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Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease. Accordingly, 3-nitropropionic acid (3-NP) has
been found to effectively produce HD-like symptoms. Luehea divaricata (L. divaricata), popularly known in Brazil as “agoita-
cavalo,” may act as a neuroprotective agent in vitro and in vivo. We evaluated the hypothesis that the aqueous extract of L. divaricata
could prevent behavioral and oxidative alterations induced by 3-NP in rats. 25 adult Wistar male rats were divided into 5 groups:
(1) control, (2) L. divaricata (1000 mg/kg), (3) 3-NP, (4) L. divaricata (500 mg/kg) + 3-NP, and (5) L. divaricata (1000 mg/kg) +
3-NP. Groups 2, 4, and 5 received L. divaricata via intragastric gavage daily for 10 days. Animals in groups 3, 4, and 5 received
20 mg/kg 3-NP daily from days 8-10. At day 10, parameters of locomotor activity and biochemical evaluations were performed.
Indeed, rats treated with 3-NP showed decreased locomotor activity compared to controls. Additionally, 3-NP increased levels of
reactive oxygen species and lipid peroxidation and decreased ratio of GSH/GSSG and acetylcholinesterase activity in cortex and/or
striatum. Our results suggest that rats pretreated with L. divaricata prior to 3-NP treatment showed neuroprotective effects when

compared to 3-NP treated controls, which may be due to its antioxidant properties.

1. Introduction

Huntington’s disease (HD) is an autosomal dominant pro-
gressive neurodegenerative disorder, characterized by motor
dysfunction, emotional disturbances, abnormal involuntary
movements, dementia, and weight loss [I, 2]. The neu-
ropathological changes associated with these physical symp-
toms of HD include progressive neuronal degeneration and
atrophy primarily affecting the striatum and cerebral cortex
[3, 4]. This neurodegenerative disorder is believed to be
caused by an expanded trinucleotide CAG sequence in exon
1 of the Huntingtin gene (Htt), which encodes a stretch of
glutamines in the Huntingtin protein [5]. Formation of Hitt
aggregates and alteration of overall gene expression profiles

have also been reported in peripheral tissues of HD patients
[6, 7]. Compelling evidence also exists that mutant Hunt-
ingtin alters mitochondrial trafficking and function [8, 9].
HD-like symptoms may be induced experimentally in
animal models through the administration of specific neu-
rotoxins. 3-Nitropropionic acid (3-NP), a natural neurotoxin
produced by several species of fungi (Aspergillus flavus and
Astragalus arthrinium) and plants (Indigofera endecapylla)
[10, 11], has been used successfully to induce HD-like
symptoms in experimental animals [12, 13]. The mechanism
by which 3-NP induces neurotoxicity involves the irre-
versible inhibition of succinate dehydrogenase (SDH) [14, 15],
which results in mitochondrial dysfunction, as evidenced
by intracellular energy failure and oxidative stress [16,17].



3-NP-treated animals present with motor-behavioral disor-
ders, including gait, an inability to balance over a narrow
beam, deficits in foraging or exploratory behaviors and
cognition, and increased anxiety and/or depression [15, 18].
Since it is generally recognized that 3-NP administration
induces HD-like symptoms in animals with a phenotype
similar to the inherited human disease, this model represents
a valuable tool to evaluate the effect of novel therapies to treat
HD [19].

Therapeutic strategies aimed at preventing or delaying
neuronal degeneration represent a reasonable choice for
the treatment of neurodegenerative diseases [4, 20, 21].
Accordingly, there is a growing interest in the use of natural
antioxidants, including polyphenols found in medicinal and
dietary plants that might prevent cell death and damage
associated with the administration of various neurotoxins
13, 22-24].

The naturally occurring plant Luehea divaricata Mart.
(Tiliaceae) (L. divaricata), popularly known in South Amer-
ica as “agoita-cavalo” [25, 26], contains numerous polyphe-
nols. This plant has been used traditionally in folk medicine
to treat dysentery, leucorrhea, rheumatism, blennorrhea,
tumors, bronchitis, and skin lesions, among others [26-
28]. A phytochemical screening of L. divaricata leaves has
revealed the presence of flavonoids, tannins, saponins, and
mucilage. Additionally, alkaloids, fixed oils, anthocyanidins,
carotenoids, and polysaccharides have also been found to
be present in crude extracts of L. divaricata [28]. Although
aqueous herbal extracts have attracted recent attention since
they can be consumed in a daily basis as a decoction,
few studies have evaluated the potential neuroprotective
therapeutic effects of aqueous extracts, prepared as a tea,
from leaves of L. divaricata. Previous studies have reported
genotoxicity of the aqueous extract of L. divaricata leaves
[29], a cytostatic effect of the methanolic extract of the leaves
and antimutagenic activity of the aqueous extract of the bark
[30]. In addition to these previous reports, the design of
our research studies was also based on (1) previous data
supporting the rational search for therapeutic strategies that
either potentiate endogenous antioxidants or reduce oxida-
tive stress generation in order to delay HD progression and
(2) the knowledge that infusion of the leaves of L. divaricata
in hot water releases high concentrations of polyphenols and
flavonoids [31, 32]. Given the growing interest in natural
antioxidants, especially polyphenols, present in medicinal
and food plants, the putative antioxidant properties of L.
divaricata aqueous extracts, the involvement of oxidative
stress in neurodegenerative disorders (HD-like symptoms)
induced by 3-NP, and the paucity of evidence concerning
the potential protective effect of L. divaricata in experimental
models of neurotoxicity/neuropathology, we evaluated the
hypothesis that pretreatment with the aqueous extract of L.
divaricata could prevent or attenuate the neurobehavioral
sequelae induced by 3-NP administration in rats. Using
high performance liquid chromatography (HPLC), we also
characterized the phytochemical profile of the L. divaricata
extract used in our study.
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2. Materials and Methods

2.1. Chemicals. 3-Nitropropionic acid, thiobarbituric acid
(TBA), malonaldehyde-bisdimethylacetal (MDA), and 2',7'-
dichlorofluorescein diacetate (DCFH-DA) were purchased
from Sigma (St. Louis, MO, USA). All other reagents were
obtained from local suppliers. Methanol, phosphoric acid,
gallic acid, chlorogenic acid, caffeic acid, and rosmarinic acid
were purchased from Merck (Darmstadt, Germany). Cate-
chin, epicatechin, vitexin, rutin, quercetin, and luteolin were
acquired from Sigma Chemical Co. (St. Louis, MO, USA).
High performance liquid chromatography (HPLC-DAD) was
performed with a Shimadzu Prominence Auto Sampler (SIL-
20A) HPLC system (Shimadzu, Kyoto, Japan), equipped with
Shimadzu LC-20AT reciprocating pumps connected to a
DGU 20A5 degasser with a CBM 20A integrator, SPD-M20A
diode array detector, and LC solution 1.22 SP1 software.

2.2. Plant Material. The leaves of Luehea divaricata Mart.
(family Tiliaceae) were used as the plant material and were
collected in Santa Maria (Rio Grande do Sul, Brazil). The
collection of the leaves of L. divaricata was carried out
during the flowering period, which occurs in December. The
taxonomic identification was confirmed by Department of
Industrial Pharmacy of the Federal University of Santa Maria
and registered under the number 225 in the Herbarium of the
Industrial Pharmacy Department.

2.3. Preparation of the Extract. The leaves were dried for five
days in a kiln with controlled temperature (40°C). Aqueous
extract was obtained by decoction for 10 minutes in distilled
water at 100°C. The resulting extract was then filtered by using
a filter paper to remove particles in suspension. L. divaricata
at 500 mg/kg and 1000 mg/kg were chosen to treat experi-
mental animals based on previous pilot experiment, which
demonstrated none toxic effect of the extract. Of particular
importance, literature data are not conclusive regarding L.
divaricata therapeutic dose in animal experiments [27].

2.4. Quantification of Compounds by HPLC-DAD. The phe-
nolic compound profiles were determined according to the
procedure proposed by Filho et al. [33], with slight modifica-
tions. The aqueous extract of Luehea divaricata (25 mg/mL)
was analysed using a reversed phase carried out under gra-
dient conditions using Phenomenex C;g column (4.6 mm x
250 mm) packed with 5 ym diameter particles. Spectral data
were recorded from 200 to 700 nm during the whole run. The
mobile phase was composed of solvent (A) water : phosphoric
acid (99:1, v/v) and (B) methanol : water (95:5, v/v) and the
composition gradient was as follows: 0-5% B in 10 min, 5-
20% B in 35min, 20-50% B in 50 min, and 50-100% B in
70 min. A flow rate of 0.6 mL/min was used, 40 4L of sample
was injected, and the wavelengths were 271 nm for gallic acid,
280 nm for catechin and epicatechin, 327 nm for chlorogenic,
caffeic, and rosmarinic acids, and 366 nm for luteolin, vitexin,
quercetin, and rutin. Samples and mobile phases were filtered
through a 0.45pym membrane filter (Millipore) prior to
HPLC injection. Phenolic compounds were identified and
quantified by comparing their retention time and UV-visible
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spectral data to known previously injected standards. Stock
solutions of standards references were prepared in the HPLC
mobile phase at a concentration range of 0.030-0.450 mg/mL.
The chromatography peaks were confirmed by comparing its
retention time with those of reference standards and by DAD
spectra (200 to 600 nm). Calibration curve for gallic acid is
Y = 12609x + 1187.3 (r = 0.9999); catechinis Y = 11952x +
1308.5 (r = 0.9997); epicatechin is Y = 11845x + 1327.9
(r = 0.9999); chlorogenic acid is Y = 11695x + 1263.7
(r = 0.9994); caffeicacidis Y = 12704x+1326.8 (r = 0.9998);
rosmarinic acid is Y = 12549x + 1243.6 (r = 0.9995); vitexin
is Y = 11895x + 1306.7 (r = 0.9998); luteolin is Y =
13475x + 1279.1 (r = 0.9999); rutin is Y = 12569x + 1307.5
(r = 0.9997); and quercetin is Y = 12409x + 1187.3 (r =
0.9995). All chromatography operations were carried out at
ambient temperature and in triplicate. The limit of detection
(LOD) and limit of quantification (LOQ) were calculated
based on the standard deviation of the responses and the
slope using three independent analytical curves. LOD and
LOQ were calculated as 3.3 and 10 ¢/S, respectively, where
o is the standard deviation of the response and S is the slope
of the calibration curve [33].

2.5. Animals. All experiments were conducted using male
adult Wistar rats (200-250 g) from our own breeding colony.
Animals were housed in cages (5 rats per cage) with free
access to food and water. They were kept in a 12h light/12h
dark cycle, with lights on at 7: 00 a.m., in an air-conditioned
room (22 + 2°C). Commercial diet and tap water were sup-
plied ad libitum. Animal care and all experimental procedures
were conducted in compliance with the Committee on Care
and Use of Experimental Animal Resources (CEUA/UFSM
102/2014). All efforts were made to minimize the number of
animals used and their suffering.

2.6. 3-NP Induced Neurotoxicity. 3-NP was diluted in buff-
ered saline (pH 7.4) and administered intraperitoneally (i.p.)
at a dose of 20 mg/kg once a day, for a period of 3 days to
induce HD-like symptoms. The 3-NP dose was chosen based
in a preliminary study in which were observed biochemistry
alterations characteristic of 3-NP neurotoxicity, but with
some modifications [13].

2.7. Treatment. Twenty-five animals were divided into five
groups with five animals each.

Group 1 (control) received pretreatment with distilled
water for 7 days, by intragastric gavage.

Group 2 (L. divaricata) received daily, during 7 days,
the aqueous extract at a concentration of 1000 mg/kg via
intragastric gavage.

Group 3 (3-NP) received pretreatment with distilled
water for 7 days, by intragastric gavage.

Group 4 (L. divaricata + 3-NP) received daily, during 7
days, the aqueous extract at a concentration of 500 mg/kg via
intragastric gavage.

Group 5 (L. divaricata + 3-NP) received daily, during 7
days, the aqueous extract at a concentration of 1000 mg/kg
via intragastric gavage.

On the eighth day, groups 3, 4, and 5 received the
administration of 20 mg/kg 3-NP via i.p. [13] for 3 consecutive
days, while groups 1 and 2 received only saline (also via i.p.).
During the administration of 3-NP, rats continued to receive
the aqueous extract by gavage, which results in 10 days of
treatment.

All the behavioral parameters were observed on day 10,
3h after the last 3-NP administration. At the end of the
behavioral analyses, rats were euthanized, in a total of 6h
after the last 3-NP administration, the brain was removed,
and the cortex and the striatum were dissected. A portion of
the cortex and striatum were homogenized (1:10) in 10 mM
Tris-buffer (pH 7.4) and centrifuged at 2.500 rpm for 12 min.
The low-speed supernatant fraction obtained was used for
biochemical analyses.

2.8. Behavioral Evaluations

2.8.1. Open Field. Animals were individually placed at the
center of the open field apparatus (45cm x 45cm x 30 cm,
divided into 9 squares). Spontaneous ambulation (number of
segments crossed with the four paws) and exploratory activity
(expressed by the number of rearings on the hind limbs) were
recorded for 5 min [34].

2.8.2. Rotarod Task. The integrity of motor system was eval-
uated using the Rotarod test. Briefly, the Rotarod apparatus
consists of a rod 30 cm long and 3cm in diameter that is
subdivided into three compartments by discs from 24 cm
in diameter. The rod rotates at a constant speed of 10 rpm.
The animals were given a prior training session before the
initialization of any therapy to acclimate them to Rotarod
apparatus. The latency for first fall and number of falls from
the rod were noted. The cut-off time was 120 s [35].

2.9. Biochemical Analysis

2.9.1. Estimation of ROS Formation. 2'-7'-Dichlorofluores-
cein (DCF) levels were determined as an index of the reactive
species production by the cellular components [36]. Aliquots
(20 L) of homogenate of cortex and striatum were added
to a medium containing 2,460 yL Tris—HCI buffer (10 mM,
pH 7.4) and 20 uL 2'-7'-dichlorofluorescein diacetate DCFH-
DA (0.1mM). After DCFH-DA addition, the medium was
incubated in the dark for 1 h until fluorescence measurement
procedure (excitation at 488 nm and emission at 525nm,
and both slit widths used were at 1.5nm). DCF levels were
determined using a standard curve of DCE, and results were
corrected by the protein content.

2.9.2. Thiobarbituric Acid Reactive Substances (TBARS) Levels
Determination. Lipid peroxidation was determined by mea-
suring thiobarbituric acid reactive substances (TBARS) as
described by [37]. An aliquot (200 uL) of homogenate of brain
structures (cortex and striatum) was mixed with 500 pL thio-
barbituric acid (TBA, 0.6%), 200 uL sodium dodecyl sulphate
(SDS, 8.1%), and 500 uL acetic acid (500 mM, pH 3.4) and
incubated at 100°C for 1h. TBARS levels were measured at



532 nm using a standard curve of malondialdehyde (MDA),
and the results were reported as nmol MDA/mg protein.

2.9.3. Fluorometric Assay of Reduced (GSH) and Oxidized
Glutathione (GSSG). For measurement of GSH and GSSG
levels we used the method previously described by [38].
Briefly, 400 uL of homogenate each of brain structures (cortex
and striatum) was mixed to 200 uL trichloroacetic acid
(TCA, 13%). Resulting mixtures were centrifuged at 4°C at
13,000 rpm for 10 min. For GSH measurement, 100 uL of
the supernatant was diluted in 1,800 yL of phosphate-EDTA
buffer (sodium phosphate 100 mM and EDTA 5mM, pH
8) and 100 uL of O-phthalaldehyde (OPT 1mg/mL). The
mixtures were incubated at room temperature for 15 min and
their fluorescent signals were recorded in the RF-5301 PC
Shimadzu spectrofluorometer (Kyoto, Japan) at 420 nm of
emission and 350 nm of excitation wavelengths.

For measurement of GSSG levels, a 250 uL of the super-
natant was incubated at room temperature with 100 uL
of N-ethylmaleimide (NEM 0.04 M) for 30 min at room
temperature, and after that 140 L of the mixture was added to
1,760 puL of sodium hydroxide (NaOH, 0.1 N) buffer, following
the addition of 100 L. OPT, and incubated for 15 min, using
the procedure outlined above for GSH assay. Collectively, data
were expressed as a ratio among reduced (GSH) and oxidized
(GSSG) glutathione (GSH/GSSG).

2.9.4. Acetylcholinesterase (AChE) Activity. AChE activity
was determined according to the method of [38], with
some modifications. In brief, we used 875 uL of the reaction
mixture, containing potassium phosphate buffer (0.1 M, pH
8), 50 uL 5,5-dithiobis-2-nitrobenzoic acid (DTNB, 10 mM),
25uL of homogenate of cortex and striatum, and 50 uL
acetylthiocholine iodide (9 mM). Change in absorbance was
monitored for 2 min at 412 nm.

2.9.5. Protein Determination. The protein content was deter-
mined as described previously [39], using bovine serum
albumin (BSA) as standard.

2.10. Statistical Analysis. Statistical analysis was performed
using one-way analysis of variance (ANOVA), followed by
multiple comparison test of Newman-Keuls when appropri-
ate. Data are expressed as means + SEM. Values of p < 0.05
were considered significant. Differences between groups of
HPLC were assessed by an analysis of variance model and
Tukey’s test. The level of significance for the analyses was set
to p < 0.05.

3. Results

3.1. HPLC Analysis. HPLC fingerprinting of Luehea divar-
icata aqueous extract revealed the presence of gallic acid
(tg = 9.85min; peak 1), catechin (f; = 14.93 min, peak 2),
chlorogenic acid (t; = 21.07 min; peak 3), caffeic acid (¢,
= 2519 min; peak 4), epicatechin (t; = 31.84 min; peak 5),
vitexin (tx = 41.08 min; peak 6), rosmarinic acid (t; =
45.98 min; peak 7), rutin (fz = 48.37 min; peak 8), quercetin
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TaBLE 1: Composition of Luehea divaricata aqueous extract.

Compounds Luehea divaricata LOD LOQ
mg/g % pug/mL pug/mL
Gallic acid 3.51 + 0.02° 0.35 0.025 0.078
Catechin 6.27 + 0.01° 0.62 0.018 0.059
Chlorogenic acid ~ 3.42 +0.01° 0.34 0.009 0.031
Caffeic acid 1.68 + 0.03° 0.16 0.011 0.037
Epicatechin 8.31+0.01¢ 0.83 0.024 0.071
Vitexin 15.07 + 0.01° 1.50 0.013 0.049
Rosmarinic acid 6.12 +0.02° 0.61 0.029 0.091
Rutin 1.59 + 0.01° 0.15 0.010 0.034
Quercetin 10.76 + 0.03 1.07 0.030 0.096
Luteolin 19.45 + 0.018 1.94 0.007 0.023

Results are expressed as mean + standard error of mean (SEM) of three
determinations. Averages followed by different letters differ by Tukey test at
P <0.05.

150 ]

100

(mAU)

50 1

(min)

FIGURE 1: Representative high performance liquid chromatography
profile of Luehea divaricata aqueous extract. Gallic acid (peak 1),
catechin (peak 2), chlorogenic acid (peak 3), caffeic acid (peak 4),
epicatechin (peak 5), vitexin (peak 6), rosmarinic acid (peak 7), rutin
(peak 8), quercetin (peak 9), and luteolin (peak 10).

(tgr = 54.23 min; peak 9), and luteolin (t; = 58.11 min; peak 10)
(Figure 1 and Table 1).

3.2. Behavioral Alterations. Locomotor and exploratory
activity in the open field test were significantly decreased
following 3-NP administration (Figures 2(a) and 2(b),
resp.). Treatment with L. divaricata (500 or 1000 mg/kg)
partially restored both behavioral parameters to control
levels (p < 0.05, Figures 2(a) and 2(b)). Additionally,
statistical analysis of motor performance in the Rotarod
task demonstrated that 3-NP caused a significant reduction
of latency to remain on the rotating rod and significantly
increased the number of falls off the rod when compared
to the control group. Treatment with L. divaricata (500
or 1000 mg/kg) was found to completely and significantly
attenuate 3-NP-induced changes in Rotarod latency scores
and partially restore the animal’s ability to remain on the
Rotarod (p < 0.05, Figures 3(a) and 3(b)). Surprisingly,
L. divaricata (500 or 1000 mg/kg) treatment was found
to significantly decrease the latency to the first fall, when
compared to control group (p < 0.05, Figure 3(a)).



Evidence-Based Complementary and Alternative Medicine 5

50 Open field 25 Open field
40 | —|— 20 - T
| |
# # : -
& 30 — 15 - s
g % !
172] = | |
g 5 i .o 4
Q 20 4 (=4 10 . —l_
)
10 * 5 pnd .
| |
: =
0 1 ~ I = I T 0 : 1 T T T T
— = f=3 a9} (=3 (=3
3 A ” 5 a S a = =
— + j ; T
Ay
Z & Z g
i Z : Z
o 1 o |
o o
(mgrkg) (mg/kg)

(a) (b)

FIGURE 2: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on locomotor and
exploratory activities. (a) Number of crossings in the open field; (b) number of rearings in the open field. Each bar represents means + SEM

(n = 5). * indicates statistic difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA, followed
by Newman Keuls test for post hoc comparison (p < 0.05).
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FIGURE 3: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on latency to the
first fall (a) and number of falls (b) in motor performance of rats in the Rotarod task. Each bar represents means + SEM (n = 5). % indicates

statistic difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA, followed by Newman Keuls
post hoc test (p < 0.05).

3.3. Biochemical Alterations. Animals treated with 3-NP (p < 0.05, Figure 4(a)), while its effect on striatum was
showed a significant increase (p < 0.05) in DCF oxidation, partial (Figure 4(b)). In addition, 3-NP administration sig-
an index of reactive oxygen species (ROS) formation, in  nificantly increased lipid peroxidation, measured by TBARS
both cortex and striatum, when compared with control  production, in the cortex when compared to the control
group (Figures 4(a) and 4(b), resp.). L. divaricata treat- group (p < 0.05, Figure 5(a)). L. divaricata treatment, at
ment completely prevented ROS formation in the cortex  both concentrations, completely prevented the 3-NP-induced
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FIGURE 4: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on ROS formation
in cortex (a) and striatum (b) of treated rats. Data are expressed as nmol DCF/mg. Each bar represents means + SEM (n = 5). = indicates
statistic difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA, followed by Newman Keuls

post hoc test (p < 0.05).
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FIGURE 5: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on TBARS levels
in cortex (a) and striatum (b). Data are expressed as nmol MDA/mg of tissue. Each bar represents means + SEM (n = 5). * indicates statistic
difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA, followed by Newman Keuls post hoc

test (p < 0.05).

increase in TBARS levels in the cortex (p < 0.05). Striatal
TBARS levels were not modified by 3-NP administration
and/or L. divaricata treatment (Figure 5(b)).

Administration of 3-NP also caused a marked and sig-
nificant decrease in the ratio of reduced (GSH) to oxidized
(GSSG) glutathione levels in cortex from treated animals
(p < 0.05, Figure 6(a)). Treatment with L. divaricata (500

or 1000 mg/kg) completely restored the GSH/GSSG ratio in
the cortex of treated animals (p < 0.05, Figure 6(a)). In
striatum the ratios in GSH/GSSG levels were not changed by
the treatment with 3-NP and/or L. divaricata (Figure 6(b)).
Administration of L. divaricata, either alone or in combi-
nation with 3-NP, significantly decreased acetylcholinesterase
activity (p < 0.05, Figure 7(a)) in the cortex, being the 3-NP
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FIGURE 6: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on GSH/GSSG
ratio in cortex (a) and striatum (b) of treated rats. Data are expressed as nmol GSH/mg of tissue. Each bar represents means + SEM (n = 5).

* indicates statistic difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA, followed by
Newman Keuls post hoc test (p < 0.05).
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FIGURE 7: Effects of 3-NP (20 mg/kg, i.p., 3 days) and/or Luehea divaricata (LD) (500 and 1000 mg/kg, by gavage, 10 days) on the
acetylcholinesterase activity in cortex (a) and striatum (b) of treated rats. Data are expressed as % of control. Each bar represents means +
SEM (n = 5). * indicates statistic difference from control group and # indicates statistic difference from 3-NP group by one-way ANOVA,
followed by Newman Keuls post hoc test (p < 0.05).

without effect per se. However, the significant inhibition 4. Discussion

of activity of acetylcholinesterase activity in the striatum

induced by 3-NP administration remained unchanged fol-  Inthe present study we tested the hypothesis that the aqueous
lowing L. divaricata treatment (500 or 1000 mg/kg; p < 0.05,  extract of L. divaricata could prevent behavioral dysfunction
Figure 7(b)). and biochemical changes associated with an experimental



model of HD induced by 3-NP administration in rats. Our
results demonstrate that L. divaricata treatment protected
against HD-associated behavioral deficits (improved locomo-
tor and Rotarod performance) and attenuated biochemical
changes associated with oxidative stress (decreased ROS
formation in cortex and striatum, reduced lipid peroxidation,
and restored GSH/GSSG ratio in cortex) induced by 3-NP.

Administration of 3-NP in rats for 3 consecutive days
caused significant motor dysfunction, characterized by
decreased Rotarod and locomotor performance (Figures 2
and 3), suggesting that the effects of 3-NP administration
mimic either juvenile onset or later stages of HD-like behav-
iors in humans [5, 40]. These observations are supported by
previous studies reporting that 3-NP administration induces
motor system-associated behavioral deficits [3, 41]. Alter-
ations in locomotor behavior may be due to the specific action
of 3-NP, those regions of striatum and cortex which control
body movement. Additionally, recent studies have indicated
that abnormal behavioral symptoms in early HD patients are
likely due to either cholinergic interneuron dysfunction in
striatal circuits or direct cell loss within the lateral striatum,
ventral pallidum, and entopeduncular nucleus [12, 42]. Pre-
vious reports have also confirmed 3-NP-induced lesions and
oxidative damage in cortex and hippocampus, which may
underlie deficits in motor performance [43, 44].

In the present study, pretreatment with L. divaricata
significantly attenuated behavioral alterations (locomotor
function as well as Rotarod performance) following 3-NP
administration, suggesting that this compound may have
novel therapeutic potential for the treatment of HD and
related disorders (Figures 2 and 3). Previous studies support
the use of antioxidant therapy to restore behavioral function
and oxidative defense levels in 3-NP-treated animals [45, 46].
Using other plant species, a previous study [47] has reported
that the root extract of Withania somnifera, characterized by
high antioxidant content, reverses motor dysfunction caused
by 3-NP in rats. Treatment with antioxidants (polyphe-
nols principally) has also been shown to protect in vivo
against oxidative damage in a model of childhood-onset
hydrocephalus in rats and it was found to be effective in
improving learning and memory in senescence-accelerated
mice including Alzheimer transgenic mice [48]. Thus, con-
sidering the presented results, the use of L. divaricata aqueous
extract could be considered as a therapeutic strategy for
the treatment and/or search for new drugs to treat/prevent
human HD-like symptoms [13, 49]. However, despite no sig-
nificant effect on locomotor activity, as assessed by open field
test, treatment with L. divaricata was found to significantly
decrease the latency to first fall in Rotarod test (Figure 3). This
result was unexpected and without correlation with the other
findings in our study; however, this result pointed out here
deserves further attention in future studies with this plant in
order to detect possible side effects of extract administration.
Moreover, evidence suggests the involvement of oxidative
stress in 3-NP neurotoxicity that includes a rapid increase
in ROS production in neuronal cells [50] and hydroxyl free
radicals, lipid peroxidation, and impaired antioxidant defense
in the brain [51]. Accordingly, in this study we found a proox-
idant effect of the 3-NP, which caused an increase in ROS
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production (Figure 4), as measured via DCF oxidation, and in
lipid peroxidation (Figure 5), both in cortex and in striatum.
These changes were significantly restored by pretreatment
with L. divaricata extract, suggesting neuroprotective action
due to its antioxidant effect. In fact, many studies indicate
that the antioxidant activities of aqueous extracts of plants are
benefits to the treatment of several diseases by the presence of
numerous polyphenols, especially flavonoids [52, 53], which
are much more effective than vitamins C and E in protecting
cells from free radical damage [54]. In support to this notion,
we found a lot of polyphenols in our extract (Figure 1 and
Table 1) that could be active in our study, thus preventing
against 3-NP-induced oxidative changes, and consequently
against 3-NP-induced locomotors impairment.

Alterations in the antioxidant defense system were also
observed in this study, as evidenced by a decrease in
concentration of GSH/GSSG ratio in the cortex of 3-NP-
treated rats (Figure 6(a)). GSH, a nonenzymatic antioxidant,
plays an important role in reduction of ROS in brain. So,
diminished GSH/GSSG levels have been linked with normal
aging and neurodegenerative diseases [41, 55]. Moreover,
treatment with L. divaricata significantly prevented 3-NP-
induced GSH/GSSG consumption. Antioxidants have also
been shown to protect the nervous system against variety of
toxins [13, 56]. A previously published report [57] demon-
strated the efficacy of combined fish oil and quercetin to
enhance GSH levels in 3-NP-treated animals.

Finally, we found that aqueous extract L. divaricata
inhibited acetylcholinesterase activity, which could be due to
specific compounds present in the aqueous extract. Previous
studies have demonstrated that the compound rutin is an
acetylcholinesterase (AChE) inhibitor in human plasma in
vitro [58] suggesting that L. divaricata leaf extract may
have anticholinesterase activity in vivo [22]. Extracts of L.
divaricata may therefore be useful in treatments where acetyl-
cholinesterase inhibition is employed, including neurological
disorders such as AD. Despite advances in the field, AD
remains a devastating neurodegenerative disease with limited
therapeutic options. One of the most useful approaches for
the treatment of AD is based on the development of AChE
inhibitors to attenuate disease-associated deficits of cerebral
acetylcholine levels [59]. In addition to its anticholinesterase
activity, L. divaricata extract may also be useful in AD
due to the presence of the compound quercetin, which
possesses antioxidant activity, enhances neuronal function,
and decreases extracellular fB-amyloidosis in addition to
other beneficial effects on the nervous system including a
protective effect on cognitive and emotional function in aged
triple-transgenic AD mice [60, 61].

5. Conclusion

Our study demonstrates that the aqueous extract of L. divar-
icata is able to prevent oxidative and behavioral changes in
an experimental model of HD induced by treatment with 3-
NP in rats. These results contribute to the body of knowledge
concerning plant extracts and their various components that
may be used as novel therapeutic strategies and suggest
that this unique plant may be potentially efficacious in
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the prevention or treatment of neurodegenerative diseases,
including HD.
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