value for the
motor faults simulated in this study. It is shown that the
value of SampEn decreases steadily for increasing r value. The
calculated SampEn for the faulty bearing (FBO) case serves
as the upper bound for all cases attributed to the impact
impulses and high frequency components in the vibration
signal (see Figure 6). On the contrary, the calculated SampEn
for the broken rotor bar (BRB) case serves as the lower
bound of all cases as a result of the least noisy low frequency
vibration waveform recorded for this case (Figure 6). It is
further observed that the calculated SampEn for the bowed
rotor (BR), BRB, FBO, and normal (NOR) cases can be
clearly distinguished from each other and thus can be used
directly for motor fault classification. On the other hand, the
entropy values for the eccentricity (AMIS, PMIS), unbalance
rotor (MUN), and phase unbalance (PUN) cases are clustered
together which are difficult to distinguish from each other.
Further efforts are thus required to derive a more suitable
(separable) feature for these later cases for fault classification.

MSE features are therefore selected to serve this purpose
to overcome the limitation of the SampEn features. The
parameter values used in MSE feature extraction are m = 2,
r = 0.2SD, and N = 4096 with a maximum scale factor
of T = 10. Figure 9 compares the time waveforms of the
coarse-grained time series for AMIS and FBO cases using
the first five scale factors: 7 = 1,2,...5. It is shown that
the AMIS waveform becomes more complex with increasing
scale factor while the FBO waveform is less complex for larger
scale factors.

Figure 10 compares the MSE values for the simulated
motor faults investigated in this study for the scale factor
ranging from 1 to 10. For the scale factor of 1, the calculated
MSE value is the same as the SampEn value. The MSE value
for the FBO case is the highest and the MSE value for the BRB

Shock and Vibration

TABLE 4: Entropy features selection using MI algorithm.

Features number Entropy Dimension Tolerance Scale factor

1 MSE m=2 r=0.2 T=1
2 MSE m=2 r=0.2 T=2
3 MSE m=2 r=0.2 T=3
4 MSE m=2 r=02 T=5
5 MSE m=2 r=0.2 T=7

TaBLE 5: Classification accuracy using different SVM kernel func-
tions.

Number Kernel function Paramete?s of Classification
svmtrain accuracy
1 Linear function -c8-g4-70 91.25% (73/80)
Polynomial

2 —c8-g4- 0,
function c8-g4-t1 91.25% (73/80)

3 Radial basis -c8-g4-12 96.25% (77/80)
function

case is the lowest under this condition. It is further shown that
the MSE values for the BR and FBO cases decrease rapidly as
the scale factor increases due to the reduced complexity of the
waveforms (see Figure 9). Conversely, the MSE values for the
AMIS and PMIS cases increase as the scale factor increases
attributed to the increased complexity of the waveforms (see
Figure 9). Starting from the scale factor, 7 = 4, onward, the
MSE values of the coarse-grained time series for AMIS and
PMIS cases are much larger than those of PUN and MUN
cases for the same scale factor. The features for these faulty
cases can be clearly distinguishable for higher scale factors.
This is particularly so for the three former cases. Therefore,
these MSE features will be adopted to distinguish the fault
conditions among AMIS, PMIS, and PUN cases in the fault
classification.

In the next step, MI algorithm is applied to sort the order
of the features according to their importance and relationship
with the faults. The first five features are selected and listed in
Table 4.

4.3. Fault Classification. Three different kernel functions
including linear function, polynomial function, and radial
basis function of SVM are used in the fault classification
in this study. A supervised mode is used for data training
using the LIBSVM Matlab Toolbox. Figure 11 illustrates the
classification accuracy using different kernel functions and as
a function of the selected parameter value g in the training.
The classification efficiency for the three SVM models using
the parameter values, ¢ = 8 (a cost parameter) and g = 4
(a width parameter), is given in Table 5 for comparison. It is
shown that the SVM model using the radial basis function
predicts the measured values with the highest accuracy.
After the data training, the second phase of SVM algo-
rithm is to test and validate whether the classifier has learnt
from unseen examples in the training phase. A second-fold
cross-validation method is applied to the 160 experimental
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FI1GURE 9: Time waveforms of coarse-grained time series.
TABLE 6: The second-fold test accuracy of the proposed method.
Dataset (160) Correctly classified Wrongly classified Classification accuracy
Training set Test set
Set-1(80) Set-2 (80) 74 6 92.50%
Set-2 (80) Set-1(80) 76 4 95.00%
Average classification accuracy (all ten features) 93.75%
Set-1(80) Set-2 (80) 77 3 96.25%
Set-2 (80) Set-1 (80) 77 3 96.25%
Average classification accuracy (the first five features using MI) 96.25%

datasets for the validation of the proposed induction motor
fault diagnosis system. In a k-fold cross-validation method,
the dataset is divided into k subsets, and the holdout method
[31] is repeated k times. At each time, k—1 subsets are used for
training and kth subset is used for testing. The average error
for all k trials is computed. The second-fold test accuracy
of the proposed method is shown in Table 6. The average
classification accuracy using the first five features and the MI
algorithm is 96.25%.

The prediction accuracy of the SVM model using the
radial basis function is graphically illustrated in Figure 12. It is
shown that the SVM classifier can identify the specific motor
fault with 100% accuracy for most faults using the proposed

method. Only three wrongly classified cases are found from
the 160 datasets for the MUN and NOR cases due to the
similarity of the waveform (see Figure 6) and entropy values
(see Figure 10) between these two cases.

Figure 13 compares the classification accuracy of the
proposed method and another method previously developed
by the same authors [1]. It is shown that the method proposed
in this study is as accurate or better for motor fault diagnosis
in most cases except for one (NOR). The proposed method
can identify 8 different operational conditions of induction
motors with high accuracy which is an advantage over
a previous work [20] where a single fault such as shaft
misalignment was studied. The proposed method also differs
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from other previous works for multifault classification [32-
34] by using only vibration data and the two extracted entropy
features, SampEn and MSE.

5. Conclusion

A fault diagnosis algorithm using two entropy features
(SampEn and MSE), MI algorithm, and SVM classifier was
proposed in this paper for induction motor fault diagnosis.
The major steps and their sequential use in this algorithm
are (1) extracting the entropy features from the nonlinear,
nonstationary induction motor vibration signals; (2) sorting
the features by using MI algorithm so that the elements in the
feature vector are ranked according to their importance and
relevant to the faults; (3) selecting the five most important fea-
tures from the feature vectors and then classifying them using
SVM method. The proposed classification and fault diagnosis
technique was validated using the induction motor vibration
data in the study. The classification results confirmed that
the proposed fault diagnosis algorithm can effectively detect
8 various faults of the induction motor with an average
accuracy of 96.25%. The algorithm proposed in this study
thus provides an effective tool for a reliable fault diagnosis of
a multifault mechanical system such as an induction motor
using only vibration CM data. The study presented in this
paper highlights the notions that (1) entropy features are
effective parameters to extract useful information from the
vibration data, which can satisfy the consistency requirement
for induction motor fault diagnosis; (2) mutual information
technique is an effective tool to reduce the feature space
extracted from the CM data, which can achieve a higher
recognition rate with selected features; (3) the combination
of entropy, mutual information, and support vector machine
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as proposed in the paper can largely improve the effectiveness
and accuracy of machine fault classification and diagnosis
and thus is very useful in the development of automatic fault
diagnosis systems.
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