
Research Article
New 1,3,4-Oxadiazole Based Photosensitizers for
Dye Sensitized Solar Cells

Umer Mehmood,1,2,3 Ibnelwaleed A. Hussein,3,4 and Muhammad Daud3

1Center of Research Excellence in Renewable Energy, Research Institute, King Fahd University of Petroleum &Minerals (KFUPM),
P.O. Box 5050, Dhahran 31261, Saudi Arabia
2Polymer and Process Engineering Department, University of Engineering & Technology Lahore, Lahore 54000, Pakistan
3Department of Chemical Engineering, King Fahd University of Petroleum &Minerals (KFUPM), P.O. Box 5050,
Dhahran 31261, Saudi Arabia
4Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Correspondence should be addressed to Ibnelwaleed A. Hussein; ihussein@qu.edu.qa

Received 16 September 2015; Accepted 25 October 2015

Academic Editor: Vishal Mehta

Copyright © 2015 Umer Mehmood et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1,3,4-Oxadiazole based photosensitizers with biphenyl, naphthalene, anthracene, and triphenylamine as the electron-donating
moiety were synthesized for solar cell applications. In these photosensitizers, cyano groups were introduced as the electron acceptor
and the anchor group because of their high electron-withdrawing ability and strong bonding to the semiconductor. Oxadiazole
isomers were used as the 𝜋-conjugation system, which bridges the donor-acceptor systems. The electrochemical and optical
properties of the sensitizers were investigated both in their native form and upon incorporation into dye sensitized solar cells. The
results of UV-visible absorption spectroscopy, electrochemical impedance spectroscopic measurements, and photocurrent voltage
characteristics indicate that 1,3,4-oxadiazole pi-spacer with the anthracene moiety has the highest efficiency of 2.58%. Density
functional theory was employed to optimize the structures of the sensitizers and the TiO

2
cluster.

1. Introduction

The wide spread application of the photovoltaic (PV) cells
is limited mainly due to their high cost to energy output
ratio. PV cells are generally classified as inorganic based cells
and organic based ones. Inorganic PV cells (Si or quantum
dots based solar cells) cost has dropped a lot in the last
decades but is still noncompetitive compared to conventional
electricity production sources. The motive to achieve high
cost/efficiency ratios derived the emergence of the thin film
dye sensitized solar cell. It was developed by O’Regan and
Grätzel in 1991. The efficiency of this PV cell, which became
known as dye sensitized solar cell (DSSC), was reported as 7.1
to 7.9% [1]. DSSCs have got attention due to an ideal tradeoff
between efficiency and cost performance [2–5].

The dye, which is the major component of the DSSC,
absorbs sunlight and produces excitons [6, 7]. It is chemically

bonded to the porous surface of a semiconductor. Currently,
DSSCs based on ruthenium(II) polypyridyl complexes have
the best conversion efficiencies (PCE) of 11% under standard
(Global AirMass 1.5) illumination [8–10]. But it is still low for
commercial applications. The low absorption of light in the
red/near infrared region (NIR) is the major drawback in the
ruthenium based sensitizers that limits the further improve-
ment in efficiency. To overcome these problems, metal-free
organic sensitizers have been developed [11]. The basic struc-
tural unit of organic dye is donor-𝜋 spacer-acceptor. Sub-
stituents acting as the donor and the acceptor are separated
by a 𝜋-conjugated spacer. The studies suggest that the donor
groups to form efficient sensitizers should be selected from
the electron rich aryl amines family including phenylamine,
aminocoumarin, indoline, (difluorenyl)triphenylamine, and
biphenyl. The 𝜋-conjugated connector must be selected
from compounds containing thiophene and oxadiazole units
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Scheme 1: Synthesis of novel dyes.

due to their outstanding charge transfer characteristics.
Acrylic acid group is considered the best acceptor moi-
ety [12]. Tian et al. synthesized methylthiophene based
photosensitizers for high-performance DSSCs. They intro-
duced vinyl unit as pi-bridge and found that the DSSC
assembled with 2-cyano-3-(5-(4-(diphenylamino)phenyl)-4-
methylthiophenyl-2-yl) acrylic acid showed an efficiency
of 8.27% under simulated AM 1.5G solar irradiation
(100mWcm2) [13]. Mao et al. synthesized a series of new
metal-free organic dyes with either a boron dipyrromethene
(BODIPY) phenylene or thiophene as a pi-conjugated bridge.
The structure-property relationship of these dyes shows that
the introduction of a methoxy group as the donor and a
BODIPY thiophene unit as the pi-conjugated bridge are
favorable to improve the efficiency of DSSCs [14]. Diketopy-
rrolopyrrole (DPP) sensitizers were synthesized by Qu et
al. The sensitizer containing diketopyrrolopyrrole moiety as
the pi-bridge exhibited good stability and better photovoltaic
performance of up to 4.41% power conversion efficiency [15].

DFT/TD-DFT is an effective tool to investigate the
ground and excited state properties of photosensitizer com-
plexes as compared to other high level quantum approaches
because the computed orbitals are suitable for the typical
MO-theoretical analyses and interpretations [16]. Many the-
oreticians have successfully applied this approach in the
designing of photosensitizers [17–24].

2. Computer Simulation

Amsterdam Density Functional (ADF) program (2013.01)
was used to perform the DFT calculations. Generalized
gradient approximation (GAD) at OLYP level with triple-𝜁
polarization basis function was used to optimize structures of

TiO
2
and dyes. Relativistic effects were considered in all the

calculations by applying zero order regular approximation in
its scalar approximation [21, 22, 25].

3. Synthesis of Dyes

Novel dyes were synthesized according to Scheme 1.

Step 1 (see Scheme 2(a): synthesis of ester (1)). A solution of
biphenyl-4-carboxylic acid (5 g) in methanol (25mL) in the
presence of a catalytic amount of sulfuric acid (0.5mL) was
heated under reflux for 24 h.Themixture was cooled to room
temperature and then concentrated in vacuo. The resulting
residue was diluted with water (50mL) and extracted with
ethyl acetate (2 × 50mL). The combined organic layers were
washed with saturated sodium bicarbonate solution followed
by water.The organic layer was dried over sodium sulfate and
concentrated under reduced pressure to give the pure ester 1
in quantitative yield.

Step 2 (see Scheme 2(b): synthesis of hydrazide (2)). To a stirred
solution of methyl biphenyl-4-carboxylate (1, 5 g) in ethanol
(50mL), hydrazine monohydrate (100% solution) (24 g) was
added. The resulting mixture was stirred at 80∘C for 8 h
and then concentrated under reduced pressure. The residue
was diluted with ice cooled water (50mL) and the solid
was filtered and washed with water (2 × 50mL). The title
compound was obtained as a pale amorphous solid in 88%
yield.

Step 3 (see Scheme 2(c): synthesis of 1,3,4-oxadiazole (3)). To
a mixture of hydrazide (2, 3.5 g) and thiophene-2-carboxylic
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acid (2.1 g), POCl
3
(20mL)was added slowly at room temper-

ature and the resulting mixture was stirred for 2 h at 110∘C.
After the solution was cooled, excess POCl

3
was removed

under reduced pressure. The residue was diluted with water
and then neutralized with aqueous sodium bicarbonate. The
white precipitate was collected by filtration and washed with
water. The resulting solid (4.8 g) was further purified by
column chromatography to give the pure oxadiazole (4 g).

Step 4 (see Scheme 2(d): formylation of thiophene ring by
duff reaction (4)). A mixture of oxadiazole (3, 4 g), hexam-
ethylenetetramine (8 g) in 40mL of trifluoroacetic acid was
heated under reflux (90–110∘C). The progress of the reaction

was monitored by TLC. Up on completion, the mixture was
quenched with saturated sodium bicarbonate solution. The
precipitated solids were filtered and then washed with water.
The resulting solid was purified by column chromatography
to give the desired aldehyde 4 (2.5 g).

Step 5 (see Scheme 2(e): synthesis of cyanoacrylic acid 5 through
knoevenagel condensation (5)). To a solution of carboxalde-
hyde 4 (2 g) and ammonium acetate (0.1 equiv.) in acetic acid
(20mL), cyanoacetic acidwas added (1.1 equiv.).The resulting
mixture was heated under reflux for 4 h and the progress of
the reaction was monitored by TLC. After completion, the
mixture was cooled and dilutedwith ice water.The precipitate
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Figure 1: Structures of the novel 1,3,4-oxadiazole based photosensitizers.

was filtered and washed with water. The resulting solid was
recrystallized from toluene: methanol mixture (9 : 1) to afford
the required dye 5 in pure form.

All other dyes (D1, D3, andD4)were prepared in the same
manner. The structure and names of the dyes are shown in
Figure 1.

4. Fabrication and Characterization of DSSCs

A 2mM solution of each dye was prepared in chloroform.
TiO
2
paste was deposited on conductive glass substrate and

then sintered at 450∘C for 30 minutes. The electrodes were
immersed in the dye solution for 24 hours. After sensitization,
the samples were washed with ethanol to eliminate unan-
chored dye. A platinum coated counter electrode was pre-
pared by depositing platinum paste (Plasticol T, Solaronix)

on FTO glass substrate and then heated at 450∘C for 10 min-
utes. Then, DSSCs were fabricated employing the sensitized
anode, counter electrode, 60 𝜇m sealing spacer (Meltonix
1170, Solaronix), and I−/I

3

− redox couple electrolyte prepared
in methoxypropionitrile with a 50mM redox concentration
(Iodolyte Z-50, Solaronix). The visible spectra of dyes in
methanol and anchored to TiO

2
films at glass substrates

were recorded with JASCO-670 UV/VIS spectrophotometer.
Keithley 2400 Source Meter was used to measure the I-V
characteristics of the DSSCs using IV-5 solar simulator (Sr
#83, PV Measurement, Inc.) at AM1.5G (100mWcm−2). The
silicon solar cell was used as a reference for calibration. The
EIS was measured in dark conditions of illumination via Bio-
Logic SAS (VMP3, s/n: 0373), with an AC signal of 10mV
in amplitude, in the frequency range between 10Hz and
500KHz.
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Table 1: FMO and band gaps of dyes D1 to D4.

Dyes LUMOs (eV) HOMOs (eV) Band gap (eV)
D1 −3.956 −5.657 1.701

D2 −3.867 −5.682 1.815

D3 −3.694 −4.869 1.175

D4 −3.840 −5.180 1.340

5. Results and Discussion

5.1. Energy Levels of Photosensitizers. The frontier molecular
orbital (FMO) of dyes provides the necessary driving force
for the charge transfer. We used a DFT technique to find the
band gaps of TiO

2
cluster and novel photosensitizers. The

electron distribution of the HOMOs and LUMOs of D1, D2,
D3, andD4 is shown in Figure 2. Clearly, theHOMOsof these
compounds are the highest electron density located at donor
moieties. The LUMOs are located in the anchoring group
through the pi-bridge. Thus, the HOMO-LUMO excitation
induced by light irradiation couldmove the electron distribu-
tion from the donor moieties to the anchoring unit through
the pi-bridge segment. (TiO

2
)
8
cluster was also simulated to

find its conduction band (−4.0 eV) and band gap (3.18 eV).
Table 1 shows that the HOMOs of sensitizers are in the

sequence of D3 (−4.689) > D4 (−5.180) > D1 (−5.657) > D2
(−5.682).The LUMOs energy levels are in the sequence of D3
(−3.694) > D4 (−3.840) > D2 (−3.867) > D1 (−3.956). The
electron-donating moieties significantly affect the HOMO

and LUMO energy levels of the dyes. Similarly, the H-Lgap
of the dyes are in the order of D3 (1.175) < D4 (1.340) < D1
(1.701) < D2 (1.815). These results suggest that dyes 1–4 can
inject electrons to the conduction band of titanium oxide.

5.2. Absorption Spectra of Dyes. The absorption spectra of D3
in chloroform and adsorbed on TiO

2
are shown in Figure 3.

Two distinct absorption bands of D3 in chloroform can be
observed: one relatively weak band is in the region (380–
400 nm) corresponding to the 𝜋-𝜋∗ electron transitions of
the conjugated molecules and the other is around 430–
460 nm that can be assigned to an intramolecular charge
transfer (ICT) between electron-donor and electron acceptor
anchoring moieties. However, the absorption shifts to lower
energy values when anchored to TiO

2
. This is due to the fact

that on the electrode the carboxylate groups bind to the TiO
2

surface in which Ti4+ acts as proton.The interaction between
the carboxylate group and the surface Ti4+ ions may lead to
increased delocalization of the 𝜋∗ orbital. The energy of the
𝜋
∗ level is decreased by this delocalization, which explains the

red shift for the absorption spectra.

5.3. Photovoltaic Performance. DSSCs were fabricated using
D1, D2, D3, and D4 dyes having an effective area of 0.35 cm2.
Thephotovoltaic parameters ofDSSCs are recorded inTable 2
and the corresponding photocurrent voltage (J-V) character-
istics are showed in Figure 4. Solar cell based onD3 sensitizer
shows the best performance among the four dyes. It can be
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Table 2: PV properties of DSSCs.

Dyes 𝑗sc (mA/cm2) 𝑉oc (mV) FF (%) 𝜂 (%)
D1 0.479 448 50 0.11
D2 0.952 455 51 0.23
D3 8.178 632 50 2.58
D4 2.196 587 40 0.52
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Figure 3: Absorption spectra of D3 in chloroform and anchored to
TiO
2
.

clearly seen that the electron donor moiety of dyes plays a
key role in the photovoltaic performance. Thus, introducing
the anthracene unit as an electron donor moiety improves
the photocurrent of DSSC. Moreover, the higher HOMO
and LUMO energy levels of D3 do not only generate charge
separation but also accelerate the dye regeneration to avoid
charge recombination.

5.4. EIS Analysis. EIS analysis is performed to investigate
the interface resistances in DSSCs. Figure 5 shows the
Nyquist plot of DSSCs which were assembled with novel
photosensitizers. Generally, a normal impedance spectrum
of DSSCs is represented by three arcs (semicircles). The
first semicircle represents the resistance of electron transfer
at counter electrode/electrolyte (𝑅

1
), second signifies the

resistance of charge transfer at the photoanode/electrolyte
interface (𝑅

2
), and third indicates the diffusion of I−/I

3

− in
electrolyte (𝑍𝑤) [26, 27]. Only second arc comes out in the
Nyquist plot in Figure 5. It is probable that the other two
arcs corresponding to 𝑅

1
and 𝑍𝑤 are overshadowed by large

semicircle representing𝑅
2
[28, 29].The𝑅

2
signifies the charge

recombination rate; for example, a larger𝑅
2
specifies a slower

charge recombination.The𝑅
2
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D3 is greater that of D1, D2, and D4. The higher 𝑅
2
of D3

relative to D1, D2, and D3 could be attributed to the steric
hindrance of bulky anthracene unit.

6. Conclusion

A series of novel dyes D1, D2, D3, and D4 have been prepared
for DSSCs. The results indicate that the donor moiety in
organic dyes strongly influences the performance of DSSCs.
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The incorporation of anthracene unit as a donor moiety
improves the efficiency of DSSC as compared to other donor
units, that is, biphenyl, naphthalene, and triphenylamine.
Among the four photosensitizers synthesized, maximum
efficiency of 2.58% was obtained with DSSCs based on D3
(𝐽sc = 8.178mA/cm2, 𝑉oc = 632mV, FF = 0.5). These results
advocates that the photosensitizers based on anthracene unit
are auspicious candidates for DSSCs.
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