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Exponential cluster synchronization of neural networks with proportional delays is studied in this paper. Unlike previous constant
delay or bounded time delay, we consider the time-varying proportional delay is unbounded, less conservative, and more widely
applied. Furthermore, we designed a novel adaptive controller based on Lyapunov function and inequality technique to achieve
exponential cluster synchronization for neural networks and by using a unique way of equivalent system we proved the main
conclusions. Finally, an example is given to illustrate the effectiveness of our proposed method.

1. Introduction

In the past most researches focus on the complete synchro-
nization of neural networks, which means that all the nodes
of the whole network reach the same synchronization state,
and this has achieved significant progress [1–6]. However,
in many real world networks, it is to complete several
functions at the same time, which implies that the network
reaches several different states at last, which is a different
synchronization type: cluster synchronization. As a partic-
ular synchronization phenomenon, cluster synchronization
is achieved when the dynamical nodes realize complete
synchronization in each subgroup which is called cluster,
but no synchronization appears among the different clusters.
Owing to the significant application in biological science
and communication engineering, many results have been
available for cluster synchronization of complex dynamical
networks [7–10]. Ma et al. [9] proposed a coupling scheme
with cooperative and competitive weight-couplings to realize
cluster synchronization for the connected chaotic networks.
In [10], cluster synchronization of complex networks was
investigated with centralized adaptive pinning control.

In fact, there exist natural time delays in the operation
of systems which are due to the limited communication
speed when information transmission exists, extra time
required by the sensor to get the measurement information,
computation time required for generating the control inputs,

and the execution time required for the inputs being acted,
and it may cause undesirable dynamic behaviors such as
oscillation and instability. Recently, it has been revealed
that some types of delayed neural networks (DNNs) exhibit
some complicated dynamics and even chaotic behaviors
if the parameters and time delays are appropriately cho-
sen. Therefore, dynamic behaviors, especially the cluster
synchronization problems of DNNs, have been extensively
considered. So far, most studied models of synchronization
problem are neural networks (NNs) with constant delays,
time-varying and bounded delays, distributed delays, and so
on [11–18]. In [17], the authors discuss the synchronization of
complex dynamical networks by only designing the adaptive
controllers, while we introduce adaptive strategies not only to
the coupling strengths but also to the feedback gains. Dahms
et al. [18] investigate the stability of synchronized states in
delay-coupled networks where synchronization takes place
in groups of different local dynamics or in cluster states in
networks with identical local dynamics. In addition, delay-
dependent stability criteria and synchronization control laws
are related to the size of delay so that they can be used to
design some better networks according to the allowed time
delays of networks. So the cluster synchronization of the
neural network with time delay is the right direction for
further research.

The proportional delay is one of many delay types and
is objectively existent. Unlike previous constant delay or
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bounded time delay, the time-varying proportional delay is
unbounded, less conservative, and more widely applied. For
example, in Web quality of service (QoS) routing decision,
the proportional delay is usually required [19–23]. The pro-
portional delay system as an important mathematical model
often rises in some fields such as physics, biology systems, and
control theory and it has attractedmany scholars’ interest [24,
25]. If the QoS routing algorithms based on neural networks
with proportional delays are proposed, they will be the most
suitable algorithms corresponding to the actual situation.
Since a neural network usually has a spatial nature due to
the presence of an amount of parallel pathways of a variety of
axon sizes and lengths, it is reasonable that the proportional
delays are introduced in the neural networks according to the
topology structure and parameters of neural networks. The
proportional delay function 𝜏(𝑡) = (1 − 𝑞)𝑡 (0 < 𝑞 < 1) is
a monotonically increasing function about the time 𝑡, which
will be convenient to control the network’s running time
according to the time delays of network. So far a few results
of dynamic behaviors of DNNs with proportional delays have
been reported in [26–31]. Zhou [26, 30, 31] has discussed the
global exponential stability, asymptotic stability of cellular
neural networks (CNNs), and the research of synchronization
with proportional delays, by employing matrix theory and
constructing Lyapunov function. Dissipativity of a class of
CNNs with proportional delays has been investigated by
using the inner product properties in [27]. So far, to the best of
the author’s knowledge, there are few studies with the cluster
synchronization of the neural network with proportional
delays.

Motivated by the above discussions, we creatively take the
element of the proportional delays into the model of neural
networks to achieve the exponential cluster synchronization.
As an intersection of multibranches of learning, this model
will be closer to the reality and much more pertinence for
concrete questions. Whether in the study of delays or in the
research of cluster synchronizations, the paper has important
referring value. The main novelty of our contribution is as
follows.

(1) The cluster synchronization model with proportional
delay is considered.

(2) The coupling strength of each edge in the system only
depends on its local information.

(3) We use a uniqueway of equivalent system to prove the
main results.

This paper is organized as follows. In Section 2, the
models and preliminaries are presented. In Section 3, by the
application of Lyapunov function, some inequality analysis
technique, and the way of equivalent system, the results can
be obtained, which is about the cluster synchronization of the
delayed neural network. In Section 4, a numerical example
and its simulation are given to illustrate the effectiveness
of the proposed method. Conclusions are presented in
Section 5.

2. Model Description and Preliminaries

Consider a delayed neural network (DNN) with proportional
delay of𝑁 coupled identical nodes, with each node being an
𝑛-dimensional dynamical system, which can be described by
the following equations [26]:

�̇�
𝑖 (
𝑡) = − 𝐶𝑥𝑖 (

𝑡) + 𝐴𝑓 (𝑥𝑖 (
𝑡)) + 𝐵𝑓 (𝑥𝑖

(𝑞
𝑖
𝑡))

+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑔
𝑖𝑗 (
𝑡) Γ (𝑥𝑗 (

𝑡) − 𝑥𝑖 (
𝑡)) , 𝑡 ≥ 1,

𝑥
𝑖 (
𝑠) = 𝑥𝑖0

, 𝑞 ≤ 𝑠 ≤ 1, 𝑖 = 1, 2, 3, . . . , 𝑁,

(1)

where 𝑁 ≥ 2 denotes the number of nodes (neurons) in
the network; 𝑥

𝑖
(𝑡) = [𝑥

𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, . . . , 𝑥

𝑖𝑛
]
𝑇
∈ R𝑛 is the

state variable of node 𝑖; 𝐶 = diag(𝑐
1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

𝑛
) ∈ R𝑛×𝑛

is a diagonal matrix with positive entries. 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

and
𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

are the corresponding weight and delayed weight
matrices; 𝑓(𝑥

𝑖
(𝑡)) = (𝑓(𝑥

𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, . . . , 𝑥

𝑖𝑛
))
𝑇
∈ R𝑛 denotes

a nonlinear activation function of nodes; 𝐺 = (𝑔
𝑖𝑗
)
𝑛×𝑛

is
the coupling matrix between nodes. If there is a connection
between node 𝑖 and node 𝑗 at time 𝑡, then 𝑔

𝑖𝑗
(𝑡) = 𝑔

𝑗𝑖
(𝑡) >

0 (𝑖 ̸= 𝑗); otherwise 𝑔
𝑖𝑗
(𝑡) = 𝑔

𝑗𝑖
(𝑡) = 0 (𝑖 ̸= 𝑗). The diagonal

item of the matrix 𝐺 is 𝑔
𝑖𝑖
(𝑡) = −∑

𝑁

𝑗=1,𝑗 ̸=𝑖
𝑔
𝑖𝑗
(𝑡). In this

paper, the network is connected in the sense that there are no
isolated clusters in the network, which means that the matrix
𝐺 is symmetric and irreducible [10]. 𝑞

𝑖
(𝑖 = 1, 2, 3, . . . , 𝑁)

are proportional delay coefficient and satisfy 0 < 𝑞
𝑖
≤ 1,

𝑞 = min
1≤𝑖,𝑗≤𝑁

{𝑞
𝑖
}, and 𝑞

𝑖
𝑡 = 𝑡 − (1 − 𝑞

𝑖
)𝑡 in which (1 − 𝑞

𝑖
)𝑡

corresponds to the time delay, and (1 − 𝑞
𝑖
)𝑡 → ∞, as 𝑞 ̸= 1,

𝑡 → ∞. Furthermore, the neural networks described in (1)
possess initial conditions of 𝑥

𝑖
(𝑠) = 𝑥

𝑖0
, 𝑠 ∈ [𝑞, 1], 𝑥

𝑖0
(𝑖 =

1, 2, 3, . . . , 𝑁) are constants, and 𝑥
𝑖0
= [𝑥
𝑖01
, 𝑥
𝑖02
, . . . , 𝑥

𝑖0𝑛
]
𝑇. Γ

is inner matrix, and Γ > 0.
According to the characteristics of the matrix 𝐺, system

network (1) is easily turned to the following further simplified
equations:

�̇�
𝑖 (
𝑡) = − 𝐶𝑥𝑖 (

𝑡) + 𝐴𝑓 (𝑥𝑖 (
𝑡)) + 𝐵𝑓 (𝑥𝑖

(𝑞
𝑖
𝑡))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗 (
𝑡) Γ𝑥𝑗 (

𝑡) , 𝑡 ≥ 1,

𝑥
𝑖 (
𝑠) = 𝑥𝑖0

, 𝑞 ≤ 𝑠 ≤ 1, 𝑖 = 1, 2, 3, . . . , 𝑁.

(2)

Assume the whole 𝑁 nodes are divided into𝑀 clusters.
Without loss of generality, the sets of subscripts of these
clusters are 𝐶

1
= {1, 2, 3, . . . , 𝑁

1
}, 𝐶
2
= {𝑁

1
+ 1,𝑁

1
+

2, . . . , 𝑁
1
+𝑁
2
}, . . . , 𝐶

𝑀
= {𝑁
1
+⋅ ⋅ ⋅+𝑁

𝑚−1
+ 1, . . . , 𝑁}, where

𝑁
1
+𝑁
2
+ ⋅ ⋅ ⋅ +𝑁

𝑀
= 𝑁. The network is considered to realize
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cluster synchronization, when the states of nodes achieve the
following states [32]:

𝑥
1 (
𝑡) = 𝑥2 (

𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁
1
(𝑡) = 𝑠𝑖 (

𝑡) , 𝑖 = 1, 2, . . . , 𝑁1
,

𝑥
𝑛
1
+1 (
𝑡) = 𝑥𝑁

1
+2 (
𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁

1+𝑁2

(𝑡) = 𝑠𝑖 (
𝑡) ,

𝑖 = 𝑁
1
+ 1,𝑁

1
+ 2, . . . , 𝑁

1
+ 𝑁
2
,

.

.

.

𝑋
𝑁
1
+⋅⋅⋅+𝑁

𝑚−1
+1 (
𝑡)

= 𝑥
𝑁
1
+⋅⋅⋅+𝑁

𝑚−1
+2 (
𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁 (

𝑡) = 𝑠𝑖 (
𝑡) ,

𝑖 = 𝑁
1
+ 1,𝑁

1
+ 2, . . . , 𝑁

1
+ 𝑁
2
,

(3)

where 𝑠
𝑖
(𝑡) = (𝑠

𝑖1
(𝑡), 𝑠
𝑖2
(𝑡), . . . , 𝑠

𝑖𝑛
(𝑡))
𝑇 is the desired state of

node 𝑖 at time 𝑡 and satisfies

̇𝑠
𝑖 (
𝑡) = −𝐶𝑠𝑖 (

𝑡) + 𝐴𝑓 (𝑠𝑖 (
𝑡)) + 𝐵𝑓 (𝑠𝑖

(𝑞
𝑖
𝑡)) . (4)

In order to make the network (1) realize cluster synchro-
nization, an input control is added in (1) which is designed as
follows:

𝑢
𝑖 (
𝑡) = −

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑔
𝑖𝑗 (
𝑡) Γ (𝑥𝑗 (

𝑡) − 𝑥𝑖 (
𝑡)) . (5)

According to the characteristics of the matrix 𝐺, the
input (5) is easily turned to the following further simplified
equation:

𝑢
𝑖 (
𝑡) = −

𝑁

∑

𝑗=1

𝑔
𝑖𝑗 (
𝑡) Γ𝑥𝑗 (

𝑡) , (6)

where the coupling strength 𝑔
𝑖𝑗
(𝑡) = (𝑔

1

𝑖𝑗
, 𝑔
2

𝑖𝑗
, . . . , 𝑔

𝑛

𝑖𝑗
)

𝑇

between nodes adopts the following local adaptive strategy:

̇𝑔
𝑖𝑗 (
𝑡) = 𝛽






[𝑥
𝑗 (
𝑡) − 𝑠𝑗 (

𝑡)] − [𝑥𝑖 (
𝑡) − 𝑠𝑖 (

𝑡)]

+ [𝑥
𝑗
(𝑞
𝑗
𝑡) − 𝑠
𝑗
(𝑞
𝑗
𝑡)]

− [𝑥
𝑖
(𝑞
𝑖
𝑡) − 𝑠
𝑖
(𝑞
𝑖
𝑡)]






,

(7)

where 𝛽 > 0 is the adaptive gain.
Before starting to discuss the cluster synchronization, we

make the following assumption.

Assumption 1. The activation function 𝑓(𝑥
𝑖
(𝑡)) satisfies that

𝑓 : R𝑛 → R𝑛, |𝑓(𝑢) − 𝑓(V)| ≤ 𝐿|𝑢 − V|, where 𝑢, V ∈ R𝑛 and
𝐿 is positive constant.

Let us consider transformation defined by [27]

𝑦
𝑖 (
𝑡) = 𝑥𝑖

(𝑒
𝑡
) , 𝑖 = 1, 2, . . . , 𝑁. (8)

Case 1. When 𝑒𝑡 ≥ 1, then 𝑡 ≥ 0 and ̇𝑦
𝑖
(𝑡) = �̇�

𝑖
(𝑒
𝑡
)𝑒
𝑡; that is,

�̇�
𝑖
(𝑒
𝑡
) = ̇𝑦
𝑖 (
𝑡) 𝑒
−𝑡
. (9)

Let 𝑒𝑡 = 𝑧, 𝑧 ≥ 1; then (8) is written as

�̇�
𝑖 (
𝑧) = ̇𝑦

𝑖 (
𝑡) 𝑧
−1
. (10)

According to the above various formulas one gets

̇𝑦
𝑖 (
𝑡) 𝑧
−1
= −𝐶𝑥

𝑖 (
𝑧) + 𝐴𝑓 (𝑥𝑖 (

𝑧)) + 𝐵𝑓 (𝑥𝑖
(𝑞
𝑖
𝑧))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗 (
𝑧) Γ𝑥𝑗 (

𝑧) + 𝑢𝑖 (
𝑡) .

(11)

That is to say,

�̇�
𝑖
(𝑒
𝑡
) = −𝐶𝑥

𝑖
(𝑒
𝑡
) + 𝐴𝑓 (𝑥

𝑖
(𝑒
𝑡
)) + 𝐵𝑓 (𝑥

𝑖
(𝑞
𝑖
𝑒
𝑡
))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
(𝑒
𝑡
) Γ𝑥
𝑗
(𝑒
𝑡
) + 𝑢
𝑖
(𝑒
𝑡
) .

(12)

According to (8), we have

𝑥
𝑖
(𝑞
𝑖
𝑒
𝑡
) = 𝑥
𝑖
(𝑒
𝑡+ln 𝑞

𝑖
) = 𝑦
𝑖
(𝑡 + ln 𝑞) = 𝑦

𝑖
(𝑡 − 𝜏
𝑖
) . (13)

Using (8) and (13) in (12) one gets

̇𝑦
𝑖 (
𝑡) = 𝑒

𝑡
{

{

{

−𝐶𝑦
𝑖 (
𝑡) + 𝐴𝑓 (𝑦𝑖 (

𝑡)) + 𝐵𝑓 (𝑦𝑖
(𝑡 − 𝜏
𝑖
))

+

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γ𝑢𝑗 (

𝑡)

}

}

}

+ 𝑈
𝑖 (
𝑡) , 𝑡 ≥ 0.

(14)

Case 2. When 𝑒𝑡 ∈ [𝑞, 1], we have

𝑥
𝑖
(𝑒
𝑡
) = 𝑥
𝑖0
, 𝑡 ∈ [−𝜏, 0] , (15)

where 𝜏 = max
1≤𝑖≤𝑁

(𝜏
𝑖
), 𝜏
𝑖
= − ln 𝑞

𝑖
. Thus, the initial

function associated with system (12) is given by

𝑌
𝑖 (
𝑠) = 𝑥𝑖0

, −𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁. (16)

The analysis is completed.

Remark 2. Conversely, let 𝜏
𝑖
= − ln 𝑞

𝑖
, 𝜏 = max

1≤𝑖≤𝑁
(𝜏
𝑖
); by

(8), (16) and (14) can be turned to (1), which means that the
transformation is reversible and equivalent.

Above all, let

𝑦
𝑖 (
𝑡) = 𝑥𝑖

(𝑒
𝑡
) ,

𝑤
𝑖 (
𝑡) = 𝑠𝑖

(𝑒
𝑡
) ,

𝐺
𝑖𝑗 (
𝑡) = 𝑔𝑖𝑗

(𝑒
𝑡
) ,

𝑈
𝑖 (
𝑡) = 𝑢𝑖

(𝑒
𝑡
) ,

𝑖 = 1, 2, 3, . . . , 𝑁.

(17)
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System (1) with the input control (5) can be equivalently
turned to the following neural network with a fixed delay,
which can be described as

̇𝑦
𝑖 (
𝑡) = 𝑒

𝑡
{

{

{

−𝐶𝑦
𝑖 (
𝑡) + 𝐴𝑓 (𝑦𝑖 (

𝑡)) + 𝐵𝑓 (𝑦𝑖
(𝑡 − 𝜏
𝑖
))

+

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γ𝑦𝑗 (

𝑡)

}

}

}

+ 𝑈
𝑖 (
𝑡) ,

(18)

�̇�
𝑖 (
𝑡) = 𝑒

𝑡
{−𝐶𝑤

𝑖 (
𝑡) + 𝐴𝑓 (𝑤𝑖 (

𝑡)) + 𝐵𝑓 (𝑤𝑖
(𝑡 − 𝜏
𝑖
))} , (19)

𝑈
𝑖 (
𝑡) = 𝑒

𝑡
{

{

{

−

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐺
𝑖𝑗 (
𝑡) Γ (𝑦𝑗 (

𝑡) − 𝑦𝑖 (
𝑡))

}

}

}

, (20)

�̇�
𝑖𝑗 (
𝑡) = 𝑒

𝑡
{𝛽






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)] − [𝑦𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)]

+ [𝑦
𝑗
(𝑡 − 𝜏
𝑖
) − 𝑤
𝑗
(𝑡 − 𝜏
𝑖
)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)]






} ,

(21)

𝑦
𝑖 (
𝑠) = 𝑥𝑖 (

𝑠) , 𝑠 ∈ [−𝜏, 0] ; 𝑖 = 1, 2, . . . , 𝑁, (22)

where 𝑡 ≥ 0, 𝜏 = max
1≤𝑖≤𝑁

(𝜏
𝑖
), 𝜏
𝑖
= − ln 𝑞

𝑖
> 0, and 𝑥

𝑖
(𝑠) =

𝑥
𝑖0
∈ 𝐶([−𝜏, 0],R𝑛), 𝑖 = 1, 2, . . . , 𝑁, is constant continuous

function.

Remark 3. The translations are to convert the desired cluster
synchronization state to another equivalent control system,
which is convenient to study the cluster synchronization.
Namely, the state when the original system realizes the
cluster synchronizationmeans that the control systemand the
original system realized synchronization.

Definition 4. System (18) and (19) is said to be exponentially
synchronized if there exist constants𝑀 ≥ 1 and 𝜆 > 0 such
that
𝑛

∑

𝑖=1





𝑦
𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)




≤ 𝑀

𝑛

∑

𝑖=1

sup
−𝜏≤𝑠≤0





𝑦
𝑖 (
𝑠) − 𝑤𝑖 (

𝑠)




𝑒
−𝜆𝑡
,

𝑡 ≥ 0,

(23)

where the constant 𝜆 is defined as the exponential synchro-
nization rate.

The goal of this paper is to prove that system (1) with
adaptive control (5) can achieve the desired cluster synchro-
nization. Now it is equivalently turned to prove that system
(18) and (19) can meet the exponential synchronization. In
order to prove that it satisfies the exponential synchroniza-
tion, the following dynamic equations of synchronization
error can be obtained:

̇
ℎ
𝑖 (
𝑡) = 𝑒

𝑡
{

{

{

−𝐶ℎ
𝑖 (
𝑡) + 𝐴𝐹 (ℎ𝑖 (

𝑡)) + 𝐵𝐹 (ℎ𝑖
(𝑡 − 𝜏
𝑖
))

+

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γ𝑦𝑗 (

𝑡)

}

}

}

+ 𝑈
𝑖 (
𝑡)

= 𝑒
𝑡
{

{

{

−𝐶ℎ
𝑖 (
𝑡) + 𝐴𝐹 (ℎ𝑖 (

𝑡))

+ 𝐵𝐹 (ℎ
𝑖
(𝑡 − 𝜏
𝑖
)) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γℎ𝑗 (

𝑡)

}

}

}

,

(24)

where 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁, and ℎ
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑤

𝑖
; 𝐹(ℎ
𝑖
(𝑡)) =

𝑓(𝑦
𝑖
(𝑡))−𝑓(𝑤

𝑖
(𝑡)); 𝐹(ℎ

𝑖
(𝑡−𝜏
𝑖
)) = 𝑓(𝑦

𝑖
(𝑡−𝜏
𝑖
))−𝑓(𝑤

𝑖
(𝑡−𝜏
𝑖
)),

𝜏
𝑖
= − ln 𝑞

𝑖
> 0.

Thus the goal of this paper is further equivalently turned
into the proof of the dynamic equations of synchronization
error to achieve an exponential stabilization.

3. Main Results

Theorem 5. Assume that Assumption 1 holds. If |𝐴|𝐿 +
|𝐵|𝐿𝑒
𝜎𝜏
+ 𝜎 − 1 < |𝐶| is true, system (18) and (19) can achieve

exponential stabilization with the synchronization rate 𝛼 =
𝜎 − 1 > 0, where 𝐿 > 0; 𝜎 > 1; 𝜏 = max

1≤𝑖≤𝑁
(𝜏
𝑖
).

Proof. According to the definition of ̇ℎ
𝑖
(𝑡) and Assumption 1,

we get




𝐹 (ℎ
𝑖 (
𝑡))




≤ 𝐿




ℎ
𝑖 (
𝑡)




,





𝐹 (ℎ
𝑖
(𝑡 − 𝜏
𝑖
))




≤ 𝐿




ℎ
𝑖
(𝑡 − 𝜏
𝑖
)




.

(25)

Consider the following function:

𝐻
𝑖 (
𝑡) = 𝑒

𝜎𝑡 



ℎ
𝑖 (
𝑡)




, 𝜎 > 1. (26)

From (24) to (26) one gets

�̇�
𝑖 (
𝑡) = 𝜎𝑒

𝜎 



ℎ
𝑖 (
𝑡)




+ 𝑒
𝜎𝑡
𝑑




ℎ
𝑖 (
𝑡)





𝑑𝑡

= 𝜎𝑒
𝜎 



ℎ
𝑖 (
𝑡)




+ 𝑒
𝜎𝑡 ℎ𝑖 (

𝑡)
̇
ℎ
𝑖 (
𝑡)





ℎ
𝑖 (
𝑡)





= 𝜎𝑒
𝜎 



ℎ
𝑖 (
𝑡)





+ 𝑒
𝜎𝑡
((ℎ
𝑖 (
𝑡) ∗ 𝑒
𝑡

∗ [

[

−𝐶ℎ
𝑖 (
𝑡) + 𝐴𝐹 (ℎ𝑖 (

𝑡))

+ 𝐵𝐹 (ℎ
𝑖
(𝑡 − 𝜏
𝑖
))

+

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γℎ𝑗 (

𝑡)
]

]

)

⋅




ℎ
𝑖
(𝑡)





−1
)
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≤ 𝜎𝑒
𝜎 



ℎ
𝑖 (
𝑡)





+ 𝑒
𝜎𝑡
𝑒
𝑡
{

{

{

− |𝐶|




ℎ
𝑖 (
𝑡)





+ |𝐴| 𝐿




ℎ
𝑖 (
𝑡)




+ |𝐵| 𝐿





ℎ
𝑖
(𝑡 − 𝜏
𝑖
)





+

𝑁

∑

𝑗=1






𝐺
𝑖𝑗 (
𝑡)






Γ






ℎ
𝑗 (
𝑡)







}

}

}

= 𝜎𝐻
𝑖 (
𝑡) + 𝑒
𝑡
{

{

{

− |𝐶|𝐻𝑖 (
𝑡) + |𝐴| 𝐿𝐻𝑖 (

𝑡)

+ |𝐵| 𝐿𝑒
𝜎𝜏
𝑖
𝐻
𝑖
(𝑡 − 𝜏
𝑖
)

+

𝑁

∑

𝑗=1






𝐺
𝑖𝑗 (
𝑡)






Γ𝐻
𝑖 (
𝑡)

}

}

}

.

(27)

Now construct the following positive Lyapunov func-
tional as follows:

𝑉 (𝑡) = 𝑒
−𝑡

𝑁

∑

𝑖=1

𝐻
𝑖 (
𝑡) + |𝐵|

𝑁

∑

𝑖=1

𝐿𝑒
𝜎𝜏
𝑖
∫

𝑡

𝑡−𝜏
𝑖

𝐻
𝑖 (
𝑠) 𝑑𝑠

+

1

2𝛽

∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗 (
𝑡)) ,

(28)

where 𝑡 ≥ 0, 𝜎 > 1; 𝜀 is the edges’ set of the network; ℎ
𝑖𝑗
is a

constant.
Then the differential of 𝑉(𝑡) is

�̇� (𝑡) = −𝑒
−𝑡

𝑁

∑

𝑖=1

𝐻
𝑖 (
𝑡) + 𝑒
−𝑡

𝑁

∑

𝑖=1

�̇�
𝑖 (
𝑡)

+ |𝐵|

𝑁

∑

𝑖=1

𝐿𝑒
𝜎𝜏
𝑖
(𝐻
𝑖 (
𝑡) − 𝐻𝑖

(𝑡 − 𝜏
𝑖
)) 𝜀𝜀

−

1

𝛽

∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

�̇�
𝑖𝑗 (
𝑡) .

(29)

According to (27), we can get

�̇� (𝑡) = −𝑒
−𝑡

𝑁

∑

𝑖=1

𝐻
𝑖 (
𝑡)

+ 𝑒
−𝑡

𝑁

∑

𝑖=1

{

{

{

𝜎𝐻
𝑖 (
𝑡) + 𝑒
𝑡
{

{

{

− |𝐶|𝐻𝑖 (
𝑡)

+ |𝐴| 𝐿𝐻𝑖 (
𝑡)

+ |𝐵| 𝐿𝑒
𝜎𝜏
𝑖
𝐻
𝑖
(𝑡 − 𝜏
𝑖
)

+

𝑁

∑

𝑗=1






𝐺
𝑖𝑗 (
𝑡)






Γ𝐻
𝑖 (
𝑡)

}

}

}

}

}

}

+ |𝐵|

𝑁

∑

𝑖=1

𝐿𝑒
𝜎𝜏
𝑖
(𝐻
𝑖 (
𝑡) − 𝐻𝑖

(𝑡 − 𝜏
𝑖
))

+∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

𝑒
𝑡
𝛽

⋅






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)] − [𝑦𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)]

+ [𝑦
𝑗
(𝑞
𝑗
𝑡) − 𝑤

𝑗
(𝑞
𝑗
𝑡)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)]







=

𝑁

∑

𝑖=1

{

{

{

(𝜎 − 1) 𝑒
−𝑡
− |𝐶| + |𝐴| 𝐿

+ |𝐵| 𝐿𝑒
𝜎𝜏
𝑖
+

𝑁

∑

𝑗=1

𝐺
𝑖𝑗 (
𝑡) Γ

}

}

}

𝐻
𝑖 (
𝑡)

− ∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

⋅ 𝑒
𝑡
{𝛽






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)] − [𝑦𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)]

+ [𝑦
𝑗
(𝑞
𝑗
𝑡) − 𝑤

𝑗
(𝑞
𝑗
𝑡)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)]






}

=

𝑁

∑

𝑖=1

𝑒
𝜎𝑡
{

{

{

(𝜎 − 1) 𝑒
−𝑡
− |𝐶| + |𝐴| 𝐿 + |𝐵| 𝐿𝑒

𝜎𝜏
𝑖

+

𝑁

∑

𝑗=1






𝐺
𝑖𝑗 (
𝑡)






Γ

}

}

}





ℎ
𝑖 (
𝑡)





− ∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

𝑒
𝑡

⋅ {𝛽






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)] − [𝑦𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)]

+ [𝑦
𝑗
(𝑞
𝑗
𝑡) − 𝑤

𝑗
(𝑞
𝑗
𝑡)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)] } .

(30)

According to Assumption 1 and (25), we can get

�̇� (𝑡) ≤

𝑁

∑

𝑖=1

𝑒
𝜎𝑡
{(𝜎 − 1) − |𝐶| + |𝐴| 𝐿 + |𝐵| 𝐿𝑒

𝜎𝜏
} |




ℎ
𝑖 (
𝑡)





+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑒
𝜎𝑡 



𝐺
𝑖𝑗 (
𝑡)






Γ




ℎ
𝑖 (
𝑡)





+ ∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

⋅ 𝑒
𝑡
𝛽






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)] − [𝑦𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)]
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+ [𝑦
𝑗
(𝑞
𝑗
𝑡) − 𝑤

𝑗
(𝑞
𝑗
𝑡)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)]







≤

𝑁

∑

𝑖=1

𝑒
𝜎𝑡
{(𝜎 − 1) − |𝐶| + |𝐴| 𝐿 + |𝐵| 𝐿𝑒

𝜎𝜏
} |




ℎ
𝑖 (
𝑡)





+ ∑

𝜀

(ℎ
𝑖𝑗
− 𝐺
𝑖𝑗
(𝑡))

𝑇

⋅ 𝑒
𝑡
𝛽






[𝑦
𝑗 (
𝑡) − 𝑤𝑗 (

𝑡)]

− [𝑦
𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)] + [𝑦𝑗
(𝑞
𝑗
𝑡) − 𝑤

𝑗
(𝑞
𝑗
𝑡)]

− [𝑦
𝑖
(𝑞
𝑖
𝑡) − 𝑤

𝑖
(𝑞
𝑖
𝑡)]






.

(31)

By the conditions of the theorems |𝐴|𝐿 + |𝐵|𝐿𝑒𝜎𝜏 + 𝜎 −
1 < |𝐶|, and, for any edge (𝑖, 𝑗) ∈ 𝜀, there exists the value
ℎ
𝑖𝑗
which is bigger than or equal to the corresponding edge

strength 𝐺
𝑖𝑗
(𝑡), and we get

�̇� (𝑡) ≤ 0, 𝑡 ≥ 0, (32)

which means 𝑉(𝑡) ≤ 𝑉(0), for 𝑡 ≥ 0. Then, by (25) and (28),
one has

𝑁

∑

𝑖=1

𝑒
𝜎𝑡
𝑒
−𝑡 



ℎ
𝑖 (
𝑡)




≤ 𝑉 (𝑡) ≤ 𝑉 (0) . (33)

It follows from (28) that

𝑉 (0) =

𝑁

∑

𝑖=1





ℎ
𝑖 (
0)




+ |𝐵|

𝑁

∑

𝑖=1

𝐿𝑒
𝜎𝜏
𝑖
∫

0

−𝜏
𝑖

𝐻
𝑖 (
𝑠) 𝑑𝑠

≤

𝑁

∑

𝑖=1





ℎ
𝑖 (
0)




+ |𝐵|

𝑁

∑

𝑖=1

𝐿𝜏
𝑖
𝑒
𝜏
𝑖 sup
−𝜏
𝑖
≤𝑠≤0

𝐻
𝑖 (
𝑠)

≤

𝑁

∑

𝑖=1





ℎ
𝑖 (
0)




+ |𝐵|

𝑁

∑

𝑖=1

𝐿𝜏𝑒
𝜏 sup
−𝜏≤𝑠≤0

𝐻
𝑖 (
𝑠)

≤ max
1≤𝑖≤𝑁

(1 + |𝐵| 𝐿𝜏𝑒
𝜏
)

𝑁

∑

𝑖=1

sup
−𝜏≤𝑠≤0

𝐻
𝑖 (
𝑠) ,

(34)

where𝑀 = max
1≤𝑖≤𝑁

(1 + |𝐵|𝐿𝜏𝑒
𝜏
) ≥ 1.

All told, one gets

𝑛

∑

𝑖=1





𝑦
𝑖 (
𝑡) − 𝑤𝑖 (

𝑡)




≤ 𝑀

𝑛

∑

𝑖=1

sup
−𝜏≤𝑠≤0





𝑦
𝑖 (
𝑠) − 𝑤𝑖 (

𝑠)




𝑒
−𝛼𝑡
, (35)

where 𝛼 = 𝜎 − 1, 𝜎 > 1.
The proof is completed.

Remark 6. System (18) and (19) is asymptotically synchro-
nized if the following conditions are satisfied: (1) the expo-
nential synchronization rate is zero; that is, 𝜆 = 0 and𝑀 > 1;
then ∑𝑛

𝑖=1
|𝑦
𝑖
(𝑡) − 𝑤

𝑖
(𝑡)| ≤ 𝑀∑

𝑛

𝑖=1
sup
−𝜏≤𝑠≤0

|𝑦
𝑖
(𝑠) − 𝑤

𝑖
(𝑠)|,

𝑡 ≥ 0; (2) lim
𝑡→∞

||ℎ(𝑡)|| = 0.

According to the foregoing contents𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑒
𝑡
),𝑤
𝑖
(𝑡) =

𝑠
𝑖
(𝑒
𝑡
), one gets

𝑛

∑

𝑖=1






𝑥
𝑖
(𝑒
𝑡
) − 𝑠
𝑖
(𝑒
𝑡
)






≤ 𝑀

𝑛

∑

𝑖=1

sup
−𝜏≤𝑠≤0





𝑥
𝑖
(𝑒
𝑠
) − 𝑠
𝑖
(𝑒
𝑠
)




𝑒
−𝛼𝑡
,

𝑒
𝑡
≥ 1.

(36)

Let 𝑒𝑡 = 𝜂; then 𝜂 ≥ 1 and 𝑡 = ln 𝜂 ≥ 0; let 𝑒𝑠 = 𝜉; then
𝑠 = ln 𝜉 ∈ [−𝜏, 0] and 𝜉 ∈ [𝑞, 1]. Thus, it follows from (36)
that

𝑁

∑

𝑖=1





𝑥
𝑖
(𝜂) − 𝑠

𝑖
(𝜂)




≤ 𝑀

𝑛

∑

𝑖=1

sup
𝑞≤𝜉≤1





𝑥
𝑖 (
𝜉) − 𝑠𝑖 (

𝜉)




𝑒
−𝛼 ln 𝜂

,

𝜂 ≥ 1.

(37)

Let 𝜂 = 𝑡; the following inequality is obtained:

𝑁

∑

𝑖=1





𝑥
𝑖 (
𝑡) − 𝑠𝑖 (

𝑡)




≤ 𝑀

𝑛

∑

𝑖=1

sup
𝑞≤𝜉≤1





𝑥
𝑖0
− 𝑠
𝑖0





𝑒
−𝛼 ln 𝑡

,

𝑡 ≥ 1.

(38)

Thus, control system (4) and original system (1) are
considered to be exponentially synchronized, and the expo-
nential synchronization rate is less than 𝛼 because of 0 <
ln 𝑡 < 𝑡; that is, ln 𝑡/𝑡 < 1, as 𝑡 ≥ 1.

Thus, the following theorem is derived.

Inference 1. Assume that Assumption 1 holds. If |𝐴|𝐿 +
|𝐵|𝐿𝑒
𝜎𝜏
+𝜎− 1 < |𝐶| is true, system (1) with the input control

(5) can achieve an exponential cluster synchronization for the
desired state, with the exponential rate being 𝛼 = 𝜎 − 1 > 0,
where 𝐿 > 0; 𝜎 > 1; 𝜏 = max

1≤𝑖≤𝑁
(𝜏
𝑖
), − ln 𝑞

𝑖
> 0.

The proof is omitted.

4. Illustrative Examples

In the following simulation, the whole neural network is
divided into three clusters, which means that 𝑀 = 3. The
desired state 𝑠

𝑖
(𝑡) of node 𝑖 at time 𝑡 is chosen as the average

states of all the nodes in the same cluster at time 𝑡 as follows:

𝑠
1 (
𝑡) = 𝑠2 (

𝑡) = ⋅ ⋅ ⋅ = 𝑠𝑁
1
(𝑡)

=

𝑥
1 (
𝑡) + 𝑥2 (

𝑡) + ⋅ ⋅ ⋅ +𝑥𝑁
1
(𝑡)

𝑁
1

,

𝑠
𝑁
1
+1 (
𝑡) = 𝑠𝑁

1
+2 (
𝑡) = ⋅ ⋅ ⋅ = 𝑠𝑁

1
+𝑁
2
(𝑡)

=

𝑥
𝑁
1
+1 (
𝑡) + 𝑥𝑁

1
+2 (
𝑡) + ⋅ ⋅ ⋅ +𝑥𝑁

1
+𝑁
2
(𝑡)

𝑁
1

,
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𝑠
𝑁
1
+𝑁
2
+1 (
𝑡)

= 𝑠
𝑁
1
+𝑁
2
+2 (
𝑡) = ⋅ ⋅ ⋅ = 𝑠𝑁

1
+𝑁
2
+𝑁
3
(𝑡)

=

𝑥
𝑁
1
+𝑁
2
+1 (
𝑡) + 𝑥𝑁

1
+𝑁
2
+2 (
𝑡) + ⋅ ⋅ ⋅ +𝑥𝑁

1
+𝑁
2
+𝑁
3
(𝑡)

𝑁
1

,

(39)

where the three clusters are𝑁
1
,𝑁
2
, and𝑁

3
, respectively.

Consider the following delayed neural networks
(DCNNs):

̇𝑦
𝑖 (
𝑡) = −𝐶𝑦𝑖 (

𝑡) + 𝐴𝑓 (𝑦𝑖 (
𝑡)) + 𝐵𝑓 (𝑦𝑖

(𝑡 − 𝜏
𝑖
)) , (40)

where 𝑦(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡)]
𝑇, 𝑓(𝑦) = [tanh(𝑦

1
), tanh(𝑦

2
)]
𝑇,

and the parameters are

𝐶 = [

1 0

0 1

] , 𝐴 = [

2.0 −0.1

−5.0 3.0

] ,

𝐵 = [

−1.5 −0.1

−0.2 −2.5

] .

(41)

The system meets Assumption 1 and Theorem 5 with
𝐿 = 1. The chaotic behavior of system (40) with the initial
condition [𝑦

1
(𝑠), 𝑦
2
(𝑠)]
𝑇
= [0.4, 0.6]

𝑇, (−1 ≤ 𝑠 ≤ 0), has
already been reported in the case of 𝜏

𝑖
= 1𝑠 [33] (see Figure 1).

Example 1. Referring to the classical model, consider the
following improved model with𝑁 nodes:

̇𝑦
𝑖 (
𝑡) = − 𝐶𝑦𝑖 (

𝑡) + 𝐴𝑓 (𝑦𝑖 (
𝑡)) + 𝐵𝑓 (𝑦𝑖

(𝑡 − 𝜏
𝑖
))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗 (
𝑡) Γ (𝑥𝑗 (

𝑡) − 𝑠𝑗 (
𝑡)) .

(42)

The system meets Assumption 1 andTheorem 5 with 𝐿 =
1, 𝛽 = 0.2,

𝐶 = [

2 0

0 2

] , 𝐴 = [

2.0 −0.1

−5.0 3.0

] ,

𝐵 = [

−1.5 −0.1

−0.2 −2.5

] , Γ = [

1 0

0 1

] ,

(43)

𝑦(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡)]
𝑇, and 𝑓(𝑦) = [tanh(𝑦

1
), tanh(𝑦

2
)]
𝑇,

where 𝑞
𝑖
= 0.5 (𝑖 = 1, 2, . . . , 𝑁) is constants, which is the

proportional delay coefficient.

In the simulation experiment, a BA scale-free neural
network is needed,which is constructedwith𝑚 = 𝑚

0
= 5 and

the neural network size𝑁 = 50. The construction method of
the BA scale-free neural network can refer to [34]. Suppose
the whole network will reach three clusters with the cluster
size being 14, 8, and 28, respectively. The initial states 𝑦

𝑖1
(𝑡)

and 𝑦
𝑖2
(𝑡), 𝑖 = 1, 2, . . . , 50, are randomly distributed between

[−1, 1] and [−5, 5].
As shown in Figure 2(a), for 𝑡 > 2 s, 14 black curves

changed into one black curve, 8 red curves changed into

0.0 0.4 0.8

0

2

4

−0.8 −0.4

−4

−2

x1

x
2

Figure 1: The chaotic DCNNs with 𝜏
𝑖
= 1𝑠 in (40).

one red curve, and the remaining 28 blue curves changed
into one blue curve; that is, the 50 state lines of 𝑥

𝑖1
(𝑡), (𝑖 =

1, 2, . . . , 50), in system gradually merged into 3 lines, which
means that each node of the neural network realizes the
desired cluster synchronization. It reflects that the number
of the nodes in the cluster influences the rate of the cluster
synchronization. Then in Figure 2(b), for 𝑡 > 1.8 s, it can
still be observed that 14 black curves changed into one
black curve, 8 red curves changed into one red curve, and
the remaining 28 blue curves changed into one blue curve;
that is, the 50 state lines of 𝑥

𝑖1
(𝑡), (𝑖 = 1, 2, . . . , 50), in

system gradually merged into 3 lines, which means that
each node of the neural network realizes the desired cluster
synchronization. It reflects that the number of the nodes in
the cluster influences the rate of the cluster synchronization.
So the conclusion is that the larger the cluster in the delay
systems, the slower the rate of the cluster synchronization
with the same way of the coupling mode.

Figure 3 depicts the synchronization error of the state
variables between system (42) and the desired state, which
makes it easy to see that the exponential convergence rate
of the red curves within all the curves of the 3 cluster’s
nodes is relatively quick (14 were black, 8 red, and 24 blue
classification). And it proves that from another aspect the
number of nodes affects the rate of cluster synchroniza-
tion. Furthermore the shape of the curves indicates that
system (42) realizes the cluster synchronization with the
exponential synchronization rules, and it is feasible to further
study the cluster synchronization of the neural system with
proportional delay through the exponential analysis of the
synchronization.

In Figure 4, it can be seen that when 𝑡 > 2 s, the
edge coupling strength 𝑔

𝑖𝑗
(𝑡) between node 𝑖 and node 𝑗 is

kept constant in all its dimensions. Combined with Figure 2,
it is found that when the neural network realizes cluster
synchronization, the edge coupling strengths are fixed, which
implies that the left side of (7) will be zero. According to
Figure 4, it is shown that most edge coupling strengths are
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Figure 2: Cluster synchronization in the BA scale-free neural network with the proportional delay and the adaptive gain 𝛽 = 0.2 and the
proportional delay coefficient 𝑞

𝑖
= 0.5. (a)The curve of the state of 𝑥

𝑖1
changing over time; (b) the curve of the state of 𝑥

𝑖2
changing over time.
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Figure 3: The synchronization error between system (42) and the
system which the desired state is equivalently turned into.

less than 0.20, and only a small amount of edge coupling
strengths is distributed in the interval [0.2, 0.255]. If we
do not use the adaptive coupling strength in the neural
network with the proportional delay, the network will realize
the cluster synchronization only when all the edge coupling
strengths are greater than 0.20, which means that a lot of
unnecessary coupling strengths are wasted. All in all, it is
easy to design coupling intensity for each edge by using the
adaptive coupling strength, in order to achieve the desired

0 10 15
t

5

g
ij

0.3

0.2

0.1

0.0

Figure 4: Edge strengths’ evolution during the interval of the BA
scale-free neural network in Figure 2 to realize cluster synchroniza-
tion.

cluster synchronization with faster cluster synchronization
rate, which can be implemented in real networks.

5. Conclusions

In this paper, an exponential cluster synchronization control
frame of the neural networks with time delay has been
established. Different from the prior works, delays in the
paper are proportional delays which are unbounded and
time-varying, and the coupling strength of each edge in the
systemonly depends on its local information. By constructing
the appropriate Lyapunov function and using the inequality
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technique, several sufficient conditions were obtained to
make the neural network with the proportional delay realize
cluster synchronization. Finally, a numerical simulation has
been given to verify the theoretical results. Further the
example indicates that the cluster synchronization rate is
related to the clusters size. This strategy may be extended
to study the effects of the rate of the neural system with
proportional delay in order to realize cluster synchronization.

Furthermore we can also extend the current result to
the Networked Control Systems (NCS) under scheduling
protocol [35–37]. Based on this paper, we can provide
a stability certificate that takes into account the network
imperfections: communication delays (proportional delays),
scheduling protocols, and quantization in order to offer sev-
eral practical advantages: reduced costs, ease of installation
and maintenance, and increased flexibility.
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