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A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and
biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include
enhancement of microscopic images, segmentation of background cells, features extraction, and finally the classification. An
appropriate and efficient method is employed in each of the design steps of the proposed framework after making a comparative
analysis of commonly used method in each category. For highlighting the details of the tissue and structures, the contrast limited
adaptive histogram equalization approach is used. For the segmentation of background cells, 𝑘-means segmentation algorithm is
used because it performs better in comparison to other commonly used segmentation methods. In feature extraction phase, it is
proposed to extract various biologically interpretable and clinically significant shapes as well as morphology based features from
the segmented images.These include gray level texture features, color based features, color gray level texture features, Law’s Texture
Energy based features, Tamura’s features, andwavelet features. Finally, the𝐾-nearest neighborhoodmethod is used for classification
of images into normal and cancerous categories because it is performing better in comparison to other commonly used methods
for this application. The performance of the proposed framework is evaluated using well-known parameters for four fundamental
tissues (connective, epithelial, muscular, and nervous) of randomly selected 1000 microscopic biopsy images.

1. Introduction

Cancer detection has always been a major issue for the
pathologists and medical practitioners for diagnosis and
treatment planning.Themanual identification of cancer from
microscopic biopsy images is subjective in nature and may
vary from expert to expert depending on their expertise
and other factors which include lack of specific and accurate
quantitative measures to classify the biopsy images as normal
or cancerous one. The automated identification of cancerous
cells from microscopic biopsy images helps in alleviating
the abovementioned issues and provides better results if the
biologically interpretable and clinically significant feature
based approaches are used for the identification of disease.

About 32%of Indian population gets cancer at some point
during their life time. Cancer is one of the common diseases
in India which has responsibility to maximum mortality

with about 0.3 million deaths per year [1]. The chances of
getting affected by this disease are accelerated due to change
in habits in the people such as increase in use of tobacco,
deterioration of dietary habits, lack of activities, and many
more. The possibility of cure from cancer is increased due to
recent combined advancement in medicine and engineering.
The chances of curing from cancer are primarily in its
detection and diagnosis. The selection of the treatment of
cancer totally depends on its level of malignancy. Medical
professionals use several techniques for detection of cancer.
These techniques may include various imaging modalities
such as X-ray, Computer Tomography (CT) Scan, Positron
Emission Tomography (PET), Ultrasound, and Magnetic
Resonance Imaging (MRI) and pathological tests such as
urine test and blood test.

For accurate detection of cancer pathologists use
histopathology biopsy images, that is, the examination of

Hindawi Publishing Corporation
Journal of Medical Engineering
Volume 2015, Article ID 457906, 14 pages
http://dx.doi.org/10.1155/2015/457906



2 Journal of Medical Engineering

microscopic tissue structure of the patient. Thus biopsy
image analysis is a vital technique for cancer detection [2, 3].
Histopathology is the study of symptoms and indications of
the disease using the microscopic biopsy images. To visualize
various parts of the tissue under a microscope, the sections
are dyed with one or more staining components. The main
goal of staining is to reveal the components at cellular level
and counterstains are used to provide color, visibility, and
contrast. Hematoxylin-Eosin (H&E) is staining component
that has been used by pathologists for over few decades.
Hematoxylin stains cell nuclei which are blue in color while
Eosin stains cytoplasm and connective tissues which are of
pink color. The histology [4] is related to the study of cells
in terms of structure, function, and interpretations of the
tissue and cells. Microscopic biopsies are most commonly
used for both disease screenings because of the less invasive
natures. The characteristic of microscopic biopsy images has
presence of isolated cells and cell clusters. The microscopic
biopsy images are easier to analyze specimens compared to
histopathology due to absence of noncomplicated structures
[5]. The accurate manual identification of cancer from
microscopic biopsy images has always been a major issue by
the pathologists and medical practitioners observing cell or
tissue structure under the microscope.

In histopathology, the cancer detection process normally
consists of categorizing the image biopsy into cancerous
one or noncancerous one [6]. In microscopic biopsy image
analysis doctors and pathologists observe many of the
abnormalities and categorize the sample based on various
characteristics of the cell nuclei such as color, shape, size, and
proportion to cytoplasm.High resolutionmicroscopic biopsy
provides reliable information for differentiating abnormal
and normal tissues. The difference between normal and
cancerous cells is shown in Table 1 [7].

For the detection and diagnosis of cancer from micro-
scopic biopsy images, the histopathologists normally look
at the specific features in the cells and tissue structures.
The various common features used for the detection and
diagnosis of cancer from the microscopic biopsy images
include shape and size of cells, shape and size of cell nuclei,
and distribution of the cells. The brief descriptions of these
features are given as follows.

(A) Shape and Size of the Cells. It has been observed that the
overall shape and size of cells in the tissues aremostly normal.
The cellular structures of the cancerous cells might be either
larger or shorter thannormal cells.Thenormal cells have even
shapes and functionality. Cancer cells usually do not function
in a useful way and their shapes are often not even.

(B) Size and Shape of the Cell’s Nucleus. The shape and size
of the nucleus of a cancer cell are often not normal. The
nucleus is decentralized in the cancer cells. The image of
the cell looks like an omelet, in which the central yolk is
the nucleus and the surrounding white is the cytoplasm.
The nuclei of cancer cells are larger than the normal cells
and deviated from the centre of the mass. The nucleus
of cancer cell is darker. The segmentation step mainly
focuses on separation of regions of interests (cells) from

background tissues as well as separation of nuclei from cyto-
plasm.

(C) Distribution of the Cells in Tissue. The function of each
tissue depends on the distribution and arrangements of the
normal cells. The numbers of healthy cells per unit area are
less in the cancerous tissues. These adjectives of microscopic
biopsy images have been included in shape and morphology
based features, texture features, color based features, Color
Gray Level Cooccurrence Matrix (GLCM), Law’s Texture
Energy (LTE), Tamura’s features, and wavelet features which
are more biologically interpretable and clinically significant.

The main aim of this paper is to design and develop a
framework and a software tool for automated detection and
classification of cancer frommicroscopic biopsy images using
the abovementioned clinically significant and biologically
interpretable features. This paper focuses on selecting an
appropriate method for each design stage of the framework
after making a comparative analysis of the various commonly
usedmethods in each category.The various stages involved in
the proposed methodology include enhancement of micro-
scopic images, segmentation of background cells, features
extraction, and finally the classification.

The rest of the paper has been structured as follows.
Section 2 describes the related works, Section 3 presents the
methods and models, Section 4 describes the results and
discussions, and finally Section 5 draws the conclusion of the
work presented in this paper.

2. Related Works

In recent years, few works have been reported in the lit-
erature for the design and development of tools for auto-
mated cancer detection from microscopic biopsy images.
Kumar and Srivastava [9] presented detailed reviews on
the computer aided diagnosis (CAD) for cancer detection
from microscopic biopsy images. Demir and Yener [10] also
presented a method for automatic diagnosis of biopsy image.
They presented a cellular level diagnosis system using image
processing techniques. Bhattacharjee et al. [11] presented a
review on computer aided diagnosis system to detect cancer
from microscopic biopsy images using image processing
techniques.

Bergmeir et al. [12] proposed a model to extract the
texture features by using local histograms and GLCM. The
quasisupervised learning algorithm operates on two datasets,
the first one having normal tissues labeled only indirectly
and the second one containing an unlabeled collection of
mixed samples of both normal and cancer tissues. This
method was applied on the dataset of 22,080 vectors with
reduced dimensionality, 119 from 132. The regions having
the cancerous tissues were accurately identified having true
positive rate 88% and false positive rate 19%, respectively, by
using manual ground truth dataset.

Mouelhi et al. [13] used Haralick’s textures features [14],
histogram of oriented gradients (HOG), and color compo-
nent based statistical moments (CCSM) features selection
and extraction approaches to classify the cancerous cells from
microscopic biopsy images. The various features used in this
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Table 1: Difference between normal and cancerous cells [7].

Normal cells Cancerous cells Description of
cancerous cells

Large and variably
shaped nuclei

Many dividing cells
and disorganized
arrangements

Variation in size and
shape of nuclei

Loss of normal
feature (shape and

morphology)

paper are contrast, correlation, energy, homogeneity, GLCM
texture features [14], RGB, gray level, and HSV.

Huang and Lai [15] presented a methodology for seg-
mentation and classification techniques for histology images
based on texture features and by using SVM the maximum
classification accuracy obtained is 92.8%.

Landini et al. [16] presented a method for morphologic
characterization of cell neighborhoods in neoplastic and pre-
neoplastic tissue of microscopic biopsy images. In this paper,
authors presented watershed transforms to compute the cell
and nuclei area and other parameters. The distance measure
of the neighborhood value has been used for calculating the
neighborhood complexity with reference to the v-cells. The
best classification which has been obtained by 𝐾NN classifier
is 83% for dysplastic and neoplastic classes and 58% of correct
classification.

Sinha and Ramkrishan [17] extracted some features of
microscopic biopsy images which include eccentricity, area
ratio, compactness, average values of color components,
energy entropy, correlation, and area of cells and nucleus.
The classification accuracy obtained by Bayesian, 𝐾-nearest
neighbor, neural networks, and support vector machine was
82.3%, 70.60%, 94.1%, and 94.1%, respectively.

Kasmin et al. [18] extracted the features of microscopic
biopsy images including area, perimeter, convex area, solidity,
major axis length, orientation filled area, eccentricity, ratio
of cell and nucleus area, circularity, and mean intensity of
cytoplasm. The 𝐾NN and neural network classifier are used
for classification accuracy 86% and 92%, respectively.

In this paper, a framework for automated detection and
classification of cancer frommicroscopic biopsy images using
clinically significant and biologically interpretable features
is proposed and examined. For segmentation of images
colour 𝑘-means based method is used. The various hybrid
features which are extracted from the segmented images
include shape and morphological features, GLCM texture
features, Tamura features, Law’s Texture Energy based fea-
tures, histogram of oriented gradients, wavelet features, and
color features. For classification purposes, 𝑘-nearest neighbor
based method is proposed to be used. The efficacy of other
classifiers such as SVM, random forest, and fuzzy 𝑘-means
is also examined. For testing purposes, 2828 microscopic
biopsy images available from histology database [8] are used.
From the obtained results, it was observed that the proposed
method is performing better in comparison to othermethods
discussed as above. The overall summary and comparison of
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the proposed method and other methods are presented in
Table 6 in Section 4 of results and analysis.

3. Methods and Models

The detection and classification of cancer from microscopic
biopsy images are a challenging task because an image
usually contains many clusters and overlapping objects.
The various stages involved in the proposed methodology
include enhancement of microscopic images, segmentation
of background cells, features extraction, and finally the
classification. For the enhancement of themicroscopic biopsy
images, the contrast limited adaptive histogram equalization
[19, 20] approach is used and for the segmentation of
background cells 𝑘-means segmentation algorithm is used.
In feature extraction phase, various biologically interpretable
and clinically significant shape and morphology based fea-
tures are extracted from the segmented images which include
gray level texture features, color based features, color gray
level texture features, Law’s Texture Energy (LTE) based
features, Tamura’s features, and wavelet features. Finally, the
𝐾-nearest neighborhood (𝐾NN), fuzzy 𝐾NN, and support
vector machine (SVM) based classifiers are examined for
classifying the normal and cancerous biopsy images. These
approaches are tested on four fundamental tissues (connec-
tive, epithelial, muscular, and nervous) of randomly selected
1000microscopic biopsy images. Finally, the performances of
the classifiers are evaluated using well known parameters and
from results and analysis, it is observed that the fuzzy 𝐾NN
based classifier is performing better for the selected features
set. The flowchart for the proposed work is given in Figure 1.

3.1. Enhancements. The main purpose of the preprocessing
is to remove a specific degradation such as noise reduction
and contrast enhancement of region of interests. The biopsy
images acquired from microscope may be defective and
deficient in some respect such as poor contrast and uneven
staining, and they need to be improved through process of
image enhancement which increases the contrast between
the foreground (objects of interest) and background [21].The
contrast limited adaptive histogram equalization (CLAHE)
[20] approach is used for enhancement ofmicroscopic biopsy
images. Figure 2 shows the original and enhanced image
using contrast limited adaptive histogram equalization.

3.2. Segmentation. Several segmentation methods have been
adapted for cytoplasm, cell, and nuclei segmentation [22]
frommicroscopic biopsy images like threshold based, region-
based, and clustering based algorithms. However the selec-
tions of segmentationmethods depend on the type of the fea-
tures to be preserved and extracted. For the segmentation of
ROI (region of interest), the ground truth (GT) of the images
is manually cropped and created from histology dataset [8].
The 𝑘-means clustering based segmentation algorithms are
used because of the preservation of the desired information.
From the obtained results through experimentation it is
observed that the clustering based algorithms specifically 𝑘-
means based method are the best suited for microscopic

Noncancerous

Preprocessing
(enhancement and restoration)

Segmentation
(segmentation of ROI and background) 

Feature extraction
(texture, shape, LTE, wavelet, HOG, 

color based features, etc.)

Classification

Cancerous

Microscopic biopsy image

Figure 1: Model of automated cancer detection from microscopic
biopsy images.

biopsy images. Figure 3 shows the original and 𝑘-means
segmented microscopic biopsy image. For testing and exper-
imentation purpose, twenty (20) microscopic biopsy images
available from histology dataset [8] were used. These images
were randomly selected for segmentation. The ground truth
(GT) images are manually created by cropping the region of
interest (ROI). The visual results of texture based segmenta-
tion, FCM segmentation, 𝐾-means segmentation, and color
based segmentation [20, 23–26] are presented in Figures 3(a)
to 3(d).Thus from the visual results obtained and reported in
Figures 3(a) to 3(d), it is observed that the 𝑘-means clustering
based segmentation method performs better in most of the
cases as compared to other segmentation approaches under
consideration for microscopic biopsy image segmentation.

Finally the ROI segmented image of microscopic biopsy
is compared to ground truth images for the quantitative
evaluation of various segmentation approaches for all 20
sample images from histology dataset. The performance
of the various segmentation approaches such as 𝐾-means
[27], fuzzy 𝑐-means [28], texture based segmentation [29],
and color based segmentation [30] was evaluated in terms
of various popular parameters of segmentation measures.
These parameters include accuracy, sensitivity, specificity,
false positive rate (FPR), probability random index (RI),
global consistency error (GCE), and variance of information
(VOI).

The brief description of few of these performance mea-
sures used in this paper is as follows.

(i) Probability Random Index (PRI). Probability random index
is the nonparametric measure of goodness of segmentation
algorithms. Random index between test (𝑆) and ground truth
(𝐺) is estimated by summing the number of pixel pairs with
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(a) (b)

Figure 2: The original (a) and enhanced microscopic biopsy image with CLAHE (b).

Table 2: Quantitative evaluation of segmentation methods on the basis of average values of various performance metrics for a set of 20
microscopic images [8].

Accuracy Sensitivity Specificity FPR PRI GCE VOI
Color 𝑘-means 0.987799 0.707025 0.989218 0.010782 0.975985 0.009205 0.115479
𝑘-means 0.990444 0.748991 0.994933 0.005067 0.981119 0.012839 0.10818
FCM 0.987008 0.614717 0.998235 0.001765 0.974447 0.015902 0.136348
Texture based 0.97144 0.306398 0.990445 0.009555 0.944609 0.029276 0.250797

same label and number of pixel pairs having different labels
in both 𝑆 and 𝐺 and then dividing it by total number of pixel
pairs. Given a set of ground truth segmentations 𝐺𝑘, the PRI
is estimated using (1) such that 𝑐𝑖𝑗 is an event that describes a
pixel pair (𝑖, 𝑗) having same or different label in the test image
𝑆test

PRI (𝑆test, 𝐺𝑘)

=
1

(𝑁/2)
∑

∀𝑖,𝑗&𝑖<𝑗
[𝑐𝑖𝑗𝑝𝑖𝑗 + (1 − 𝑐𝑖𝑗) (1 − 𝑝𝑖𝑗)] .

(1)

(ii) Variance of Information (VOI). The variation of infor-
mation is a measure of the distance between two clusters
(partitions of elements) [31]. Clustering with clusters is
represented by a random variable 𝑋, 𝑋 = {1, . . . , 𝑘} such
that 𝑃𝑖 = |𝑋𝑖|/𝑛, 𝑖 ∈ 𝑋, and 𝑛 = ∑

𝑖
𝑋𝑖 is the variation of

information between two clusters 𝑋 and 𝑌.
Thus VOI(𝑋, 𝑌) is represented using

VOI (𝑋, 𝑌) = 𝐻 (𝑋) = 𝐻 (𝑌) − 2𝐼 (𝑋, 𝑌) , (2)

where 𝐻(𝑋) is entropy of 𝑋 and 𝐼(𝑋, 𝑌) is mutual informa-
tion between 𝑋 and 𝑌. VOI(𝑋, 𝑌) measures how much the
cluster assignment for an item in clustering 𝑋 reduces the
uncertainty about the item’s cluster in clustering 𝑌.

(iii) Global Consistency Error (GCE). The GCE is estimated
as follows: suppose segments 𝑠𝑖 and 𝑔𝑗 contain a pixel, say 𝑝𝑘,
such that 𝑠 ∈ 𝑆,𝑔 ∈ 𝐺where 𝑆 denotes the set of segments that
are generated by the segmentation algorithm being evaluated

and 𝐺 denotes the set of reference segments. To begin with,
a measure of local refinement error is estimated using (3)
and then it is used to compute local and global consistency
errors, where 𝑛 denotes the set of difference operation and
𝑅(𝑥, 𝑦) represents the set of pixels corresponding to region
𝑥 that includes pixel 𝑦. Using (3) [31] the global consistency
error (GCE) is computed using (4) where 𝑛 denotes the total
number of pixels of the image. GCE quantify the amount of
error in segmentation (0 signifies no error and 1 indicates no
agreement):

𝐸 (𝑠𝑖, 𝑔𝑗, 𝑝𝑘) =


𝑅 (𝑠𝑖, 𝑝𝑘) \ 𝑅 (𝑔𝑗, 𝑝𝑘)


𝑅 (𝑠𝑖, 𝑝𝑘)



, (3)

GCE (𝑆, 𝐺) =
1

𝑛
min{∑

𝑖

𝐸 (𝑆, 𝐺, 𝑝𝑖) , ∑

𝑖

𝐸 (𝑆, 𝐺, 𝑝𝑖)} . (4)

Table 2 and Figure 4 show the comparison of various
segmentation algorithms on the basis of average accuracy,
sensitivity, specificity, FPR, PRI, GCE, and VOI for 20 sample
images taken from histology dataset [8]. From Table 2 and
Figure 4, it is observed that 𝑘-means, color 𝑘-means, fuzzy
𝑐-means, and texture based methods are performing better
at par in terms of accuracy, specificity, and PRI segmenta-
tion measures but except for 𝑘-means based segmentation
methods other methods are not performing better in terms
of other important parameters. Only the 𝐾-means based
segmentation algorithm is associated with larger value of
accuracy, sensitivity, specificity, and random index (RI) and
smaller value of FPR, GCE, and VOI in comparison to other
methods and hence it is better in comparison to others.
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KM segmented blue nuclei

Original image Ground truth image ROI segmented image

Original image Ground truth image ROI segmented image

Original image Ground truth image ROI segmented image

Original image Ground truth image Cropped new segmented image

(a)

(A) (B)

(b)

(c)

(d)

Figure 3: Original (A) and segmented microscopic biopsy image with 𝐾-means segmentation approach (B). (a) Original, ground truth, and
ROI segmented by texture based segmentation. (b) Original, ground truth, and ROI segmented by FCM segmentation. (c) Original, ground
truth, and ROI segmented by 𝑘-means segmentation. (d) Original, ground truth, and ROI segmented by color based segmentation.
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Figure 4: Comparisons of various segmentation methods on the
basis of average accuracy, sensitivity, specificity, FPR, PRI, GCE, and
VOI for 20 sample images from histology dataset [8].

Hence, 𝑘-means based segmentation is the only method
which performs better in terms of all parameters and that is
why it is chosen as the segmentation method in the proposed
framework for cancer detection from microscopic biopsy
images.

3.3. Feature Extraction. After segmentation of image features
are extracted from the regions of interest to detect and
grade potential cancers. Feature extraction is one of the
important steps in the analysis of biopsy images.The features
are extracted at tissue level and cell level of microscopic
biopsy images for better predictions. To better capture the
shape information, we use both region-based and contour-
based methods to extract anticircularity, area irregularity,
and contour irregularity of nuclei as the three shape features
to reflect the irregularity of nuclei in biopsy images. The
cellular level feature focuses on quantifying the properties
of individual cells without considering spatial dependency
between them. In biopsy images for a single cell, the shape
and morphological, textural, histogram of oriented gradients
and wavelet features are extracted. The tissue level features
quantify the distribution of the cells across the tissue; for that,
it primarily makes use of either the spatial dependency of the
cells or the gray level dependency of the pixels.

Based on these characteristics, some important shape and
morphological based features are explained as follows.

(i) Nucleus Area (A). The nucleus area can be represented by
nucleus region containing total number of pixels; it is shown
in

𝐴 =

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝐵 (𝑖, 𝑗) , (5)

where 𝐴 is nucleus area and 𝐵 is segmented image of 𝑖 rows
and 𝑗 columns.

(ii) Brightness of Nucleus. The average value of intensity of the
pixels belonging to the nucleus region is known as nucleus
brightness.

(iii) Nucleus Longest Diameter (NLD). The largest circle’s
diameter circumscribing the nucleus region is known as
nucleus longest diameter; it is shown in

NLD = √(𝑥1 − 𝑥2)
2

+ (𝑦1 − 𝑦2)
2
, (6)

where 𝑥1, 𝑦1 and 𝑥2, 𝑦2 are end points on major axis.

(iv) Nucleus Shortest Diameter (NSD). This is represented
through smallest circle’s diameter circumscribing the nucleus
region. It is represented in

NSD = √(𝑥2 − 𝑥1)
2

+ (𝑦2 − 𝑦1)
2
, (7)

where 𝑥1, 𝑦1 and 𝑥2, 𝑦2 are end points on minor axis.

(v) Nucleus Elongation. This is represented by the ratio of
the shortest diameter to the longest diameter of the nucleus
region, shown in

Nucleus elongation =
NLD

Perimeter
. (8)

(vi) Nucleus Perimeter (P). The length of the perimeter of the
nucleus region is represented using

𝑃 = Even count + √2 (odd count) unit. (9)

(vii) Nucleus Roundness (𝛾). The ratio of the nucleus area to
the area of the circle corresponding to the nucleus longest
diameter is known as nucleus compactness, shown in

𝛾 =
𝐴

𝑃
=

4𝜋 × Area
𝑃2

. (10)

(viii) Solidity. Solidity is ratio of actual cell/nucleus area to
convex hull area shown in

Solidity =
Area

Convex Area
. (11)

(ix) Eccentricity.The ratio ofmajor axis length andminor axis
length is known as eccentricity and defined in

Eccentricity =
Length of mejor Axis
Length of minor Axis

. (12)

(x) Compactness. Compactness is the ratio of area and square
of the perimeter. It is formulated as

Compactness =
Area

Perimeter2
. (13)
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There are seven sets of features used for computing the
feature vector of microscopic biopsy images explained as
follows.

(i) Texture Features (F1–F22). [32–34] Autocorrelation, con-
trast, correlation, cluster prominence, cluster shade, differ-
ence variance, dissimilarity, energy, entropy, homogeneity,
maximum probability, sum of squares, sum average, sum
variance, sum entropy, difference entropy, information mea-
sure of correlation 1, information measure of correlation
2, inverse difference (INV), inverse difference normalized
(INN), and inverse difference moment normalized are major
texture features which can be calculated using equations of
the texture features.

(ii) Morphology and Shape Feature (F23–F32). In papers [35,
36] authors describe the shape and morphology features.The
considered shape and morphological features in this paper
are area, perimeter, major axis length, minor axis length,
equivalent diameter, orientation, convex area, filled area,
solidity, and eccentricity.

(iii) Histogram of Oriented Gradient (HOG) (F33–F68). His-
togram of oriented gradient is one of the good features set to
deify the objects [32]. In our observation it will be included
for better and accurate identification of objects present in
microscopic biopsy images.

(iv) Wavelet Features (F69–100). Wavelets are small wave
which is used to transform the signals for effective processing
[3]. The wavelets are useful in multiresolution analysis of
microscopic biopsy images because they are fast and give
better compression as compared to other transforms. The
Fourier transform converts a signal into a continuous series
of sine waves, but the wavelet precedes it in both time
and frequency. This accounts for the efficiency of wavelet
transforms [37]. Daubechies wavelets have been used because
they have fractal structures and they are useful in the case
of microscopic biopsy images. In this paper mean, entropy,
energy, contrast homogeneity, and sumofwavelet coefficients
are taken into consideration.

(v) Color Features (F101–F106). The components of these
models are hue, saturation, and value (HSV) [34]. This
is represented by the six sided pyramids, the vertical axis
behaves as brightness, the horizontal distance from the axis
represents the saturation, and the angle represents the hue.
Here mean and standard deviation of HSV components are
taken as features.

(vi) Tamura’s Features (F107–F109). Tamura’s features are
computed on the basis of three fundamental texture features:
contrast, coarseness, and directionality [3]. Contrast is the
measure of variety of the texture pattern.Therefore, the larger
blocks that make up the image have a larger contrast. It is
affected by the use of varying black and white intensities
[32]. Coarseness is the measure of granularity of an image
[32]; thus coarseness can be represented using average size
of regions that have the same intensity [38]. Directionality is

Table 3: The distribution of various features extracted from images
and their ranges.

Name of features Number of features
(range F1–F115)

Texture features 22 (F1–F22)
Morphology and shape feature 10 (F23–F32)
Histogram of oriented gradient (HOG) 36 (F33–F68)
Wavelet features 32 (F69–100)
Color features 6 (F101–F106)
Tamura’s features 3 (F107–F109)
Law’s Texture Energy 16 (F110–F115)

the measure of directions of the grey values within the image
[32].

(vii) Law’s Texture Energy (LTE) (F110–F115). These features
are texture description features which mainly used average
gray level, edges, spots, ripples, and wave to generate vectors
of the masks. Law’s mask is represented by the features of
an image without using frequency domain [39]. Laws sig-
nificantly determined that several masks of appropriate sizes
were very instructive for discriminating between different
kinds of texture features present in the microscopic biopsy
images. Thus its classified samples are based on expected
values of variance-like squaremeasures of these convolutions,
called texture energy measures. The LTE mask method is
based on texture energy transforms applied to the image
classification used to estimate the energy within the pass
region of filters [40].

Table 3 provides the distribution of name of the feature
type and the number of features selected for the classification
of microscopic biopsy images.

3.4. Classification. The classification of microscopic biopsy
images is themost challenging task for automatic detection of
cancer frommicroscopic biopsy images. Classification might
provide the answer whether microscopic biopsy is benign
or malignant. For classification purposes, many classifiers
have been used. Some commonly used classificationmethods
are artificial neural networks (ANN), Bayesian classifica-
tion, 𝐾-nearest neighbor classifiers, support vector machine
(SVM), and random forest (RF). Supervised machine learn-
ing approaches are used for the classification of microscopic
biopsy images. There are various steps involved in the
supervised learning approaches. First step is to prepare the
data (feature set), the second step is to choose an appropriate
algorithm, the third step is to fit a model, the fourth step
is to train the fitted model, and then the final step is to
use fitted model for prediction.The 𝐾-nearest neighborhood
(𝐾NN), fuzzy 𝐾NN and support vector machine (SVM), and
random forest classifiers are used for classifying the normal
and cancerous biopsy images.

4. Results and Discussions

The proposed methodologies were implemented with MAT-
LAB 2013b, on dataset of digitized at 5x magnification on
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PC with 3.4GHz Intel Core i7 processor, 2 GB RAM, and
windows 7 platform.

For the testing and experimentation purposes, a total
of 2828 histology images from the histology image dataset
(histologyDS2828) and annotations are taken froma subset of
images related to above database [8].The image distributions
based on the fundamental tissue structures in the histology
dataset include Connective-484, Epithelial-804, Muscular-
514, and Nervous-1026 microscopic biopsy images with
magnifications 2.5x, 5x, 10x, 20x, and 40x. Although the
method ismagnification independent, in this work the results
are provided on samples digitized at 5x magnification. The
features extracted from microscopic biopsy images must be
biologically interpretable and clinically significant for better
diagnosis of cancer. Table 4 provides the brief description of
dataset used for identification of cancer from microscopic
biopsy images.

The proposed methodology for detection and diagnosis
of cancer detection from microscopic biopsy images consists
of the stages of images enhancement, segmentation, feature
extraction, and classification.

The contrast limited adaptive histogram equalization
(CLAHE) is used for enhancement of microscopic biopsy
images, because it has ability to better highlight the regions
of interests in the images as tested through experimentation.

To better preserve the desired information inmicroscopic
biopsy images during segmentation process, the various
clustering and texture based segmentation approaches were
examined. For microscopic biopsy images it is required to
discover as much as possible the nuclei information in order
to make reliable and accurate detection and diagnosis based
on cells and nuclei parameters. From results and analysis
presented in Section 4, 𝑘-means segmentation algorithm [40]
was used for segmenting the microscopic biopsy images as
it performs better in comparison to other methods. During
segmentation process of 𝑘-means clustering method, the
number of clusters 𝑘 was set to 𝑘 = 3. Further, to find the
center of the clusters, squared Euclidean distance measures
are used as similarity measures.

In feature extraction phase, various biologically inter-
pretable and clinically significant shape and morphology
based features were extracted from the segmented images
which include gray level texture features (F1–F22), shape
and morphology based features (F23–F32), histogram of
oriented gradients (F33–F68), wavelet features (F69–F100),
color based features (F101–F106), Tamura’s features (F107–
F119), and Law’s Texture Energy (F110–F115) based features.
Finally a 2D matrix of 2828 × 115 feature matrix was formed
using all the feature sets, where 2828 are the number of
microscopic images in the dataset and 115 are the total
number of features extracted.

Randomly selected 1000 data/samples were used for
testing various classification algorithms. The 10-fold cross
validation approach was used to partition the data in training
and testing sets.Thus 900 data/samples were used for training
purposes and 100 data/samples were used for testing pur-
poses. The 𝐾-nearest neighbor (𝐾NN) is a simple classifier
in which a feature vector is assigned. For 𝐾NN classification
the numbers of nearest neighbor (𝑘) were set to 5, and

Table 4: Image distribution of fundamental tissues dataset of 2828
histology images [8].

Fundamental tissue Number of images
Connective 484
Epithelial 804
Muscular 514
Nervous 1026
Total 2828

Euclidean distance matrix and the “nearest” rule to decide
how to classify the sample were used. The proposed method
was also tested by using support vector machine (SVM)
based classifier for linear kernel function with 10-fold cross
validationmethods. In SVM classificationmodel, the kernel’s
parameters and soft margin parameter 𝐶 play vital role
in classification process; the best combination of 𝐶 and 𝛾

was selected by a grid search with exponentially growing
sequences of 𝐶 and 𝛾. Each combination of parameter
choices was checked using cross validations (10-fold), and the
parameters with best cross validation accuracy were selected.
For SVM’s linear kernel function, quadratic programming
(QP) optimization parameter was used to find separating
hyperplane. In the case of random forest the value by default
is 500 trees and mtry = 10.

The performance of classifiers was calculated using con-
fusion matrix of size 2 × 2 matrix and the value of TP,
TN, FP, and FN was calculated. The performance parameters
accuracy, sensitivity, and specificity were calculated using
(14)–(19).

The fundamental definitions of these performance mea-
sures could be illustrated as follows.

Accuracy. The classification accuracy of a technique depends
upon the number of correctly classified samples (i.e., true
negative and true positive) [40] and is calculated as follows:

Accuracy =
TP + TN

𝑁
× 100, (14)

where 𝑁 is the total number of samples present in the
microscopic biopsy images.

Sensitivity. Sensitivity is a measure of the proportion of
positive samples which are correctly classified [41]. It can be
calculated using

Sensitivity =
TP

TP + FN
, (15)

where the value of sensitivity ranges between 0 and 1, where
0 and 1, respectively, mean worst and best classification.

Specificity. Specificity is a measure of the proportion of
negative samples that are correctly classified [42]. The value
of sensitivity is calculated using

Specificity =
TN

TN + FP
. (16)
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Table 5: Comparative performances of various classifiers for the chosen features for various tissue types.

Accuracy Specificity Sensitivity BCR 𝐹-
measure MCC Accuracy Specificity Sensitivity BCR 𝐹-

measure MCC

Connective tissues Epithelial tissues
RF 0.907245 0.993668 0.493996 0.743832 0.647373 0.642137 0.849306 0.966243 0.555332 0.760788 0.675868 0.609494
SVM 0.89245 0.888438 0.948297 0.918756 0.538314 0.55879 0.796998 0.7851 0.898525 0.842279 0.472804 0.4587
FYZZY
𝐾NN 0.787879 0.867476 0.370074 0.618789 0.356613 0.231013 0.665834 0.76465 0.407057 0.585984 0.401181 0.17053

𝐾NN 0.921909 0.940164 0.819922 0.880263 0.759395 0.717455 0.884727 0.916446 0.801733 0.859435 0.795319 0.71626
Muscular tissues Nervous tissues

RF 0.889878 0.995023 0.193145 0.594084 0.313309 0.37318 0.843102 0.92827 0.723262 0.825766 0.792403 0.676888
SVM 0.884379 0.886718 0.786303 0.83681 0.263764 0.320547 0.769545 0.723056 0.946068 0.834923 0.630126 0.552038
FUZZY
𝐾NN 0.614958 0.672503 0.535894 0.604364 0.538571 0.208941 0.808453 0.882722 0.242776 0.562835 0.225886 0.11837

𝐾NN 0.897321 0.923277 0.650761 0.787092 0.543009 0.49783 0.861763 0.880866 0.835733 0.858482 0.834116 0.716492

Its value ranges between 0 and 1, where 0 and 1, respectively,
mean worst and best classification.

Balanced Classification Rate (BCR). The geometric mean of
sensitivity and specificity is considered as balance classifica-
tion rate [43, 44]. It is represented by

BCR = √Sensitivity × Specificity. (17)

F-Measure. 𝐹-measure is a harmonic mean of precision and
recall. It is defined by using

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

𝐹-measure = 2 ×
Precision × Recall
Precision + Recall

.

(18)

The value of 𝐹-measure ranges between 0 and 1, where 0
means the worst classification and 1 means the best classifi-
cation.

Matthews’s Correlation Coefficient (MCC). MCC is a measure
of the eminence of binary class classifications [43]. It can be
calculated using the following formula:

MCC

=
TP × TN − FP × FN

√((TP + FN) (TP + FP) (TN + FN) (TN + FP))
.
(19)

Its value ranges between −1 and +1, where −1, +1, and 0,
respectively, correspond to worst, best, at random prediction.

Discussions of Results. Table 5 shows classification results of
the proposed framework for four different tissues of micro-
scopic biopsy images containing cancer and noncancer cases

tested using four popular classifiers like 𝑘-nearest neighbor,
SVM, fuzzy 𝐾NN, and random forest.

From Table 5 and Figure 5(a) the following observations
are made for sample test cases containing connective tissues.

(i) For the identification of cancer from biopsy images
of connective tissues in the case of 𝐾NN, the average
value of accuracy, specificity, sensitivity, BCR, 𝐹-
measure, and MCC is 0.921909, 0.940164, 0.819922,
0.880263, 0.759395, and 0.717455, respectively.

(ii) For the identification of cancer from biopsy of con-
nective tissues in the case of SVM, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.89245, 0.888438, 0.948297, 0.918756,
0.538314, and 0.55879, respectively.

(iii) For the identification of cancer from biopsy of con-
nective tissues in the case of fuzzy 𝐾NN, the average
value of accuracy, specificity, sensitivity, BCR, 𝐹-
measure, and MCC is 0.787879, 0.867476, 0.370074,
0.618789, 0.356613, and 0.231013, respectively.

(iv) For the identification of cancer from biopsy of con-
nective tissues, in the case of random forest classifier,
the average value of accuracy, specificity, sensitivity,
BCR, 𝐹-measure, and MCC is 0.907245, 0.993668,
0.493996, 0.743832, 0.647373, and 0.642137, respec-
tively.

From Table 5 and Figure 5(b) the following observations
are made for sample test cases containing epithelial tissues.

(i) For the identification of cancer from biopsy images of
epithelial tissues in the case of𝐾NN, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.884727, 0.916446, 0.801733, 0.859435,
0.795319, and 0.71626, respectively.

(ii) For the identification of cancer from biopsy of epithe-
lial tissues in the case of SVM, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.796998, 0.7851, 0.898525, 0.842279,
0.472804, and 0.4587, respectively.
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Figure 5: Performance analysis of classifiers with four fundamental tissues: connective tissue as (a), epithelial tissue as (b), muscular tissue
as (c), and nervous tissue as (d).

(iii) For the identification of cancer from biopsy of epithe-
lial tissues in the case of fuzzy𝐾NN, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.665834, 0.76465, 0.407057, 0.585984,
0.401181, and 0.17053, respectively.

(iv) For the identification of cancer from biopsy of epithe-
lial tissues, in the case of random forest classifier,
the average value of accuracy, specificity, sensitivity,

BCR, 𝐹-measure, and MCC is 0.849306, 0.966243,
0.555332, 0.760788, 0.675868, and 0.609494, respec-
tively.

From Table 5 and Figure 5(c) the following observations
are made for sample test cases containing muscular tissues.

(i) For the identification of cancer from biopsy images of
muscular tissues in the case of𝐾NN, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
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Table 6: The comparison of the proposed method with other standard methods.

Authors (year) Feature set used Methods of classification Parameters used (%) Dataset used

Huang and Lai
(2010) [15] Texture features Support vector machine

(SVM) Accuracy = 92.8
1000 × 1000, 4000 ×

3000, and 275 × 275
HCC biopsy images

Di Cataldo et al.
(2010) [45]

Texture and
morphology

Support vector machine
(SVM) Accuracy = 91.77 Digitized histology lung

cancer IHC tissue images
He et al. (2008)
[46]

Shape, morphology,
and texture

Artificial neural network
(ANN) and SVM Accuracy = 90.00 Digitized histology

images
Mookiah et al.
(2011) [47]

Texture and
morphology

Error backpropagation
neural network (BPNN)

Accuracy = 96.43, sensitivity
= 92.31, and specificity = 82

83 normal and 29 OSF
images

Krishnan et al.
(2011) [48] HOG, LBP, and LTE LDA Accuracy = 82 Normal-83

OSFWD-29

Krishnan et al.
(2011) [48] HOG, LBP, and LTE Support vector machine

(SVM) Accuracy = 88.38

Histology images
Normal-90
OSFWD-42
OSFD-26

Caicedo, et al.
(2009) [8] Bag of features Support vector machine

(SVM)
Sensitivity = 92
Specificity = 88 2828 histology images

Sinha and
Ramkrishan
(2003) [17]

Texture and statistical
features 𝐾NN Accuracy = 70.6 Blood cells histology

images

The proposed
approach

Texture, shape and
morphology, HOG,
wavelet color,
Tamura’s feature,
and LTE

KNN

Average: accuracy = 92.19,
sensitivity = 94.01,
specificity = 81.99, BCR =
88.02, F-measure = 75.94,
MCC = 71.74

2828 histology images

and MCC is 0.897321, 0.923277, 0.650761, 0.787092,
0.543009, and 0.49783, respectively.

(ii) For the identification of cancer from biopsy of mus-
cular tissues in the case of SVM, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.884379, 0.886718, 0.786303, 0.83681,
0.263764, and 0.320547, respectively.

(iii) For the identification of cancer frombiopsy ofmuscu-
lar tissues in the case of fuzzy 𝐾NN, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.614958, 0.672503, 0.535894, 0.604364,
0.538571, and 0.208941, respectively.

(iv) For the identification of cancer from biopsy of mus-
cular tissues, in the case of random forest classifier,
the accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC are 0.889878, 0.995023, 0.193145, 0.594084,
0.313309, and 0.37318, respectively.

From Table 5 and Figure 5(d) the following observations
are made for sample test cases containing nervous tissues.

(i) For the identification of cancer from biopsy images of
nervous tissues in the case of 𝐾NN, the average value
of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.861763, 0.880866, 0.835733, 0.858482,
0.834116, and 0.716492, respectively.

(ii) For the identification of cancer from biopsy of ner-
vous tissues in the case of SVM, the average value

of accuracy, specificity, sensitivity, BCR, 𝐹-measure,
and MCC is 0.769545, 0.723056, 0.946068, 0.834923,
0.630126, and 0.552038, respectively.

(iii) For the identification of cancer from biopsy of ner-
vous tissues in the case of fuzzy 𝐾NN, the accuracy,
specificity, sensitivity, BCR, 𝐹-measure, and MCC
are 0.808453, 0.882722, 0.242776, 0.562835, 0.225886,
and 0.11837, respectively.

(iv) For the identification of cancer from biopsy of ner-
vous tissues, in the case of random forest classifier, the
average value of accuracy, specificity, sensitivity, BCR,
𝐹-measure, and MCC is 0.843102, 0.92827, 0.723262,
0.825766, 0.792403, and 0.676888, respectively.

From the above discussions for all four categories of test
cases, it is observed that the 𝐾NN is performing better in
comparison to other classifiers for the identification of cancer
from biopsy images of nervous tissues.

From all above observations, it is concluded that the
𝐾NN classifier is producing better results in comparison to
other methods for the case of biopsy images of connective
tissues. The maximum values of the accuracy, sensitivity, and
specificity are 0.9552, 0.9615, and 0.9543, respectively. The 𝑘-
nearest neighbor classifier is also performing better for all
cases as well as that was discussed above. Table 6 gives a
comparative analysis of the proposed framework with other
standard methods available in the literature. From Table 6,
it can be observed that the proposed method is performing
better in comparison to all other methods.
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5. Conclusions

An automated detection and classification procedure was
presented for detection of cancer from microscopic biopsy
images using clinically significant and biologically inter-
pretable set of features. The proposed analysis was based
on tissues level microscopic observations of cell and nuclei
for cancer detection and classification. For enhancement of
microscopic biopsy images contrast limited adaptive his-
togram equalization based method was used. For segmen-
tation of images 𝑘-means clustering method was used. After
segmentation of images, a total of 115 hybrid sets of features
were extracted for 2828 sample histology images taken from
histology database [8]. After feature extraction, 1000 samples
were selected randomly for classification purposes. Out of
1000 samples of 115 features, 900 samples were selected for
training purposes and 100 samples were selected for testing
purposes. The various classification approaches tested were
𝐾-nearest neighborhood (𝐾NN), fuzzy𝐾NN, support vector
machine (SVM), and random forest based classifiers. From
Table 5 we are in position to conclude that 𝐾NN is the best
suited classification algorithm for detection of noncancerous
and cancerous microscopic biopsy images containing all four
fundamental tissues. SVM provides average results for all
the tissues types but not better than 𝐾NN. Fuzzy 𝐾NN is
comparatively a less good classifier. RF classifier provides very
low sensitivity and down accuracy rate as compared to 𝐾NN
classifier for this dataset. Hence, from experimental results, it
was observed that 𝐾NN classifier is performing better for all
categories of test cases present in the selected test data. These
categories of test data are connective tissues, epithelial tissues,
muscular tissues, andnervous tissues. Among all categories of
test cases, further it was observed that the proposed method
is performing better for connective tissues type sample
test cases. The performance measures for connective tissues
dataset in terms of the average accuracy, specificity, sensi-
tivity, BCR, 𝐹-measure, and MCC are 0.921909, 0.940164,
0.819922, 0.880263, 0.759395, and 0.717455, respectively.
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