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Electric arc furnace (EAF) causes the harmonics to impact on the supply network greatly and harmonic elimination is a very
important research work for the power quality associated with EAF. In the paper, a fundamental wave amplitude prediction
algorithm based on fuzzy neural network for harmonic elimination of EAF current is proposed. The proposed algorithm uses
the learning ability of the neural network to refine Takagi-Sugeno type fuzzy rules and the inputs are the average of the current
measured value in different time intervals. To verify the effectiveness of the proposed algorithm, some experiments are performed
to compare the proposed algorithm with the back-propagation neural networks, and the field data collected at an EAF are used in
the experiments. Moreover, the measured amplitudes of fundamental waves of field data are obtained by the sliding-window-based
discrete Fourier transform on the field data. The experiments results show that the proposed algorithm has higher precision. The
real curves also verify that the amplitude of fundamental wave current could be predicted accurately and the harmonic elimination
of EAF would be realized based on the proposed algorithm.

1. Introduction

Electric arc furnace (EAF) smelts the rawmetal by generating
arcs and has been widely used in the steel industry. For
the characteristics of electric arc and meltdown processes,
EAF causes some undesirable disturbing effects, such as
harmonics and flicker, which would have high impact on
the supply network [1]. Therefore, harmonic elimination is
of important theoretical significance and practicalmotivation
for the power quality associated with EAF.

Traditionally, most researches focus on the steady-state
modeling for harmonic elimination and some improved
models of EAF are presented recently. The cubic spline
interpolation is proposed to model the voltage-current char-
acteristic of EAF [2], and a new EAF-specific model based
on field measurements of instantaneous furnace voltages and
currents is presented [3]. Moreover, a mathematical model of
the 3-phase AC of EAF is proposed in a more macroscopic
level of modeling [4]. However, due to the instability of
smelting process and the randomness of the arc generation,

establishing a precise model of the EAF is extremely difficult.
Moreover, because some physical responses of EAF cannot
be obtained from the theoretical study easily, the assump-
tions of parameters would simplify the EAF model and the
analysis results would be affected. Artificial neural network
(ANN) learns the relationship between output and input
by adjusting the interconnections of neurons and has been
adopted for harmonic elimination [5–11]. In particular, an
ANN-based inductances on-line estimation of the swinging
power cables is discussed for efficient power control of
EAF [12]. Nevertheless, opaqueness is major shortcoming of
ANN. Hence, to deal with this problem, the fuzzy neural
network (FNN) is proposed [13]. FNN is a combined system
with ANN and fuzzy logic technique. The fuzzy concepts
could improve the transparency for understanding the inner
working of ANN, and for fuzzy logic technique, the fuzzy
rules have clear semantic meanings; namely, FNN has the
advantages of learning optimization ability of ANN and the
human-like thinking of fuzzy logic technique. In addition,
the parameter of FNN could be determined easily. Adaptive
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Figure 1: Diagram of EAF power supply system model.

neurofuzzy inference system (ANFIS) is one kind of FNNand
a first-order Takagi-Sugeno fuzzy system. Since ANFIS could
excellently estimate a system with uncertainty, a newmethod
based on ANFIS is proposed to evaluate the slag quality in
EAF using power quality indices [14].

This paper proposes a fundamental wave amplitude pre-
diction algorithm based on FNN for harmonic elimination of
EAF current. For the proposed algorithm, ANFIS is used to
predict the real-time amplitude of fundamental wave current
of EAF, which could provide a guarantee for the realization
of harmonic elimination. The inputs are the average of
the current measured value in different time intervals. To
verify the effectiveness of the proposed algorithm, some
experiments are performed on the field data collected at an
EAF. In the experiments, the proposed algorithm is compared
with the back-propagation neural networks (BPNN) for
estimating the fundamental wave amplitude. Moreover, the
measured values of fundamental wave amplitude of field data
are obtained by the sliding-window-based discrete Fourier
transform (SW-DFT) on the field data.The paper is organized
as follows.Thepower supply systemmodel and the equivalent
circuit of EAF are described in Section 2. In Section 3, the
proposed algorithm is presented in detail. In Section 4, the
experiments results are discussed to verify the effectiveness
of the proposed algorithm. Finally, Section 5 concludes the
paper.

2. Electric Arc Furnace

The EAF power supply systemmodel is shown in Figure 1. 𝑇
1

is a supply transformer and 𝑇
2
is a furnace transformer. 𝑍

𝑆
is

the grid impedance and 𝑍
𝐶
is the busbar impedance of EAF.

According to the state variables of EAF, such as the arc length,
the current value, and the temperature, the controller could
regulate the stalls of output voltage of the furnace transformer
and the electrode position.The equivalent circuit is shown in
Figure 2. 𝑅

𝑠
and 𝐿

𝑠
are equivalent to the grid impedance.The

transformer with a ratio of 𝑇
𝑝
:1 is equivalent to 𝑇

1
and 𝑇

2
.

𝑅
𝑐
and 𝐿

𝑐
are equivalent to the busbar impedance. 𝑉

𝑠
is the

power source. Time-varying resistance 𝑅
𝐸
and 𝑉

𝑏
are the arc

equivalent model.

3. The Proposed Algorithm

According to the characteristics of EAF, a fundamental wave
amplitude prediction algorithm is presented in the paper
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Figure 2: Equivalent circuit of EAF.

and the architecture of the proposed algorithm is shown in
Figure 3. By predicting the fundamental wave amplitude, the
nonfundamental components of EAF current are separated
out and used as the command signal to control the power
electronic converter to generate the harmonic current, which
could counteract the harmonic of EAF, so the grid current
only contains the fundamental wave. The output of the
proposed algorithm, 𝑖

𝑓
(𝑡 + 𝑛 + 1), is the prediction amplitude

of fundamental wave current and 𝑛 is the number of inputs.
The inputs of the proposed algorithm are the average of
the current measured value in different time intervals; for
example, 𝑖

𝑚
(𝑡
𝑛
) is the 𝑛th inputs and could be obtained by

the following equation:

𝑖
𝑚
(𝑡
𝑛
) =

1
𝑘

𝑘

∑

𝑗=0
𝑖
𝑚
(𝑡 + (𝑛 − 1) (𝑘 + 1) + 𝑗) , (1)

where 𝑘 is a fixed integer and equals the number of samplings
in time intervals.

For the proposed algorithm, ANFIS is adopted for pre-
dicting the amplitude of fundamental wave current of EAF,
and the architecture is shown in Figure 2. The algorithm has
five layers. In the same layer, the nodes are with the same
activation function. To facilitate the implementation of the
proposed algorithm, each input uses the same linguistic term,
and the linguistic terms set is {𝐴1, 𝐴2, . . . , 𝐴𝑚}, where 𝑚 is
the number of fuzzy linguistic terms. Since the membership
functions are determined automatically by training process,
the value of 𝑚 may not be set beforehand. In layer 1, each
node function is the membership values of each input with
respect to its linguistic term 𝐴

𝐿
, 𝐿 ∈ {1, 2, . . . , 𝑚}, and the

Gaussian function is used as the membership functions. In
layer 2, each node is a circle node labeled ∏ and plays the
role of a simple multiplier. There are 𝑚𝑛 nodes in this layer
and the output of each node represents the firing strength of
the rule. In layer 3, each node is a circle node labeled 𝑁 and
calculates the ratio of the activation level of the 𝑖th rule to the
total of all activation level. In layer 4, there are𝑚𝑛 nodes in the
layer and each node calculates the contribution of the overall
output; namely, it is simply the product of the normalized
firing strength and the function of consequent, which is a
first-order polynomial. Layer 5 has only one node labeled ∑
to indicate that it performs the function of a simple summer.
The output of the node is final output, 𝑖

𝑓
(𝑡 + 𝑛 + 1), which is
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Figure 3: The proposed algorithm for harmonic elimination of EAF current.

the prediction amplitude of fundamental wave current and is
given by

𝑖
𝑓
(𝑡 + 𝑛 + 1) =

𝑚
𝑛

∑

𝑞=1

{

{

{

𝑤
𝑖

∑
𝑚
𝑛

𝑝=1 𝑤𝑝
⋅ (

𝑚

∑

𝑐=1
𝑎
𝑞

𝑐
𝑥
𝑐
+ 𝑏
𝑞
)
}

}

}

, (2)

where 𝑎𝑞
𝑐
and 𝑏
𝑞
are the consequent parameters.

For the proposed algorithm, a hybrid learning process
is adopted to tune all the modifiable parameters to make
the output match the measured value. The hybrid learning
process adjusts the consequent parameters in a forward pass
and the antecedent parameters in a backward pass [15]. This
is a linear combination of the modifiable parameters. For this
observation, we can divide the parameter set into two sets.
Consider

𝑃 = 𝑃1 ⊕𝑃2, (3)

where 𝑃 is the set of total parameters. 𝑃1 is the set of
antecedent parameters. 𝑃2 is the set of consequent parame-
ters. ⊕ is the sum operation.

For the forward path, the least square method is used to
identify the consequent parameters. Now, for a given set of
values of elements of 𝑃1, we can obtain the following matrix
equation based on the train data:

𝐵𝑋 = 𝑌, (4)

where 𝐵 contains the unknown parameters in 𝑃2, 𝑋 is the
input matrix, and 𝑌 is the output.

A least squares estimate is sought to minimize ‖𝐵𝑋−𝑌‖2,
which is a problem for linear regression.Thus, the calculation
for the parameters set 𝐵 is:

𝐵
∗
= (𝑋
𝑇
𝑋)
−1
𝑋
𝑇
𝑌. (5)

In the backward path, the error signals propagate back-
ward. The antecedent parameters are updated by the descent
method, through minimizing the error between the output

of the network and that of real system, which is a quadratic
function:

𝐸 (Ψ) =
1
2

𝑁

∑

𝑑=1
(𝑦 (𝑑) − 𝑖

𝑓
(𝑑))

2
, (6)

whereΨ represents the training data set and𝑁 is the number
of the training data.

In a recursivemanner, with respect toΨ, the update of the
parameters of membership function can be written as

𝑐
𝐴
𝐿

(𝑧 + 1) = 𝑐
𝐴
𝐿

(𝑧) − 𝜂
𝜕𝐸

𝜕𝑐
𝐴
𝐿

𝜎
𝐴
𝐿

(𝑧 + 1) = 𝜎
𝐴
𝐿

(𝑧) − 𝜂
𝜕𝐸

𝜕𝜎
𝐴
𝐿

,

(7)

where 𝑐
𝐴
𝐿

and 𝜎
𝐴
𝐿

are the centers of the function and the
widths of the membership function. 𝜂 is the learning rate and
𝜂 > 0.

Therefore, the amplitude of fundamental wave current
could be predicted correctly by the proposed algorithm
and the harmonic elimination of EAF would be realized.
In the next section, the experiments results will show the
effectiveness of the proposed algorithm.

4. Experiments Results

In the section, some experiments are performed to evaluate
the effectiveness of the proposed algorithm.The experiments
focus on comparing the proposed algorithm with BPNN for
estimating the fundamental wave amplitude and the field data
are used in the experiments. The field data are collected at
an EAF at the second side of furnace transformer and the
sampling rate is 50 kHz (1000 amples/per cycle for the ideal
case of f = 50Hz). To facilitate analysis, the values of field
data are normalized. For the experiments, the 4000 samples
from field data are divided into the training set and the test
set based on the Monte Carlo cross-validation at the ratio
that equaled 4 : 1. The root mean squares error of prediction



4 Mathematical Problems in Engineering

Table 1: RMSEP values of 10 times experiments for 10 inputs.

Number The proposed algorithm BPNN
1 5.73𝐸 − 05 2.6432𝐸 − 04

2 4.54𝐸 − 05 1.7707𝐸 − 04

3 5.81𝐸 − 05 1.2414𝐸 − 04

4 4.94𝐸 − 05 1.5082𝐸 − 04

5 4.08𝐸 − 05 1.6229𝐸 − 04

6 3.26𝐸 − 05 1.4230𝐸 − 04

7 4.34𝐸 − 05 1.7170𝐸 − 04

8 5.53𝐸 − 05 1.8885𝐸 − 04

9 3.47𝐸 − 05 2.4323𝐸 − 04

10 7.08𝐸 − 05 2.2032𝐸 − 04

The average RMSEP 4.8764E − 05 1.8450E − 04

(RMSEP) is used to estimate the predictive ability of the
proposed algorithm and BPNN. For the proposed algorithm,
the training epoch number is 100, the training error goal is
zero, the initial step size is 0.01, the step size decrease rate
is 0.7, and the step size increase rate is 1.3. For BPNN, the
number of training epochs is 100, the learning rate is 0.01, the
number of hidden neurons is 10, and the training error goal
is zero. Moreover, the measured amplitudes of fundamental
waves of field data are obtained by SW-DFT on the field
data. Because the inputs are the average of measured value in
different time intervals, the number of inputsmaynot be fixed
and could be set according to the analysis demand.Hence, the
experiments are performed with different numbers of inputs
and the results are discussed in the following.

For the number of inputs is 10, the RMSEP values of
10 times experiments are shown in Table 1. Since assessing
the sampling bias, the division of field data and the calcula-
tion process would be implemented repeatedly. The average
RMSEP values of the proposed algorithm and BPNN are
4.8764E − 05 and 1.8450E − 04, respectively. The proposed
algorithm is more effective and improves the prediction
precision by 73.57% than BPNN. According to the average
RMSEP value, the measured value curve and predictions
curves of the proposed algorithm and BPNN for other 2000
samples fromfield data are shown in Figure 5, and themodels
of the proposed algorithm and BPNN are based on the
number 2 experiment results. It also shows that the proposed
algorithm has higher effectiveness.

For the number of inputs is 20, the RMSEP values of 10
times experiments are shown in Table 2.The average RMSEP
values of the proposed algorithm and BPNN are 3.92E − 06
and 6.77E − 05, respectively.The proposed algorithm is more
effective and improves the prediction precision by 94.21%
than BPNN. According to the average RMSEP value, the
measured value curve and predictions curves of the proposed
algorithm and BPNN for the 2000 samples used in Figure 4
are shown in Figure 6, and the models of the proposed
algorithm and BPNN are based on the number 9 experiment
results. The predictive ability of BPNN is decreased with the
number of inputs being increased and that of the proposed
algorithm is still better. It also shows that the proposed
algorithm has higher effectiveness.

Table 2: RMSEP values of 10 times experiments for 20 inputs.

Number The proposed algorithm BPNN
1 3.92𝐸 − 06 6.77𝐸 − 05

2 3.73𝐸 − 06 7.23𝐸 − 05

3 3.72𝐸 − 06 3.73𝐸 − 05

4 3.60𝐸 − 06 4.12𝐸 − 05

5 3.63𝐸 − 06 9.32𝐸 − 05

6 3.45𝐸 − 06 2.59𝐸 − 05

7 3.45𝐸 − 06 2.17𝐸 − 05

8 3.50𝐸 − 06 9.61𝐸 − 05

9 3.68𝐸 − 06 4.65𝐸 − 05

10 3.47𝐸 − 06 9.52𝐸 − 05

The average RMSEP 3.92E − 06 6.77E − 05
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Figure 4: The structure of ANFIS used in the proposed algorithm.

Therefore, the experiments results verify that the effec-
tiveness of the proposed algorithm is higher; namely, the
amplitude of fundamental wave current could be predicted
accurately, and the harmonic elimination of EAF would be
realized based on the proposed algorithm.

5. Conclusions

The paper proposes a fundamental wave amplitude predic-
tion algorithm based on FNN for harmonic elimination
of EAF current. The proposed model has some advan-
tages as follows. First, it has higher prediction capability
for fundamental wave amplitude. Second, it is almost not
affected by the number of inputs changed. Third, it uses the
learning ability of the neural network to implement and refine
Takagi-Sugeno type fuzzy rules to predict the fundamental
wave amplitude. Fourth, by the hybrid learning process, all
the best parameters of membership functions are obtained.
The experiments results also verify the effectiveness of the
proposed algorithm. Since the train time may be affected by
the number of inputs, in the future research work, we will
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Figure 6: Experiments results for 20 inputs.

use some feature extraction approaches to further improve
the training performance of the proposed algorithm.
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