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Recently, Bluetooth-based indoor positioning has become a hot research topic. However, the instability of Bluetooth RSSI (Received
Signal Strength Indicator) promotes a huge challenge in localization accuracy. To improve the localization accuracy, this paper
measures the distance of RSSI vectors on their low-dimensional manifold and proposes a novel positioning method IWKNN
(Isomap-basedWeighted𝐾-Nearest Neighbor).The proposed method firstly uses Isomap to generate low-dimensional embedding
for RSSI vectors. Then, the distance of two given RSSI vectors is measured by Euclidean distance of their low-dimensional
embeddings. Finally, the position is calculated by WKNN. Experiment indicates that the proposed approach is more robust and
accurate.

1. Introduction

Positioning is a basic requirement in people’s daily life. It is
the basis of LBS (Location-Based Service) [1, 2]. Generally,
positioning problems could be classified as outdoor and
indoor. The outdoor positioning mainly uses GPS (Global
Positioning System), GPRS (General Packet Radio Service),
and so forth, while the indoor positioning mostly utilizes
short range signals, such as Wi-Fi (Wireless-Fidelity) [3, 4]
and Bluetooth [5–7]. And the testing position is determined
based on the received signals.These positioning technologies
have been widely used in different kinds of applications.

Beacon is a commonly used Bluetooth signal source.
Figure 1 shows a picture of beacon. It is small and low-power
Bluetooth dissipation equipment. It can work for even two
years just with a fastener battery. So beacon can be placed
without too many restrictions, having broad prospects of
application.

This paper aims to improve the accuracy of Bluetooth-
based indoor positioning, when beacons are preplaced at
some given places in a room. A smart device is used to receive
these signals. Then the position of device can be calculated
based on received Bluetooth RSSI data.

Classical positioning methods could be classified as two
types. One is function-based model. This kind of method is

mostly developed based on signal propagation function [8, 9],
for example, trilateration algorithm [10, 11] and IoT (Internet
of Things) [12]. This kind of model requires an estimated
signal propagation function. If the positions of emitters are
given, then any testing location could be calculated based
on RSSI data and signal propagation function. This kind of
method does not need to store the vast RSSI data of reference
positions. The localization accuracy relies on the measure-
ment error of signal propagation function. The less the error
is, the more accurate the localization is. Because the signal
intensity of beacon is instable, the error of signal propagation
model would be relatively large. So it is inaccurate to localize
a Bluetooth receiver by this kind of method.

The other kind of method could be described as classifi-
cation algorithm, which is built up based on position finger-
print. Figure 2 illustrates general positioning process based
on fingerprint. Lemic et al. [13] and Jaffre et al. [14] determine
the final position by KNN (𝐾-Nearest Neighbor). They find
the nearest𝐾 reference positions to calculate unknown posi-
tion according to Euclidean distance of RSSI vectors. Caso et
al. [15] develop WKNN (Weighted 𝐾-Nearest Neighbor) for
3D positioning by weighting each nearest neighbor. Besides
this, Shin et al. [16] propose EWKNN (Enhanced Weighted
K-Nearest Neighbor) by making parameter 𝐾 variable to
improve the positioning performance.
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Figure 1: A picture of beacon.

Cheng et al. [17] introduce SVM (Support Vector
Machine) to classify the RSSI vectors. Mu et al. [18] classify
the RSSI data by ANN (Artificial Neural Network). Zhe [19]
develops a positioning method based on Bayes method. He
uses more flexible models to estimate distributions of beacon
signals. Fras et al. [20] proposed a newmethod that combines
Bayes and WKNN. Alfakih et al. [21] develop a positioning
algorithm based on GMM (Gaussian Mixture Model). They
calculate the probability that the testing RSSI belongs to each
reference RSSI data.The final location is calculated by sum of
weighted coordinates of reference locations. Different from
Bayes method, GMM is to calculate the probability based on
Gaussian Mixture function.

Kim et al. [22] and Thuong et al. [23] estimate the
positioning performance for KNN algorithm. Jaffre et al. [14]
compare KNN and Bayes positioning method with several
different distance measurements and value 𝐾. Experimental
result states that KNN and Euclidean distance can get the
smallest mean positioning error when 𝐾 = 4. Zhang et
al. [24] use beacons as emitter and compare the positioning
performance of ANN, SVM, and improved KNN. The paper
reports that the improved KNN algorithm has the highest
positioning accuracy.

Because of the instability of Bluetooth, received RSSI
vectors have a large variety. This means that RSSI vectors of
faraway positions may have smaller Euclidean distances than
that of neighborhood. It leads to choosing a faraway reference
position as candidate location sometimes. This enlarges the
localization error of Euclidean distance based methods, such
as KNN and WKNN. So just using Euclidean distance to
measure similarity of RSSI vectors is not accurate. Bluetooth
positioning requires a more robust distance measurement
method.

Manifold learning [25] finds the low-dimensional embed-
ding for high-dimensional data. Researchers have pro-
posed different algorithms for manifold learning, such as
MDS (Multidimensional Scaling) [26], LLE (Locally Linear
Embedding) [27], and Isomap [28]. The geodesic distance is
a useful distance metric of Isomap in manifold learning. It
can be used to measure the similarity of high-dimensional

vectors. Figure 3 illustrates the comparison of Euclidian and
geodesic distances.

We consider Bluetooth indoor positioning as a high-
dimensional data matching problem. Calculate low-dimen-
sional embeddings for the training and testing RSSI data.
Use the Euclidian distance of low-dimensional embeddings
to measure the approaching extent of two given RSSI vectors.
The final location is calculated by WKNN. Figure 4 demon-
strates the flow chart of proposed method.

Figure 5 illustrates the comparison of positioning results
of WKNN and proposed IWKNN. Figure 5(a) gives a local-
ization illustration by WKNN based on Euclidian distance,
while Figure 5(b) shows a positioning process by proposed
IWKNN. In Figure 5, the red rectangles are real testing
positions. The pink dots are selected 𝐾 nearest training
positions (𝐾 = 4). The green hollow dots are obtained
final position. Figure 5 shows that the proposed method can
select more proper nearest positions than WKNN, achieving
a better localization.

This paper is organized as follows: Section 2 introduces
the mathematical model of indoor positioning problem. Sec-
tion 3 illustrates the proposed localization algorithmbased on
Isomap andWKNN. Section 4 shows the experimental result
and analysis. Section 5 concludes the whole paper.

2. The Mathematical Model of
Bluetooth Positioning

This section presents the mathematical model of Bluetooth
positioning problem.

Here, let us consider a general Bluetooth positioning
problem. We establish a rectangular coordinate system in a
region. 𝑚 beacons are distributed evenly in this area. Then
a cell phone in this region would receive and measure RSSIs
from all beacons. They can be grouped as a RSSI vector. The
Bluetooth positioning problem is to determine the coordinate
of cell phone in the rectangular coordinate system.

Suppose there are total 𝑛 reference positions. Administra-
tor should record Bluetooth RSSI at each reference position
for a period of time. When a user is standing at some place in
this area, he can measure the Bluetooth RSSI by cell phone or
other equipment.Then the coordinate of person can be calcu-
lated based on the newly measured and recorded RSSI data.

Let 𝑥𝑖 represent the coordinate of 𝑖th reference location;𝑥𝑖 = [𝑎𝑖, 𝑏𝑖], 𝑖 = 1, . . . , 𝑛. rssi𝑡𝑖𝑗 is the RSSI received from
the 𝑗th beacon at the 𝑖th reference position at time 𝑡. 𝛼𝑡𝑖 is
a vector composed of RSSI on the 𝑖th reference location from
different beacons at time 𝑡; 𝛼𝑡𝑖 = [rssi𝑡𝑖1, rssi𝑡𝑖2, . . . , rssi𝑡𝑖𝑚]𝑇,𝑖 = 1, . . . , 𝑛. Here, 𝑚 is the number of beacons. 𝑛 is the
number of reference locations.

If the RSSI data are separately received at time 𝑡 =𝑡1, 𝑡2, . . . , 𝑡𝑙, then the matrix of RSSI data for 𝑖th reference
locations could be written as

[𝛼𝑡1𝑖 , 𝛼𝑡2𝑖 , . . . , 𝛼𝑡𝑙𝑖 ] = (rssi𝑡1𝑖1 rssi𝑡2𝑖1 ⋅ ⋅ ⋅ rssi𝑡𝑙𝑖1
rssi𝑡1𝑖2 rssi𝑡2𝑖2 ⋅ ⋅ ⋅ rssi𝑡𝑙𝑖2... ... d

...
rssi𝑡1𝑖𝑚 rssi𝑡2𝑖𝑚 ⋅ ⋅ ⋅ rssi𝑡𝑙𝑖𝑚

). (1)
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Figure 2: Positioning process based on fingerprint.
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Figure 3: The difference of geodesic distance and Euclidean distance.

Let 𝛼𝑖 be the fingerprint of the 𝑖th reference location; then𝛼𝑖 = [rssi𝑖1, rssi𝑖2, . . . , rssi𝑖𝑚]𝑇
= 1𝑙 [[ 𝑙∑𝑗=1rssi𝑡𝑗𝑖1, 𝑙∑𝑗=1rssi𝑡𝑗𝑖2, . . . , 𝑙∑𝑗=1rssi𝑡𝑗𝑖2]]

𝑇 . (2)

Here, 𝑖 = 1, 2, . . . , 𝑛.
For any unknown testing position 𝑥⃗ = [𝑎, 𝑏], the received

RSSI vector 𝛼𝑥 at 𝑥⃗ could be written as𝛼𝑥 = [rssi𝑥1, rssi𝑥2, . . . , rssi𝑥𝑚]𝑇 . (3)

Then the localization problem could be expressed by the
following formula:[𝑎̂, 𝑏̂] = 𝑇 (𝛼1, 𝛼2, . . . , 𝛼𝑛, 𝛼𝑥) . (4)

Here, 𝑇 is the positioning function to be determined, which
projects a RSSI vector to coordinate of position. This prob-
lem is generally solved by positioning fingerprint methods.
These kinds of methods are mostly developed based on the
Euclidean distance of RSSI vectors, such as KNN [13, 14],
WKNN [15], and EWKNN [16]. This paper develops a per-
formance enhanced positioningmethod, which employs low-
dimensional embedding distance tomeasure the similarity of
RSSI vectors and use WKNN to determine unknown testing
location.

3. Proposed Method

This section presents the proposed positioning method
IWKNN. Firstly, the low-dimensional embeddings of ref-
erence and testing RSSI vectors are calculated by Isomap.
Then, the unknown testing position is generated according
to distances of low-dimensional embeddings by WKNN.
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Figure 5: Positioning by WKNN and proposed IWKNN.

3.1. Overview. As an important method in manifold learn-
ing, Isomap can find the low-dimensional embedding for
high-dimensional manifold. It can keep the neighborhood
structure of high-dimensionalmanifold in a low-dimensional
space.

Let 𝐴 be a set, which is composed of (𝑛 + 1) RSSI vectors.𝐴 = {𝛼𝑖, 𝛼𝑥 | 𝑖 = 1, 2, . . . , 𝑛} . (5)𝐴 ⊂ 𝑅𝑚.
Suppose 𝐵 is a low-dimensional embedding of 𝐴; 𝐵 ={𝛽𝑖, 𝛽𝑥 | 𝑖 = 1, . . . , 𝑛}, where 𝐵 ⊂ 𝑅𝑚󸀠 and 𝑚󸀠 < 𝑚.
Let 𝑓 be a smooth embedding projection from 𝐵 to 𝐴,𝑓 : 𝐵 → 𝐴, satisfying 𝛼𝑖 = 𝑓(𝛽𝑖) (for all 𝑖 = 1, 2, . . . , 𝑛) and𝛼𝑥 = 𝑓(𝛽𝑥).

Here, the low-dimensional embedding is calculated by
Isomap. The distance of RSSI vectors is measured by Euclid-
ian distance of their low-dimensional embeddings. Finally,
the unknown testing position is calculated based on low-
dimensional distances by WKNN.

3.2. Geodesic Distance of High-Dimensional Data. Assume all
the elements in 𝐴 are from the same manifold. Ideally, any
element in 𝐴 can be linearly expressed by its neighborhood
points.We connect each point in𝐴 to its𝑀 nearest neighbors
(𝑀 is a predetermined parameter). Then an undirected
weighted graph is constructed.Thus, a distance matrix of this
graph could be generated by Euclidean distance. The edge
weight for given two points 𝛼𝑖 and 𝛼𝑗 is 𝑑𝐸(𝑖, 𝑗) = ‖𝛼𝑖 − 𝛼𝑗‖.

According to Isomap algorithm [28], the shortest distance
of any two high-dimensional RSSI vectors is used as geodesic
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Figure 6: The layout of beacons and reference positions.

distance. It can be calculated by Floyd’s algorithm [28], which
is shown in𝐷𝐺 = {𝑑𝐺 (𝑖, 𝑗)𝑘}= {{{𝑑𝐸 (𝑖, 𝑗) 𝑘 = 0

min (𝑑𝐺 (𝑖, 𝑗)𝑘−1 , 𝑑𝐺 (𝑖, 𝑘)𝑘−1 + 𝑑𝐺 (𝑘, 𝑗)𝑘−1) 𝑘 ≥ 1. (6)

Here, 𝑘 = 0, . . . , 𝑛 + 1.
3.3. Low-Dimensional Embedding. Then a low-dimensional
embedding could be calculated as follows [28]:𝜏 (𝐷) = 𝐻𝑆𝐻−2 , (7)

where 𝑆𝑖𝑗 = (𝐷2𝑖𝑗), 𝐻 = 𝐼 − (1/(𝑛 + 1))𝐸𝐸𝑇, 𝐼 is a unit matrix,
and 𝐸 = [1, 1, . . . , 1]𝑇.

Let 𝜆1, 𝜆2, . . . , 𝜆𝑚󸀠 be the largest 𝑚󸀠 eigenvalues of 𝜏(𝐷)
(in descending order) and their corresponding eigenvectors
be 𝑢1, 𝑢2, . . . , 𝑢𝑚󸀠 . Then all of the vectors in set 𝐵 could be
obtained by [28][𝛽1, 𝛽2, . . . , 𝛽𝑛, 𝛽𝑥]= [√𝜆1𝑢1, √𝜆2𝑢2, . . . , √𝜆𝑚󸀠𝑢𝑚󸀠]𝑇 . (8)

Then the low-dimensional embedding of 𝐴 = {𝛼1, 𝛼2,. . . , 𝛼𝑛, 𝛼𝑥} is 𝐵 = {𝛽1, 𝛽2, . . . , 𝛽𝑛, 𝛽𝑥}.
3.4. Distance of Low-Dimensional Embedding. The training
low-dimensional fingerprint of the 𝑖th reference point is[𝛽1, 𝛽2, . . . , 𝛽𝑛]. The testing low-dimensional vector is 𝛽𝑥.
The distance of 𝛽𝑖 (𝑖 = 1, 2, . . . , 𝑛) and 𝛽𝑥 is measured by
Euclidian distance. 𝑑𝑖 = 󵄩󵄩󵄩󵄩𝛽𝑖 − 𝛽𝑥󵄩󵄩󵄩󵄩 . (9)

3.5. Positioning by WKNN. According to WKNN [15],
let 𝑑𝑝1 , 𝑑𝑝2 , . . . , 𝑑𝑝𝐾 stand for the 𝐾 minimum values in{𝑑1, 𝑑2, . . . , 𝑑𝑛}. Then the reference coordinates [𝑎𝑝𝑗 , 𝑏𝑝𝑗], 𝑗 =1, . . . , 𝐾, are selected as candidate reference locations. Finally,

the coordinate of testing position [𝑎̂, 𝑏̂] is estimated by the
following formula [15]:[𝑎̂, 𝑏̂] = 1∑𝐾𝑗=1 𝑤𝑗 𝐾∑𝑗=1𝑤𝑗 [𝑎𝑝𝑗 , 𝑏𝑝𝑗] , (10)

where 𝑤𝑗 = 1𝑑𝑝𝑗 + 𝑐 . (11)

Here, 𝑐 is a relative small positive number.

4. Experimental Result and Analysis

4.1. Experimental Details. The experiment is carried out in a
laboratory of Northeastern University. The laboratory room
is 7×18m2. A 6×18m2 subarea is used as experimental area.

In our experiment, beacons are used to emit Bluetooth
signals, whose parameters were adjusted referencing [5–7].
The emitting interval is set with 2HZ and power of −8 db.
Samsung Galaxy S3 is used to receive Bluetooth signals at a
frequency of 1Hz.

Figure 6 shows the positions of beacons and reference
locations. The hollow dots in Figure 6(a) show the layout of
30 beacons. They are placed evenly on the ceiling with mean
distance of 2 meters. All the beacons are recorded with MAC
address and positions. The solid dots in Figure 6(b) show
the layout of 24 reference positions with mean distance of 2
meters on the ground.

To build a usable training fingerprint, RSSI data is
recorded for 200 seconds at each reference position. And
Kalman filter [29] is used to preprocess RSSI data.

Considering that a person may move fast with a cell
phone, we just use one vector of RSSI data for positioning. In
this paper, 74 testing positions are used in our experiment.
These positions are distributed evenly with one-meter dis-
tance in the 6 × 18m2 experimental area.

4.2. Selection of 𝑀 and 𝑚󸀠. In Isomap algorithm, 𝑀 and𝑚󸀠 are important parameters, which are the count of nearest
neighbors and dimension of low-dimensional embedding. To
select a proper 𝑀 and 𝑚󸀠, some experiments are carried out
firstly.
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Table 1: The positioning errors with different 𝑀.𝑀 Max error (m) Mean error (m) Min error (m) Std error (m)
3 4.991 1.668 0.026 0.919
4 5.389 1.657 0.230 1.006
5 5.086 1.620 0.093 0.952
6 3.851 1.796 0.473 0.907
7 4.112 1.723 0.326 0.828
8 4.278 1.910 0.335 0.953
9 4.317 1.936 0.027 1.056
10 3.400 1.865 0.078 0.818
11 5.187 2.037 0.424 1.094
12 5.806 1.983 0.389 1.148
13 4.290 1.942 0.377 1.009
14 5.388 1.938 0.292 0.971
15 3.814 1.672 0.278 0.791
16 3.815 1.592 0.303 0.775
17 3.528 1.635 0.334 0.726
18 4.516 1.732 0.297 0.841
19 3.602 1.635 0.331 0.864
20 3.605 1.516 0.001 0.782
21 3.600 1.618 0.117 0.776
22 4.601 1.655 0.350 0.976
23 4.590 1.622 0.345 0.934
24 4.902 1.633 0.345 0.982

Table 2: The mean positioning error with different 𝑚󸀠.𝑚󸀠/𝑀 15 16 17 18 19 20 21
2 1.778 1.772 1.957 1.807 1.895 2.004 1.920
3 1.856 1.710 1.811 1.735 1.680 1.801 1.712
4 1.770 1.744 1.687 1.663 1.601 1.573 1.529
5 1.672 1.592 1.635 1.732 1.635 1.516 1.618
6 1.625 1.523 1.712 1.736 1.657 1.597 1.617
7 1.741 1.600 1.705 1.703 1.761 1.675 1.609
8 1.751 1.585 1.703 1.783 1.614 1.731 1.594
9 1.770 1.695 1.718 1.843 1.639 1.730 1.593
10 1.778 1.686 1.666 1.825 1.672 1.682 1.606
11 1.785 1.676 1.718 1.823 1.749 1.695 1.559
12 1.764 1.618 1.722 1.776 1.665 1.646 1.584
13 1.742 1.577 1.695 1.761 1.630 1.635 1.592
14 1.736 1.633 1.697 1.755 1.653 1.675 1.615
15 1.745 1.638 1.674 1.741 1.678 1.702 1.606

Table 1 shows the positioning errors with different 𝑀.
As can be seen from the table, when 𝑀 is between 15 and21, the maximum and mean positioning errors are relatively
small and stable. According to our experiment, the proposed
method achieves minimummean error when 𝑀 = 20.

Table 2 shows the mean positioning error with different𝑀 and𝑚󸀠.𝑀 is assigned between 15 and 21.𝑚󸀠 varies from 2

to 15. In this table, we can find that when𝑚󸀠 is between 4 and
6, the mean positioning error is relatively small.

According to these experiments, we set𝑀 = 20 and𝑚󸀠 =5 in this paper.

4.3. The Effectiveness of Isomap. The effectiveness of Isomap
is firstly examined in our Bluetooth localization experiment.
We compare the performance of WKNN and EWKNN [16]
and their Isomap enhanced versions. WKNN is separately
tested with 𝐾 = 3, 4, . . . , 9. And the threshold of EWKNN
is mean of distance vector.

Figure 7 shows the error distribution of different meth-
ods. In Figure 7, the first-column figures illustrate the
error distributions of original methods. The second column
shows the error distribution of Isomap enhanced methods.
The third column shows the differences of original and
Isomap enhanced methods. From Figure 7, we can find
that the error distribution of developed Isomap enhanced
methods (IWKNN and IEWKNN) is more concentrated in
the low error region than original methods (WKNN and
EWKNN).

Figure 8 illustrates the cumulative probability of error
distribution for differentmethods.The curves in these figures
demonstrate that the Isomap enhanced methods (IWKNN
and IEWKNN) achieve better performance than original
methods (WKNN and EWKNN).

Finally, the performance of all tested methods is given in
Table 3. According to this table, Isomap almost improves all
of positioning indicators clearly.The best values of important
indicators are given in bold font. The minimum of max
error is 4.994, which is obtained by IWKNN with 𝐾 = 9.
The minimum of mean error is 1.463, which is obtained by
IWKNN with 𝐾 = 4. The minimum of min error is 0.0005,
which is obtained by IWKNNwith𝐾 = 3 and IEWKNN.The
minimum of std error is 0.674, which is obtained by IWKNN
with𝐾 = 7.Themaximumof “ratio of error less than 2meters”
is 78.96%, which is obtained by IWKNN with 𝐾 = 5. This
table supports the effectiveness of proposed Isomap enhanced
positioning methods.

According to Table 3, we suggest 𝐾 = 4 or 5 for small
mean positioning error and large “ratio of error less than 2
meters.”

4.4. Comparison with Different Methods. In order to test the
performance of proposed method more clearly, we compare
the proposed IWKNN (𝐾 = 4) with six different positioning
methods.

Figure 9 compares the performances of different meth-
ods. From this table, we can see that Bayes method has
the best performance in the low error part, and the pro-
posed IWKNN performs best in almost all the remaining
part.

Table 4 illustrates the positioning error of different
methods. According to this table, GMM, Bayes, andWKNN-
Bayes’s max errors are better than other methods. But the
improved Bayes method proposed by Fras et al. [20] can
generate small max, mean, and std errors. The proposed
IWKNN has the minimal mean error and maximal “ratio of
error less than 2 meters.”
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Figure 7: Error distributions of original and Isomap enhanced methods.
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Figure 8: Continued.
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Figure 8: Cumulative error distribution of original and Isomap enhanced methods.

Table 3: The positioning error of original and Isomap enhanced methods.

Method Max error (m) Mean error (m) Min error (m) Std error (m) ≤2m (%)
WKNN (𝐾 = 3) 7.000 1.505 0.0008 0.772 73.99%
IWKNN (𝐾 = 3) 5.046 1.481 0.0005 0.758 75.58%
WKNN (𝐾 = 4) 6.558 1.508 0.001 0.732 74.49%
IWKNN (𝐾 = 4) 7.110 1.463 0.002 0.710 76.05%
WKNN (𝐾 = 5) 6.803 1.541 0.014 0.712 76.12%
IWKNN (𝐾 = 5) 6.162 1.478 0.036 0.693 78.96%
WKNN (𝐾 = 6) 6.045 1.581 0.002 0.707 71.45%
IWKNN (𝐾 = 6) 5.216 1.512 0.011 0.680 77.08%
WKNN (𝐾 = 7) 5.774 1.631 0.023 0.703 69.18%
IWKNN (𝐾 = 7) 5.273 1.558 0.041 0.674 74.27%
WKNN (𝐾 = 8) 5.135 1.689 0.023 0.721 65.50%
IWKNN (𝐾 = 8) 5.138 1.604 0.066 0.683 70.77%
WKNN (𝐾 = 9) 5.447 1.749 0.019 0.739 61.51%
IWKNN (𝐾 = 9) 4.994 1.660 0.032 0.703 67.14%
EWKNN 7.000 1.502 0.002 0.756 74.26%
IEWKNN 5.046 1.477 0.0005 0.743 76.04%

Table 4: The positioning error of different methods.

Method Max error (m) Mean error (m) Min error (m) Std error (m) ≤2m (%)
Triangulation 11.443 2.592 0.0288 1.616 41.80%
IoT [12] 7.576 3.077 0.0331 1.482 27.72%
GMM [21] 12.880 3.506 0 1.965 65.03%
Bayes 14.318 2.391 0 1.611 44.46%
WKNN-Bayes [20] 8.062 2.031 0 1.116 53.42%
WKNN 6.558 1.508 0.001 0.732 74.49%
IWKNN 7.110 1.463 0.002 0.710 76.05%

5. Conclusion

This paper presents an Isomap enhanced localizationmethod
IWKNN. The proposed method combines Isomap and
WKNN for Bluetooth positioning. Firstly, we calculate low-
dimensional embeddings for RSSI data by Isomap. Then, the
distance of different RSSI vectors is measured by Euclidean

distance of these low-dimensional embeddings. Finally, the
unknown testing position is calculated by WKNN. Experi-
ment indicates the distances of low-dimensional embeddings
are more robust than those of high-dimensional ones. And
the proposed IWKNN is robust and effective.

The main contribution of this paper could be concluded
as follows: (1) introduce Isomap to Bluetooth positioning
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Figure 9: The cumulative error distribution of different methods.

problem; (2) use low-dimensional embeddings to represent
high-dimensional RSSI data; (3) adopt distances of low-
dimensional embeddings to measure the distance of RSSI
vectors; (4) combine Isomap with WKNN for Bluetooth
positioning.
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