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Complex informational spectrum analysis for protein sequences (CISAPS) and its web-based server are developed and presented.
As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum
analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including
absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case
study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes
can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable
to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as
zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino
acid indices where each one represents a different property to perform the analysis.This web-based server enables researchers with
little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

1. Introduction

If it is considered that a protein’s biological function is con-
trolled by a selective ability of the protein to interact with
selected elements in the environment, the following argu-
ment arises: how is this selective ability achieved? Several
attempts have been made to decode such characteristic
features that help drive biological functions of the proteins
directly from primary structure of a protein sequence. One
common method used for analysing protein sequences to
determine biological functions is based on the search for
similarities in the arrangements between the groups of
sequences. One example is the basic local alignment search
tool (BLAST) [1]. Another method for analysing macromod-
ule sequences is to extract structural and physicochemical
features, such as amino acid composition and dipeptide
composition derived from the primary structure of a protein
sequence. These features can be used for various purposes

that include prediction of protein structural classes [2, 3],
functional classes [4, 5], and protein-protein interactions [6,
7].

In recent years, signal processing techniques have been
used in bioinformatics to extract information that is expected
to reveal protein’s biological function [8–11]. One of the
methods that use discrete Fourier transform (DFT) is infor-
mational spectrum analysis (ISA) [12, 13]. In previous appli-
cations where ISA was used for each group of proteins
analysed [12, 13] therewas a group of proteins that correspond
to specific peaks in the frequency spectrum. Every biological
function corresponds to one unique or a set of unique peaks.
The importance of this general conclusion is that specific
biological functions can be extracted from protein sequences
using signal processing techniques by identifying significant
features of the frequencies which are not found in unrelated
frequencies. However, complementary information such as
real and imaginary frequency spectra can be derived from
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DFT which has successfully been used in various areas
including biomedicine [14] butwas not previously explored in
the analysis of protein sequences. Anewmethod, the complex
informational spectrum [15], was proposed and developed,
which considers all three frequency spectra for analysing
protein sequences, in order to identify new and complemen-
tary information in relation to functional properties of the
proteins under investigation.

In the traditional approach, due to the complex nature of
proteins and their functional groups, the use of only the abso-
lute spectrum in the analysis of protein sequences using the
informational spectrumanalysis is insufficient, as biologically
related features to the analysis of protein sequences can be
more distinct either in the real or the imaginary spectrum.
Various applications, such as development of new drugs
[16], identification of important protein sequence’s domains
[17], and investigation of protein sequences interaction [18],
where ISA and resonant recognition model (RRM) [19] are
already applied in the literature, and complex informational
spectrum analysis (CISA) [15] will also be applicable and will
be able to contribute additional information.

To be able to proceed with current signal processing tech-
niques, a set of numerical values must be assigned to nucle-
otides or amino acids [20]. These values should represent
natural biological characteristics of the macromodules with
which they are paired and be relevant to the biological activity
of each module. These values can be any of the biochemical
properties such as electron-ion interaction potential (EIIP)
[21, 22], hydrophobicity [21, 23], solubility [21, 23], or molec-
ular weight [21, 23].

In this paper we introduce CISAPS (complex informa-
tional spectrum for the analysis of protein sequences) web
server which can be freely accessed to extract features of
proteins from their amino acid sequences using the CISA.
This is further supported by using an expanded set of amino
acid indices (AAI). Application of the CISA in the influenza
virus is also presented as a case study in order to show
usefulness and robustness of the method developed.

2. Methods and Materials

2.1. Signal Processing for Protein Sequence Analysis. By using
digital signal processing techniques the goal is to extract
information that can be related to biological functions of
proteins. Various signal processing methods have been used
in bioinformatics for analysing protein sequences in recent
years; one of the most commonmethods is the informational
spectrum analysis (ISA) [12, 13]. For the ISA method to be
implemented for the analysis of protein sequences, discrete
Fourier transform (DFT) is applied after each amino acid of
the protein sequences is expressed as numerical sequences
by using various AAI. A special case of ISA is the resonant
recognition model [12, 13, 22] where the EIIP AAI [22] is
used to encode alphabetical protein sequences into numerical
sequences. ISA reveals that in related protein sequences com-
mon peaks appear in the informational spectrum, whereas
they do not appear in functionally unrelated sequences, and
this is directly related to the biological property of the AAI

used. In previous studies, ISA uses DFT to extract parameters
using the absolute spectrum. However, DFT that generates
complex output (imaginary and real frequency spectra)
has been shown to produce complementary information in
various fields such as Doppler ultrasound in medicine [14],
polar solvation dynamics in the femtosecond evolution [24],
time-domain sum-frequency generation spectroscopy using
midinfrared pulse shaping [25], hydrophobic oil droplet-
water interface for the orientation, and charge of water [26].

To the best of our knowledge, complex signal processing
concept has not been explored for the analysis of protein
sequences. Therefore, for the first time, this paper is con-
cerned with the development of the complex informational
spectrum (CISA) for the analysis of groups of proteins using
their sequence information. This study therefore aims at
deriving absolute, real, and imaginary spectra from DFT
for a given set of proteins. They will then be used to
extract characteristic frequency parameters for the group of
proteins under study. This piece of information can be used
to characterise and classify protein sequences. In order for
researchers to apply the method in their own set of proteins
without any knowledge of SP or complex SP concept, a freely
accessible web server (CISAPS web server) is also developed
and presented.

2.2. Amino Acid Indices. Protein sequences in the literature
are expressed using generally 20 alphabetical characters
where each one corresponds to a specific amino acid. To be
able to apply signal processing methods protein sequences
need to be encoded into numerical sequences. This can
be achieved using AAI where each of the 20 amino acids
is assigned to a specific numerical value. For the analysis,
CISAPS server uses 611 unique AAI to encode protein
sequences that represent different biochemical properties
of the proteins. A list of all the indices can be retrieved
from the CISAPS web server. Of these indices, 528 unique
indices were extracted from AA index database [20] after
manually removing duplicate entries. The remaining 83 AAI
out of 611 used in CISAPS server were retrieved from
various literature, the details of which can be found in
Supplement 1 in the Supplementary Material available online
at http://dx.doi.org/10.1155/2015/909765 and the web server
(http://sproteomics.com/cisaps/default/indices).

As AAI originated from different sources from the litera-
ture, 𝑧-score [27] is used to normalise each index using

𝐸
󸀠
=

𝐸 − 𝜇 (𝐸)

𝜎 (𝐸)

, (1)

where𝐸, 𝜇, and 𝜎 correspond to index value, mean value, and
standard deviation, respectively, for a particular index.

2.3. Preprocessing Protein Sequences. Before applying the
complex informational spectrum analysis to the numerical
sequences, which have now become signals, preprocessing
of these signals is needed, in order for the signal processing
methods to be applied in and to extract better results. Recent
studies [28] have shown that zero-padding and windowing
can enhance the features extracted from proteins sequences.
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Therefore, both techniques described in this section are
applied to the complete protein sequences.

The first technique is windowing where the encoded
numerical sequences are multiplied by a precalculated win-
dow to reduce spectral leakage. The windowing has been
shown to reduce or even eliminate spectral leakage in various
applications such as harmonic analysis [29] and phase esti-
mation [30] where frequency analysis and DFT were used. In
this case, CISAPS uses Hamming window [31] which can be
calculated using (2). The Hamming window is used as it is a
widely used and accepted window function [32]:

𝑤 = 0.54 − 0.46 cos(2𝜋 (𝑁 − 1)
𝑁 − 1

) . (2)

The second technique used is zero-padding in which a
specified number of zero elements are added to the end of
each sequence to increase signal length. This technique is
essential for CISA as the given protein sequences may not be
of the same length. In order to achieve zero-padding, CISAPS
server gives two options to the user for analysing a given set of
proteins.The first option is to set the resolution directly to the
maximum allowed length of any given protein which is 4096
and the second is to set the DFT resolution at the greatest
length of the protein sequences given by the user.

2.4. Complex Informational Spectrum Analysis. The discrete
Fourier transform (DFT) is defined as follows:

𝑋(𝑛) =

𝑁−1

∑

𝑚=0

𝑥 (𝑚) 𝑒
−𝑗(2𝜋/𝑁)𝑛𝑚

𝑛 = 1, 2, . . . , 𝑁, (3)

where 𝑥(𝑚) is the 𝑚th member of the numerical series, 𝑁
is the total number of points in the series, and 𝑋(𝑛) are
coefficients of the DFT. As the DFT coefficients consisted
of two mirror parts, only the first half of the series (𝑁/2)
points will be hereafter considered. The following formula
determines the maximal frequency in the spectrum:

𝐹 =

1

2𝑑

, (4)

where 𝐹 is the maximal frequency of all the signals (protein
sequences) and 𝑑 is the distance between points of the
sequence.

If it is assumed that all points of the sequence are equidis-
tant with distance 𝑑 = 1, then the maximum frequency in the
spectrum can be found as 𝐹 = 1/2(1) = 0.5. This shows that
the frequency range does not depend on the number of points
in the sequence but only the resolution of the spectrum. The
output of DFT is a complex sequence and can be represented
as follows:

𝑋 (𝑛) = (𝑅 (𝑛) + 𝐼 (𝑛)) , 𝑛 = 1, 2, . . . ,

𝑁

2

, (5)

where 𝑅(𝑛) and 𝐼(𝑛) are the real and imaginary parts of the
sequence, respectively.

The aim of this method is to determine a characteristic
frequency peak (CFP) using the informational spectrum for

each spectrum (absolute, real, and imaginary) that is expected
to correlate with a biological function expressed by a group
of protein sequences. To determine such a parameter, it is
necessary to find common characteristics of the sequences
with the same biological function. The absolute, real, and
imaginary informational spectrum can be formulated as
follows.

Absolute spectrum:

𝑆
𝑎
(𝑛) = 𝑋 (𝑛)𝑋 ∗ (𝑛) = |𝑋 (𝑛)|

2
, 𝑛 = 1, 2, . . . ,

𝑁

2

, (6)

where 𝑆
𝑎
is the absolute spectrum for a specific protein,𝑋(𝑛)

are the DFT coefficients of the series 𝑥(𝑛), and𝑋∗(𝑛) are the
complex conjugate.

Real spectrum,

𝑆
𝑟
(𝑛) = |𝑅(𝑛)|

2
, 𝑛 = 1, 2, . . . ,

𝑁

2

, (7)

where 𝑆
𝑟
is the real spectrum for a specific protein and 𝑅(𝑛)

are the real parts of DFT coefficients𝑋(𝑛).

Imaginary spectrum,

𝑆
𝑖
(𝑛) = |𝐼(𝑛)|

2
, 𝑛 = 1, 2, . . . ,

𝑁

2

, (8)

where 𝑆
𝑖
is the imaginary spectrum for a specific protein and

𝐼(𝑛) are the imaginary parts of DFT coefficients𝑋(𝑛).

Complex informational spectrum,

𝐶
𝑎
= Π𝑆
(𝑎)
(𝑚) , 𝑚 = 1, 2, . . . ,𝑀

𝐶
𝑟
= Π𝑆
(𝑟)
(𝑚) , 𝑚 = 1, 2, . . . ,𝑀

𝐶
𝑖
= Π𝑆
(𝑖)
(𝑚) , 𝑚 = 1, 2, . . . ,𝑀,

(9)

where 𝐶
𝑎
, 𝐶
𝑟
, and 𝐶

𝑖
are the absolute, real, and imaginary

informational spectrum, respectively, and 𝑀 is the number
of protein sequences used for a specific class of proteins.

Equation (10) is used to scale absolute, real, and imaginary
informational spectrum as

𝑉 =

√∑
𝐿

𝑛=0
𝐶
𝑎,𝑟,𝑖
(𝑛)

𝐿

,
(10)

where𝐿 is the number of points in the absolute (𝐶
𝑎
), real (𝐶

𝑟
),

and imaginary informational spectrum (𝐶
𝑖
).

CFP as a result of theCISA can be used to characterise and
distinguish them from another group of proteins. However,
the following conditions should be fulfilled for the CFP to be
related to a biological function.

(1) Only one CFP should exist for a group of protein
sequences that share the same biological function.

(2) For different biological functions the CFP is expected
to be different.
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Figure 1: CISAPS web server input form.

In the traditional approach, due to the complex nature
of proteins and their functional groups, the use of only
the absolute spectrum in the analysis of protein sequences
using the informational spectrum analysis is insufficient,
as biologically related features to the analysis of protein
sequences can be more distinct either in the real or the
imaginary spectrum. Some of the applications of ISA and
RRM that are already applied in the literature and CISA will
also be applicable and will be able to contribute additional
information.

3. Web Server Access

The CISAPS web server is available at http://sproteom-
ics.com/cisaps. As seen in Figure 1, the user can input the
required information for the analysis using the input form.

The mandatory information required is a valid email and
protein sequences saved in FASTA format. The CISAPS web
server can process up to 1000 protein sequences per analysis,
where the length of any given protein is limited from 8
to 4096. After a successful submission to the CISAPS web
server, an email will be sent to the user with a description of
the submitted data, including number of proteins, unknown
amino acids found in protein sequences, and resolution used
for the discrete Fourier transform. After the submission,
protein sequences will be processed and an email will be sent
to the user with the generated reports of the analysis. The
email includes the following:

(i) a report of the CISA results grouped by CFP,
(ii) a report of the CISA results listed by AAI ID,
(iii) summary report of the occurrences per CFP.

4. Case Study: Analysing Influenza
Neuraminidase Protein Sequences

During the twentieth century three major influenza A pan-
demics were recorded which were caused by H1N1, H2N2,
and H3N2 viruses in this chronological order. In addition
H5N1 and H1N2 viruses are considered as current pandemic
threads [33, 34]. Previous studies [17] used influenza A sub-
types to analyse the hemagglutinin (HA) gene with the RRM,
aiming to identify new therapeutic targets for drug devel-
opment by better understanding the interaction between
the influenza virus and its receptors. For this analysis, the
neuraminidase (NA) gene of these five different subtypes of
influenza A virus was used, as it is the target for current
antiviral drugs, called neuraminidase inhibitors [35]. All

the protein sequenceswere collected from the InfluenzaVirus
Resource database [36].

Influenza A H1N1 subtype virus [37] is a subtype of
influenza A virus and the most common cause of influenza
in humans. H1N1 first emerged in 1918 and was responsible
for Spanish flu that killed 50 to 100 million people worldwide
within a year (1918-1919). In 1947 a new H1N1 virus emerged
through intrasubtype reassortment while the neuraminidase
(NA) gene was preserved, which may have prevented the
advancing of a new pandemic. In 1957 H1N1 suddenly
became extinct in humans and the reason is still not clear
today. One probable explanation is that the development
of high immunity to the H1N1 virus in conjunction with
the development of immunity to the H2N2 influenza virus
led to the extinction of the virus. In 1977 the H1N1 virus
reappeared in the former Soviet Union, Hong Kong, and
north-eastern China. Genetic analysis of the reemergedH1N1
virus suggests that the strain had been conserved since 1950,
and accidentally released from a laboratory facility. In April
2009, a new strain of H1N1 (S-OIV) was identified in the
United States. This new strain emerged from reassortment of
NA and matrix genes from the Eurasian H1N1 influenza A
swine virus and the remaining six gene segments from the
H1N2 swine virus. For this subtype, four different groups of
proteins (Supplement 2) were retrieved from the Influenza
Virus Resource database as follows:

(i) 27NA proteins for H1N1 (1933–1946),
(ii) 12NA proteins for H1N1 (1947–1957),
(iii) 48NA proteins for H1N1 (1979–1989),
(iv) 200NA Proteins for H1N1 (2009).

For the influenza A H2N2 subtype, 76NA proteins were
sequenced before the period 1957–1968 as given in the
Influenza Virus Resource database. H2N2 influenza viruses
that could affect humans appeared in 1957; these were the
result of antigenic shift from reassortment between already
creating human H1N1 and avian H2N2 viruses [37]. H2N2
viruses possess the HA, NA, and polymerase basic 1 (PB1)
gene fragments of an avian H2N2 virus whereas the remain-
ing five gene fragments were originated from human H1N1
virus. H1N1 viruses were displaced by H2N2 viruses that
were spreading quickly among humans, causing the Asian flu
pandemic (1956–1958) which killed an estimated two million
people worldwide [37].

For influenza A H3N2 subtype, 200NA proteins were
retrieved from the Virus Resource database that was se-
quenced from the period 1968–2000. H3N2 viruses emerged
in 1968 by reassortment between circulating human H2N2
and avian H3 viruses [37]. These viruses adapted from H3
avian virus HA and PB1 genes and the six genes, including
NA and fragments of the already circulating human H2N2
viruses. H3N2 was responsible for the Hong Kong pandemic
(1968-1969) which killed an estimated one million people
worldwide.

For Influenza A H1N2 subtype, 27NA proteins were
retrieved from the Virus Resource database that was
sequenced from the period 2001–2004. The results of the
genetically characterised H1N2 subtype [33] to determine
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Table 1: Characteristic frequency peaks for absolute informational spectrum for similar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
56 0.142 0.1418 0.1418 0.1276 0.1423 0.122 0.1218 0.122 0.0101
57 0.1276 0.1276 0.1276 0.1276 0.1274 0.122 0.1218 0.122 0.0029
58 0.142 0.142 0.142 0.1276 0.1425 0.122 0.122 0.122 0.0102
84 0.082 0.0817 0.082 0.0815 0.0817 0.081 0.0813 0.081 0.0004
113 0.1208 0.1208 0.1208 0.1205 0.1208 0.122 0.122 0.122 0.0007
126 0.082 0.0817 0.0817 0.0817 0.0815 0.081 0.0813 0.081 0.0004
173 0.082 0.0817 0.082 0.0817 0.0815 0.0808 0.0813 0.081 0.0004
333 0.0817 0.0815 0.0817 0.0815 0.0813 0.0805 0.081 0.0808 0.0004
369 0.082 0.0817 0.082 0.0817 0.0815 0.081 0.0813 0.0813 0.0004
416 0.0815 0.0815 0.0815 0.0813 0.081 0.0803 0.0808 0.0805 0.0005
436 0.1271 0.1271 0.1271 0.1271 0.1269 0.122 0.122 0.122 0.0026
544 0.1274 0.1274 0.1274 0.1274 0.1271 0.1218 0.1218 0.1218 0.0029
589 0.0822 0.082 0.082 0.0817 0.082 0.0815 0.0815 0.0815 0.0003

the origin of all eight gene segments showed that all H1N2
isolates were reassortants of classical swine H1N1 and triple
reassortant H3N2 viruses.TheNA and PB1 genes of theH1N2
isolates were of human origin, while the HA, nucleoprotein
(NP), matrix (M), nonstructural (NS), polymerase acidic
(PA), and polymerase basic 2 (PB2) genes were of avian or
swine origin.

For Influenza A H5N1 subtype, 70NA proteins were
retrieved from the Virus Resource database that was
sequenced from the period 2005–2009 in Asia. The H5N1
virus was created by combining various influenza A subtype
virus [34]. For H5N1, the PB2, PB1, NP and NS genes
originated from Avian H3N8, and the M gene from Avian
H7N1. H5N3 has the highest nucleotide similarity to H5N1
for the PA gene, which suggests that it has contributed to the
PA and HA gene. Finally Avian H1N1 supplied the NA gene
[34].

5. Results and Discussion

By submitting each H1N1, H5N1, H2N2, H3N2, and H1N2
NA gene protein file independently in the CISAPS server and
using the reports generated for absolute, real, and imaginary
informational spectrum, CFPs results were retrieved. All
the results obtained, and reports generated can be found in
Supplement 3. For the analysis, zero-padding and windowing
methods used in signal processing to extract better results
were considered. As the influenza A protein sequences have
different lengths, maximum DFT resolution as well as win-
dowing was also applied to the signals (protein sequences) in
order to reduce spectral leakage as discussed in Section 2.3.
A similar CFP between influenza A subtypes would suggest
a close relationship between two protein classes for the
particular feature that the amino acid index represents. By
using minimum and maximum thresholds two sets of AAI
were retrieved. The first set represents AAI with identical or
closely related CFPs while the second set retrieved, represent
amino acids with more distributed CFPs. Two sets of tables
are created to illustrate these results; Tables 1, 2, and 3

show AAI that present highly similar cases, where Tables
4, 5, and 6 show AAI that present the most distinct cases
according to CFPs. The results produced from CISAPS were
ranked according to the similarities and differences based on
standard deviation (STD) [38]. The thresholds used for the
results presented in this paper are for AAI with identical or
closely related CFPs (Tables 1, 2, and 3) smaller than 0.01 and
for AAI that present the most distinct results (Tables 4, 5, and
6), larger than 0.2. Further information regarding AAI shown
in Tables 1 to 6 can be retrieved from the web server by using
the assigned ID number.

After extracting the results from the CISAPS web server,
the next step in the analysis is to discover if any of the
biological features represented in AAI from Tables 1–6 can
be related to previous biological experiments presented in the
literature. The following associations were achieved.

(i) The results indicate that hydrophobicity plays an im-
portant role for the neuraminidase gene, as it appears
multiple times with different AAI. Identification
numbers of these AAI that represent hydrophobicity
are 56, 57, 58, 242, and 513. The literature supports
[39–41] that the hydrophobic region of the influenza
neuraminidase gene plays an important role inform-
ing the functionality of the gene [39, 40] and that it is
a potential target for new antiviral drugs [39, 40].

(ii) According to the literature protein kinase C (PK-C)
which is represented in amino acid 76 appears to
play an important role in distinguishing variousH5N1
subtypes [42].

(iii) Another protein feature that is utilised from H1N1
subtype mutants [43] is linker propensity, which is
represented in AAI 434 and 496.

(iv) Finally, as previous works show, neuraminidase active
sites present high polarity [44]which is represented in
amino acid index 111.
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Table 2: Characteristic frequency peaks for real informational spectrum for similar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
56 0.1269 0.1271 0.1423 0.1271 0.1418 0.1218 0.1218 0.1218 0.0085
57 0.1269 0.1271 0.1271 0.1271 0.1274 0.1218 0.1218 0.1218 0.0028
58 0.1269 0.1425 0.1423 0.1425 0.1418 0.1218 0.1218 0.1218 0.0104
84 0.0827 0.0813 0.0813 0.0813 0.0817 0.0813 0.0813 0.0813 0.0005
111 0.1269 0.1271 0.1271 0.1271 0.1274 0.1218 0.1218 0.122 0.0027
113 0.121 0.1213 0.1213 0.1213 0.121 0.1218 0.1218 0.1218 0.0003
126 0.0827 0.0813 0.0813 0.0813 0.0817 0.0813 0.0815 0.0815 0.0005
173 0.0827 0.0813 0.0813 0.0813 0.0817 0.0813 0.0815 0.0815 0.0005
242 0.1269 0.1271 0.1271 0.1271 0.1271 0.1218 0.1218 0.1218 0.0027
333 0.0827 0.081 0.0813 0.0813 0.0817 0.0813 0.0813 0.0813 0.0005
369 0.0827 0.0813 0.0813 0.0813 0.0817 0.0813 0.0815 0.0815 0.0005
416 0.0825 0.081 0.0813 0.0813 0.0817 0.0813 0.0813 0.0813 0.0005
436 0.1269 0.1271 0.1271 0.1271 0.1274 0.1215 0.1215 0.1215 0.0029
513 0.1269 0.1271 0.1271 0.1271 0.1274 0.1218 0.1218 0.1218 0.0028
544 0.1269 0.1271 0.1271 0.1271 0.1274 0.1218 0.1218 0.1218 0.0028
589 0.0827 0.0813 0.0813 0.0813 0.082 0.0815 0.0815 0.0815 0.0005

Table 3: Characteristic frequency peaks for imaginary informational spectrum for similar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
56 0.1279 0.1415 0.1415 0.1281 0.1428 0.1227 0.1225 0.1227 0.0092
57 0.1281 0.1281 0.1281 0.1281 0.1428 0.1227 0.1227 0.1225 0.0066
58 0.1281 0.1415 0.1415 0.1281 0.1428 0.1227 0.1225 0.1227 0.0092
84 0.0817 0.082 0.0822 0.0822 0.0827 0.0803 0.0803 0.0803 0.0010
113 0.1201 0.1203 0.1203 0.1203 0.1201 0.1227 0.1227 0.1225 0.0013
126 0.0817 0.0822 0.0822 0.0822 0.0808 0.0805 0.0805 0.0805 0.0008
173 0.0817 0.0822 0.0825 0.0822 0.0808 0.0803 0.0805 0.0805 0.0009
333 0.0817 0.0822 0.0822 0.0822 0.0808 0.0803 0.0805 0.0803 0.0009
369 0.0817 0.0822 0.0822 0.0822 0.0808 0.0803 0.0805 0.0803 0.0009
403 0.0378 0.0698 0.0698 0.0698 0.0713 0.0698 0.0698 0.0698 0.0114
416 0.0815 0.082 0.082 0.082 0.0805 0.0803 0.0803 0.0803 0.0008
436 0.1281 0.1281 0.1281 0.1281 0.1262 0.1225 0.1225 0.1225 0.0028
463 0.4846 0.4832 0.4832 0.4832 0.4841 0.4851 0.4849 0.4851 0.0009
544 0.1281 0.1281 0.1281 0.1281 0.1428 0.1227 0.1227 0.1225 0.0066
589 0.0817 0.0822 0.0825 0.0822 0.083 0.0805 0.0825 0.0825 0.0008

Table 4: Characteristic frequency peaks for absolute informational spectrum for dissimilar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
73 0.4885 0.4712 0.471 0.471 0.4707 0.02 0.02 0.0203 0.2352
81 0.4837 0.4839 0.0251 0.0576 0.0588 0.4861 0.4861 0.4861 0.2269
110 0.4605 0.4605 0.4607 0.0203 0.02 0.0205 0.0203 0.0205 0.2278
285 0.0586 0.0586 0.4341 0.4344 0.4346 0.0207 0.4363 0.0205 0.2118
359 0.4888 0.4888 0.4885 0.0188 0.4885 0.0215 0.458 0.0215 0.2393
373 0.4893 0.4898 0.49 0.4893 0.489 0.0769 0.0761 0.0764 0.2138
375 0.4297 0.4292 0.4283 0.4305 0.43 0.0381 0.0378 0.0378 0.2027
496 0.4463 0.4463 0.4466 0.3902 0.0234 0.0683 0.0686 0.0686 0.2019
536 0.4602 0.4602 0.4605 0.4602 0.4602 0.0203 0.0207 0.0205 0.2276
574 0.0395 0.0395 0.0395 0.0393 0.3502 0.4863 0.4858 0.4861 0.2250
588 0.0576 0.0573 0.0573 0.0576 0.0583 0.4863 0.4861 0.4863 0.2218
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Table 5: Characteristic frequency peaks for real informational spectrum for dissimilar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
73 0.4641 0.4702 0.4705 0.4705 0.4824 0.0195 0.0195 0.0195 0.2340
76 0.4702 0.4841 0.4841 0.0859 0.0727 0.409 0.021 0.021 0.2224
81 0.0246 0.4841 0.0249 0.1796 0.0591 0.4858 0.4858 0.4858 0.2261
110 0.4602 0.4605 0.4605 0.0193 0.021 0.4566 0.0195 0.4566 0.2272
154 0.0581 0.4841 0.0561 0.0561 0.0591 0.3773 0.4858 0.4858 0.2172
343 0.4902 0.1083 0.1083 0.0815 0.49 0.1088 0.4339 0.4339 0.1939
359 0.4883 0.4888 0.4885 0.0193 0.0188 0.0215 0.4585 0.0215 0.2465
373 0.491 0.4888 0.489 0.4888 0.4905 0.0781 0.0761 0.0761 0.2137
375 0.43 0.428 0.4278 0.43 0.4305 0.0371 0.0371 0.0371 0.2030
427 0.0224 0.0227 0.0227 0.3895 0.0224 0.4366 0.4366 0.3199 0.2027
536 0.4605 0.4605 0.4607 0.0212 0.4595 0.0193 0.0212 0.0212 0.2350
574 0.0403 0.04 0.04 0.0398 0.039 0.4863 0.4861 0.4861 0.2310
588 0.0581 0.0581 0.0581 0.0581 0.0588 0.4861 0.4858 0.4858 0.2213

Table 6: Characteristic frequency peaks for imaginary informational spectrum for dissimilar cases.

AAI ID H1N1 1933 H1N1 1947 H1N1 1979 H1N1 2009 H5N1 H1N2 H2N2 H3N2 STD
73 0.4632 0.4714 0.4714 0.4714 0.4837 0.0205 0.0203 0.0205 0.2339
76 0.0722 0.4832 0.4832 0.0717 0.4839 0.408 0.0754 0.0754 0.2104
81 0.0259 0.4834 0.0261 0.0571 0.0578 0.4871 0.4868 0.4868 0.2378
285 0.4334 0.1096 0.4336 0.4336 0.4346 0.0203 0.4356 0.0205 0.2007
359 0.4893 0.4898 0.4898 0.0183 0.4888 0.0224 0.0205 0.0205 0.2507
375 0.4307 0.429 0.429 0.4309 0.4295 0.0381 0.0381 0.0381 0.2027
343 0.4893 0.1074 0.1074 0.0825 0.489 0.0637 0.4351 0.4348 0.2003
421 0.0232 0.0237 0.0237 0.3902 0.0234 0.4358 0.4356 0.4356 0.2148
434 0.4653 0.0237 0.0237 0.4653 0.0234 0.4356 0.4356 0.4356 0.2197
536 0.4649 0.185 0.4597 0.4597 0.4605 0.0203 0.0203 0.0203 0.2204
557 0.0569 0.02 0.02 0.0571 0.0195 0.4085 0.4361 0.4361 0.2037
574 0.0393 0.039 0.039 0.0388 0.0403 0.4873 0.4851 0.4854 0.2312
588 0.0569 0.4029 0.0571 0.0571 0.0578 0.4868 0.4868 0.4868 0.2201

As the importance of the AAI that represent hydropho-
bicity, PK-C, and linker propensity to the neuraminidase
gene is established, it can be concluded that the rest of the
AAI which appear in Tables 1–6 have a higher degree of
association than the rest of the AAI in the database. Further
biological experiments are required regarding the biological
relationship of these indices to the influenza A NA gene.
One of the promising results is AAI ID 557 that represent
short- and medium-range nonbonded energy [45], which
only appears in the imaginary spectrum.

In the literature, when informational spectrum analysis
is used [12, 13], only the absolute spectrum is considered.
As the results show, only the use of the absolute spectrum
to determine how two or more protein classes are related
according to CFP is not sufficient. Several AAI do not appear
in the absolute spectrum and have significant biological
importance to the influenza A NA gene. One example is
AAI IDs 111 and 513 (Table 2) that represent polarity and
hydrophobicity, respectively. Additionally, AAI IDs for the

real informational spectrum are 154, 242, and 427 (Table 2)
and for the imaginary informational spectrum are 403, 421,
463, and 557 (Table 3), which do not appear in the absolute
spectrum and may also be biologically significant.

6. Conclusions

In this paper, a web-based server is developed and pre-
sented, named CISAPS, which provides complex informa-
tional spectrum analysis for protein sequences. As the results
show protein classes that present similarities or differences
according to the CFP in specific AAI, it is probable that
these classes are related with the protein feature that the
specific amino acid represents. Furthermore, the use of only
the absolute spectrum in the analysis of protein sequences
using the informational spectrum analysis is proven to be
insufficient, as biologically related features to the analysis of
influenza A subtypes appear individually either in the real or
the imaginary spectrum.
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CISA approach is a new concept for the protein sequence
analysis and can be easily adapted and potentially applied
(through its web server) in other areas as described below.

Development of New Drugs. Bioinformatics has become an
important component in drug discovery in the recent years,
by accelerating this complex, expensive, and time-consuming
process. ISA, in combination with the EIIP scale index, can
successfully be applied in the bioinformatics model for the
discovery and development of new drugs. As the EIIP scale
index represents the interaction potential of amino acids, the
development time of a new drug can considerably decrease
by applying ISA or CISA in the following ways:

(1) by extracting key features such as the CFP of com-
pounds that have shown activity against target dis-
eases and comparing them against molecular data-
bases,

(2) by using ISA and CISA, the selected compounds can
bemodified to increase the desired biological activity,

(3) additionally potential target areas can be identified by
selecting protein or nucleotide sequences domains.

An example of applying ISA in the area of drug discovery can
be found in [16] where this technique was applied in develop-
ment of HIV entry inhibitors and with such further potential
applications in HIV/AIDS therapeutic interventions [46],
outcome of which suggests targeting the variable region 3
(V3) of the HIV-1 gp120 at the early stage of the infection,
which is expected to help potentially develop approaches to
designing new HIV/AIDS therapeutic interventions.

Identification of Important Protein Sequence’s Domains. In
biology, similar or identical nucleotide or protein sequences
are called conserved sequences that can occur across different
species or presented in different molecules within the same
organism. In influenza research area, the identification of
such as a conserved domain is essential, especially any
receptor binding related domain to the development of
influenza inhibitors. By using ISA, the informational [17]
and structural [17] features as well as multiple conserved
domain [47] of HA with receptor-virus interaction were
investigated that relate with receptor-virus interaction.These
studies were intended to expand the collection of key regions
by discovering multiple domains of H1N1 and H5N1 HA
subtype 1 that can alter the receptor bindingmodel. Using the
same approach, mutations, F71S, T128S, E302K, and M314L,
in the H1N1 HA gene are recognised as necessary for the
human interaction. Additionally, positions 94D, 196D, and
274D in the H1N1 HA were marked as important hot spots
for mutations. One of these mutations hot spots, D274E, is
already identified in H1N1 isolates and its contribution to
the human host adaptation is identified. Furthermore, the
results in these studies propose that the influenza subtype
H1N1HAgenewill persist intomutating, which could further
promote the human interaction.These results were extracted
using CFP at frequencies 0.055 and 0.295. Another study
that uses ISA aims to predict amino acid residues in highly

conserved domains of the hormone prolactin (PRL) [19]. In
this study, ISA was implemented with the EIIP scale index
to extract the CFP of the PRL hormone and to determine
which amino acids contribute more to these frequencies, and
therefore to the PRL biological function. By using ISA, the
highly conserved regions were determined in aminoterminal
and C-terminus regions of PRL. As the paper [19] proposes,
predictions correspond with experimentally tested residues
using site-direct mutagenesis and photoaffinity labelling.

Investigation of Protein Sequences Interaction. Another bioin-
formatics area in which ISA is applied is the analysis of
protein sequence interaction. By using ISA with EIIP index
scale’s interactions between oncogene, IL-2, and p53 tumor
suppressor proteins were analysed [18]. In order to inves-
tigate the common interactions of these protein sequences,
CFP needs to be determined. As the results of this study
have shown, ISA can be effectively used to extract features
from protein sequences related to their common biological
function. All three interactive protein sequences used share
the CFP at frequency 0.0322. This identified feature is a
distinguishing feature of oncogene proteins and can be used
to characterise promotion of uncontrolled cell growth. Fur-
thermore, anticancerous properties can be identified using
CFP features and peptides can be designed to exhibit only
these characteristics. As these results [18] show, ISA and
CISA can provide a new method to understand information
presented in a protein sequence’s primary structure. Finally,
these results can be used to contribute significantly in the
development of new biomaterials by accelerating complex
costly and time consuming procedures.

This web-based server enables researchers with little
knowledge of signal processingmethods to apply and include
complex informational spectrum analysis to their work.
Furthermore, in the applications discussed above only one
amino acid index, commonly EIIP, is used to extract CFP
features. CISAPS uses a collection of 611 unique AAI; each
one represents a different property to perform the analysis.
Moreover, in this paper, various technical issues such as DFT
resolution andwindowing thatmay affect the analysis are also
addressed.
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