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We study the existence of periodic solutions for a class of state-dependent impulsive differential systems via geometrical analysis
methods. Our results show that these periodic solutions are generated by impulses. Moreover, numerical simulations are used to
examine the existence of the periodic solutions.

1. Introduction
It is known that many evolutionary processes are character-
ized by the fact that at certain moments of time the states
change abruptly. Such processes often occur in biology,
control theory, optimization theory, physics, and mechanics
problems (e.g., [1–6]). It is natural to assume that these per-
turbations act instantaneously, that is, in the formof impulses.

The theory of impulsive differential equations (IDEs) is
rather rich, especially for impulse at fixed time. There are
many classical methods to study impulsive differential equa-
tions. For example, Chen et al. [7] obtained some new results
concerning the existence of solutions to an impulsive first-
order, nonlinear ordinary differential equation with periodic
boundary conditions via differential inequalities and Schae-
fer’s fixed-point theorem. Wang et al. [8] got the existence of
extreme solutions of a periodic boundary value problem for a
second-order functional differential equation by using upper
and lower solutions. Based on a nonlinear alternative princi-
ple of Leray-Schauder, together with a truncation technique,
Chu andNieto [9] studied the impulsive periodic solutions of
first-order singular ordinary differential equations. By using
a variational method and a variant fountain theorem, Dai
and Zhang [10] considered the existence and multiplicity of
solutions for a class of nonlinear impulsive problem on the
half-line. For more related work, the reader is referred to
[11–13] and the references therein. As we know, state-depend-
ent IDEs have become a hot topic in recent years due to their
extensive application space, but it is also a difficult research
field because of their essential properties: uncertainties for

impulsive time and collision times. Very recently, many
papers have been devoted to the analysis of IDEs with state-
dependent impulsive effect. By using differential equation
geometry theory and the method of successor functions,
the existence and stability of periodic solution for pest
management model with state feedback control strategy were
discussed in [14, 15] and the homoclinic cycle and homoclinic
bifurcationwere analyzed for predator-preymodel with state-
dependent impulsive harvesting in [16, 17]. On the basis of
rotated vector fields theory, Dai et al. [18] discussed the order-
1 positive periodic solution and homoclinic cycles and homo-
clinic bifurcations for a general semicontinuous dynamic sys-
tem. Considering the influence of Allee effect on prey species,
the authors in [19, 20] investigated a prey-predator model
with Allee effect and state-dependent impulsive harvesting
and got the sufficient conditions for the existence of order-1
periodic solution and heteroclinic bifurcation via the geome-
try theory of semicontinuous dynamic systems. Some other
related studies can be seen in [21–23] and the references
therein.

The aforementioned papers all assumed that the predator
just lived on the prey.However, in practice, it is very likely that
many enemies have some other food sources. Motivated by
this, in this paper, we consider the following state-dependent
predator-preymodel inwhich the predator species display the
logistic growth in the absence of prey species:

𝑥
󸀠

(𝑡) = 𝑥 (𝑟
1
− 𝑎
11
𝑥 − 𝑎
12
𝑦)

𝑦
󸀠

(𝑡) = 𝑦 (𝑟
2
+ 𝑎
21
𝑥 − 𝑎
22
𝑦)

𝑥 ̸= ℎ
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Δ𝑥 (𝑡) = 0, Δ𝑦 (𝑡) = 𝜏
1
, 𝑥 = ℎ

1
, 𝑦 ≤ 𝑦,

Δ𝑥 (𝑡) = −𝛼𝑥, Δ𝑦 (𝑡) = −𝛽𝑦 + 𝜏
2
,

𝑥 = ℎ
2
,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) denote population densities of prey and
predator at time 𝑡, respectively. All the parameters are positive
constants, in addition, 𝛼, 𝛽 ∈ (0, 1), ℎ

1
< ℎ
2
, and (ℎ

1
, 𝑦) is the

point of intersection of 𝑥󸀠 = 0 and 𝑥 = ℎ
1
.

This paper is organized as follows. In Section 2, we
present some preliminaries.Then in Section 3, we discuss the
existence of positive periodic solution of system (1) for differ-
ent cases. At last, in Section 4, some numerical simulations
and conclusions are presented.

2. Preliminaries

For Model (1), if there is no impulsive effect, we have the
following subsystem:

𝑥
󸀠

(𝑡) = 𝑥 (𝑟
1
− 𝑎
11
𝑥 − 𝑎
12
𝑦) ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑟
2
+ 𝑎
21
𝑥 − 𝑎
22
𝑦) .

(2)

Followed by [24], the following results can be concluded.

Lemma 1. Consider Model (2), there are one trivial equilib-
rium 𝑆

0
= (0, 0) and two boundary equilibria 𝑆

1
= (𝑟
1
/𝑎
11
, 0)

and 𝑆
2
= (0, 𝑟

2
/𝑎
22
). 𝑆
0
is always unstable; 𝑆

1
is a saddle.More-

over, if 𝑟
1
𝑎
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− 𝑟
2
𝑎
12
> 0, then 𝑆

2
is a saddle and there exists a
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∗
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− 𝑟
2
𝑎
12

𝑎
11
𝑎
22
+ 𝑎
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(3)

which is globally asymptotically stable.

Throughout this paper, we always assume that the condi-
tion 𝑟

1
𝑎
22
− 𝑟
2
𝑎
12
> 0 holds true. Considering the biological

background, we only discuss Model (1) in the region {(𝑥, 𝑦) :
𝑥 ≥ 0, 𝑦 ≥ 0}. Obviously, due to Lakshmikantham et al. [25]
and Bainov and Simeonov [26], the global existence and
uniqueness of solution for Model (1) are guaranteed by the
smoothness properties of right-side functions.

To discuss the dynamics of Model (1), we define three
cross sections and two regions:

Σ
0
= {(𝑥, 𝑦) : 𝑥 = (1 − 𝛼) ℎ

2
, 𝑦 > 0} ;

Σ
1
= {(𝑥, 𝑦) : 𝑥 = ℎ

1
, 𝑦 > 0} ;

Σ
2
= {(𝑥, 𝑦) : 𝑥 = ℎ

2
, 𝑦 > 0} ;

Ω
1
= {(𝑥, 𝑦) : 𝑥 ≤ ℎ

1
, 𝑦 > 0} ;

Ω
2
= {(𝑥, 𝑦) : 𝑥 ≤ ℎ

2
, 𝑦 > 0} .

(4)

Definition 2 (see [27]). Suppose that the impulse set𝑀 and
its phase set 𝑁 are both lines, as shown in Figure 1. Assume
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Figure 1: Illustration of the successor function.

that the trajectory starting from𝐴 in𝑁 firstly intersects𝑀 at
point𝐵 and then jumps to𝐴+ in𝑁 due to the impulsive effect.
Then, one defines 𝐴+ as the successor point of 𝐴, and the
corresponding successor function of point 𝐴 is that 𝑓(𝐴) =
𝑦
𝐴
+ − 𝑦
𝐴
; here 𝑦

𝐴
and 𝑦

𝐴
+ are the ordinates of 𝐴 and 𝐴+.

Lemma 3 (see [27]). Successor function 𝑓(𝐴) is continuous.

Lemma 4 (see [27]). For Model (1), if there exist 𝐴 ∈ 𝑁, 𝐴 ∈

𝑁 satisfying successor function𝑓(𝐴)𝑓(𝐴) < 0, then there must
exist a positive periodic solution.

3. Existence of Positive Periodic
Solution for System (1)

Considering the biological meaning, here we always assume
that ℎ

1
< 𝑥
∗. Therefore, we have four cases to discuss: (1 −

𝛼)ℎ
2
< ℎ
1
< ℎ
2
< 𝑥
∗, ℎ
1
< (1 − 𝛼)ℎ

2
< ℎ
2
< 𝑥
∗, ℎ
1
<

(1 − 𝛼)ℎ
2
< 𝑥
∗
< ℎ
2
, and (1 − 𝛼)ℎ

2
< ℎ
1
< 𝑥
∗
< ℎ
2
.

3.1. The Case of (1−𝛼)ℎ
2
< ℎ
1
< ℎ
2
<𝑥
∗. About the existence

of positive periodic solution, we have the following graph
illustrations.

Take a point 𝑃(ℎ
1
, 𝑦 + 𝜀) on ∑

1
, where 𝜀 is small suf-

ficiently. Assuming that the trajectory of Model (1) starting
from 𝑃 firstly intersects∑

1
at point 𝑃

1
and then jumps to 𝑃+

1
,

obviously, 𝑃+
1
is above 𝑃; that is to say,

𝑓 (𝑃) = 𝑦
𝑃
+

1

− 𝑦
𝑃
> 0. (5)

On the other hand, assume that the trajectory starting
from 𝑃

+

1
intersects ∑

1
at 𝑃
2
and then jumps to 𝑃+

2
. For 𝑃+

2
,

if 𝑦 < 𝑦
𝑃
+

2

≤ 𝑦
𝑃
+

1

, then

𝑓 (𝑃
+

1
) = 𝑦
𝑃
+

2

− 𝑦
𝑃
+

1

≤ 0; (6)

thus, Model (1) exists as a positive periodic solution whose
initial point is between 𝑃 and 𝑃+

1
; see Figure 2(a). If 𝑦

𝑃
+

2

≤ 𝑦,
then Model (1) will keep on impulse until 𝑦

𝑃
𝑘+

2

> 𝑦 (𝑦
𝑃
𝑘+

2

=

𝑦
𝑃
2

+ 𝑘𝜏
2
); this returns to the situation of 𝑦 < 𝑦

𝑃
+

2

≤ 𝑦
𝑃
+

1

and
the positive periodic solution can be seen in Figure 2(b).
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Figure 2: The possible trajectories in the case of (1 − 𝛼)ℎ
2
< ℎ
1
< ℎ
2
< 𝑥
∗.

B+
1 B1

x

y

A

B

O
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Figure 3: The possible trajectories in the case of ℎ
1
< (1 − 𝛼)ℎ

2
< ℎ
2
< 𝑥
∗.

Theorem 5. Assume that (1 − 𝛼)ℎ
2
< ℎ
1
< ℎ
2
< 𝑥
∗. Then

Model (1) exists as a positive periodic solution whose initial
point is located between 𝑃 and 𝑃+

1
.

3.2. The Case of ℎ
1
< (1−𝛼)ℎ

2
< ℎ
2
<𝑥
∗. For this case, we have

the following graph illustrations.
Assuming that the trajectory starting from𝐴((1−𝛼)ℎ

2
, 𝑦)

firstly intersects∑
2
at𝐴
1
and then jumps to𝐴+

1
, here𝐴 is the

intersection point of 𝑥󸀠 = 0 and Σ
0
. For 𝐴+

1
, we have the

following two situations.

(i) If 𝑦
𝐴
+

1

≤ 𝑦
𝐴
, then

𝑓 (𝐴) = 𝑦
𝐴
+

1

− 𝑦
𝐴
≤ 0. (7)

On the other hand, choosing a point 𝐵 next to 𝑥-axis on ∑
0
,

the trajectory starting from 𝐵 firstly intersects∑
2
at point 𝐵

1

and then jumps to 𝐵+
1
on ∑
0
; obviously, 𝐵+

1
is above 𝐵; thus,

𝑓 (𝐵) = 𝑦
𝐵
+

1

− 𝑦
𝐵
> 0. (8)

Therefore, Model (1) exists as a positive periodic solution
whose initial point is between 𝐴 and 𝐵; this is shown in
Figure 3(a).

(ii) If 𝑦
𝐴
+

1

> 𝑦
𝐴
, then

𝑓 (𝐴) = 𝑦
𝐴
+

1

− 𝑦
𝐴
> 0. (9)

On the other hand, there must exist a trajectory starting from
𝐶 on∑

0
that tangents∑

1
at point𝐷(ℎ

1
, 𝑦) and then intersects

∑
0
,∑
2
at points𝐸,𝐸

1
, respectively; due to impulsive effect,𝐸

1

jumps to 𝐸+
1
. For 𝐸+

1
, if 𝑦
𝐸
+

1

≤ 𝑦
𝐶
, then

𝑓 (𝐶) = 𝑦
𝐸
+

1

− 𝑦
𝐶
≤ 0. (10)

Therefore, Model (1) exists as a positive periodic solution
whose initial point is between 𝐴 and 𝐶; this can be seen in
Figure 3(b). If 𝑦

𝐸
+

1

> 𝑦
𝐶
, then the trajectory starting from Ω

2

will ultimately stay in Ω
1
. (Here we always assume the

impulsive phase set with initial point on ∑
0
will ultimately
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exceed point 𝐸 after one or finite times impulses. In fact,
the assumption is reasonable as 𝛽 should be very small in
practical problem.)

Theorem 6. Assume that ℎ
1
< (1 − 𝛼)ℎ

2
< ℎ
2
< 𝑥
∗. If 𝑦

𝐴
+

1

≤

𝑦
𝐴
or 𝑦
𝐴
+

1

> 𝑦
𝐴
, 𝑦
𝐸
+

1

≤ 𝑦
𝐶
, then Model (1) exists as a positive

periodic solution.

3.3. The Case of ℎ
1
< (1−𝛼)ℎ

2
<𝑥
∗
< ℎ
2
. For this case, there

must exist a trajectory Γ starting from 𝐴 at Σ
2
that firstly

intersects 𝑥̇ = 0, ̇𝑦 = 0 at 𝐵, 𝐶, respectively, and then tangents
Σ
2
at point𝐷. For 𝑥

𝐵
, there are three possible situations.

3.3.1. (1−𝛼)ℎ
2
<𝑥
𝐵
< ℎ
2
. Obviously, there must exist a trajec-

tory Γ
1
starting from𝐴

1
at Σ
2
that tangents Σ

0
at point 𝐵

1
and

then intersects 𝑦󸀠 = 0, Σ
2
at 𝐶
1
, 𝐷
1
, respectively. Due to

impulsive effect,𝐷
1
jumps to𝐷+

1
. For𝐷+

1
, there are two cases.

(i) If 𝑦
𝐷
+

1

≤ 𝑦
𝐵
1

, obviously, this situation returns to (i) of
case of Section 3.2; here we omit it.

(ii) If 𝑦
𝐷
+

1

> 𝑦
𝐵
1

, assume that the trajectory starting from
𝐷
+

1
intersects 𝑥󸀠 = 0, 𝑦󸀠 = 0, and Σ

2
at 𝐵
2
, 𝐶
2
, and𝐷

2
,

respectively. Obviously, for the orbit ̂
𝐷
+

1
𝐵
2
𝐶
2
𝐷
2
, 𝑥
𝐵
2

is the smallest abscissa. For 𝑥
𝐵
2

, there are two possible
positives.

(a) If 𝑥
𝐵
2

≥ ℎ
1
, then Model (1) exists as a positive

periodic solution whose initial point is between
𝐵
1
and𝐷+

1
; this is shown in Figure 4(a).

(b) If 𝑥
𝐵
2

< ℎ
1
, then there must exist a trajectory

Γ
󸀠 starting from 𝑃 at Σ

0
that tangents Σ

1
at point

𝑃
1
and then intersectsΣ

0
andΣ

2
at points𝑃

2
and

𝑃
3
. For 𝑃

3
, it also has two possibilities:

(a)󸀠 if 𝑦
𝑃
+

3

≤ 𝑦
𝑃
, then Model (1) exists as

a positive periodic solution whose initial
point is between 𝐵

1
and 𝑃; this can be seen

in Figure 4(b);
(b)󸀠 if 𝑦

𝑃
+

3

> 𝑦
𝑃
, then the trajectory starting

from Ω
0
= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐴𝐵𝐶𝐷𝐴} will

tend to equilibrium and the trajectory
starting fromΩ

2
\Ω
0
will ultimately stay in

Ω
1
. (In this case, we still assume the impul-

sive phase set with initial point on ∑
0
will

ultimately exceed point𝑃
2
after one or finite

impulses.)

Theorem 7. Assume that ℎ
1
< (1 − 𝛼)ℎ

2
< 𝑥
𝐵
< 𝑥
∗
< ℎ
2
. If

𝑦
𝐷
+

1

≤ 𝑦
𝐵
1

or 𝑦
𝐷
+

1

> 𝑦
𝐵
1

, 𝑥
𝐵
2

≥ ℎ
1
or 𝑦
𝐷
+

1

> 𝑦
𝐵
1

, 𝑥
𝐵
2

< ℎ
1
,

𝑦
𝑃
+

3

≤ 𝑦
𝑃
, then Model (1) exists as a positive periodic solution.

3.3.2. ℎ
1
<𝑥
𝐵
< (1−𝛼)ℎ

2
. Assuming that the trajectory Γ inter-

sectsΣ
0
at points𝑃

1
, 𝑃
2
with𝑦

𝑃
1

> 𝑦
𝑃
2

, due to impulsive effect,
𝐷 jumps to𝐷+. For𝐷+, one has the following four situations
to discuss.

(i) If 𝑦
𝐷
+ = 𝑦
𝑃
1

or 𝑦
𝐷
+ = 𝑦
𝑃
2

, then ̂𝑃
1
𝐵𝐶𝐷𝑃

1
or 𝑃
2
𝐷𝑃
2
is

an order-1 periodic solution.

(ii) If 𝑦
𝐷
+ < 𝑦
𝑃
2

, then it is easy to get that there exists an
order-1 periodic solution; here we omit the details.

(iii) If 𝑦
𝐷
+ > 𝑦
𝑃
1

, assume that the trajectory starting from
𝐷
+ intersects 𝑥̇ = 0 at point 𝐸. For 𝑥

𝐸
, there exist two

cases.

(a) If 𝑥
𝐸
≥ ℎ
1
, then Model (1) exists as a positive

periodic solution whose initial point is between
𝑃
1
and𝐷+ (see Figure 5(a)).

(b) If 𝑥
𝐸
< ℎ
1
, then there must exist a trajectory Γ

1

starting from 𝑃 at Σ
2
that firstly intersects Σ

0
at

point𝐴
1
and then tangents toΣ

1
at point𝐵

1
, and

intersects 𝑦󸀠 = 0, Σ
2
at points 𝐶

1
, 𝐷
1
, respec-

tively. Due to impulsive effect, 𝐷
1
jumps to

𝐷
+

1
. For 𝐷+

1
, we have the following two cases to

discuss:
(a)󸀠 if 𝑦

𝐷
+

1

≤ 𝑦
𝐴
1

, then Model (1) exists
as a positive periodic solution whose ini-
tial point is between 𝑃

1
and 𝐴

1
(see

Figure 5(b));
(b)󸀠 if 𝑦

𝐷
+

1

> 𝑦
𝐴
1

, then the trajectory starting
from Ω

0
= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ ̂𝐴𝑃

1
𝐵𝐶𝐷𝐴}

will tend to equilibrium and the trajectory
starting fromΩ

2
\Ω
0
will ultimately stay in

Ω
1
.

(iv) If 𝑦
𝑃
2

< 𝑦
𝐷
+ < 𝑦

𝑃
1

, then the trajectory starting from
Ω
0
= {(𝑥, 𝑦) : (𝑥, 𝑦) ∈ ̂𝑃𝐴

1
𝐵
1
𝑂
1
𝑂
2
𝑃} (𝑂

𝑖
(ℎ
𝑖
, 0) (𝑖 =

1, 2)) will tend to equilibrium and the trajectory
starting fromΩ

2
\ Ω
0
will ultimately stay in Ω

1
.

Theorem 8. Assume that ℎ
1
< 𝑥
𝐵
< (1 − 𝛼)ℎ

2
< 𝑥
∗
< ℎ
2
. If

𝑦
𝐷
+ ≤ 𝑦

𝑃
2

or 𝑦
𝐷
+ ≥ 𝑦

𝑃
1

, 𝑥
𝐸
≥ ℎ
1
or 𝑦
𝐷
+ > 𝑦

𝑃
1

, 𝑥
𝐸
< ℎ
1
,

𝑦
𝐷
+

1

≤ 𝑦
𝐴
1

, thenModel (1) exists as a positive periodic solution.

Similarly, for the case ℎ
1
< (1 − 𝛼)ℎ

2
< 𝑥
∗
< ℎ
2
with

𝑥
𝐵
< ℎ
1
or (1 − 𝛼)ℎ

2
< ℎ
1
< 𝑥
∗
< ℎ
2
, one can prove there is

no positive periodic solution; here we omit it.

Remark 9. The positive periodic solutions for Model (1)
obtained in Theorem 5∼Theorem 8 are generated by impul-
ses. Here, we say that a solution is generated by impulses if
this solution is nontrivial when impulsive effect exists, but it
is trivial when there does not exist impulsive effect. For exam-
ple, when 𝑟

1
𝑎
22
− 𝑟
2
𝑎
12
> 0, by Lemma 1 we know that Model

(2) does not possess any positive periodic solution; then
positive periodic solutions of Model (1) under state-depend-
ent impulsive conditions are called positive periodic solution
generated by impulses.

Remark 10. As we know, the previous papers concerning
state-dependent impulsive effect all assumed that the preda-
tor just lived on the prey; here we point out that the predator
has some other food resources; this is more practical. On
the other hand, the existing state-dependent impulsive differ-
ential systems mainly discussed the properties of solutions,
including existence, uniqueness, and orbitally asymptotical
stability. Here, not aiming at the properties of solutions, we
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ẋ = 0

Σ0Σ1 Σ2

D+
1

D+
2

D2

D1

B1

B2

C2

C1

A1 Γ1
Γ

(a)

x

y

A

B

C

D

P

P+
3

P2

P3

P1 ẏ = 0
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are focused on considering the influence of impulsive effect
on the system itself. The theoretical results imply that if
impulses do not exist, then the predator and prey species
will tend to a point; if impulsive effect occurs, then the
predator and prey species will be maintained at a periodic
oscillation; that is, both the densities of these two species can
change periodically. Therefore, our results demonstrate that
impulsive effect takes an important role in ecological system.

4. Simulations and Conclusions

In this paper, we propose and analyse a state-dependent
impulsive predator-prey model in which the predator species
display a logistic growth. By using geometrical analysis meth-
ods, the existence of positive periodic solutions of Model (1)

is given. Here we should point out that the positive periodic
solutions are generated by impulses. For system (2), which
does not exist as impulsive effect, the interior equilibrium
is globally asymptotically stable, the phase trajectory and
time series chart can be seen in Figures 6 and 7; therefore,
system (2) does not exist as positive periodic solution and all
the phase trajectories will tend to the interior equilibrium.
When the impulsive effects are operated, system (1) can be
gotten, the theoretical results demonstrate that system (1)
exists as positive periodic solutions for some cases, and the
numerical simulations also illustrate the existence of the
periodic solutions; please see Figures 8, 9, and 10. Here 𝑟

1
=

0.4, 𝑟
2
= 0.1, 𝑎

11
= 0.6, 𝑎

22
= 0.6, 𝑎

12
= 0.6, and 𝑎

21
= 0.4.

Therefore, the positive periodic solutions are generated by
impulses.
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