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This paper studies the cluster synchronization of a kind of complex networks by means of impulsive pinning control scheme.
These networks are subject to stochastic noise perturbations and Markovian switching, as well as internal and outer time-varying
delays. Using the Lyapunov-Krasovskii functional, Itö’s formula, and some linear matrix inequalities (LMI), several novel sufficient
conditions are obtained to guarantee the desired cluster synchronization. At the end of this writing, a numerical simulation is given
to demonstrate the effectiveness of those theoretical results.

1. Introduction and Model Description

Complex networks can be used to describe properly many
biological, social, and communication systems and are made
up of a great number of nodes representing individuals
or organizations and links that are employed to mimic
the interactions among them [1]. In particular, interesting
examples are the spatiotemporal chaos [2], the Internet [3, 4],
spiral waves [5], and the World Wide Web [6]. Synchro-
nization is a universal phenomenon in nature, has potential
applications significantly in real-world dynamical systems,
and can be understood as the adjustment of coherence or
rhythms of all states through interaction [7, 8]. Hitherto, a lot
of different synchronization patterns have been investigated
such as complete synchronization [9], phase synchronization
[10], partial synchronization [11], and cluster synchronization
[12]. Actually, the synchronization patterns can be nearly
contained by a uniform definition.

In brief, the cluster synchronization can be understood as
the dynamical nodes synchronize each other in each group,
while there is no synchronization between any two different
groups. A large number of real-world networks exhibit com-
munity structure, for example, communication engineering
and biological science [13]. Cluster synchronization in two-
dimensional and three-dimensional lattices of diffusively

coupled chaotic oscillators was discussed in [14]. Cluster
synchronization in a kind of strictly semipassive complex net-
works by means of diffusive coupling was focused on in [15].
In [16], Ma et al., under the help of a special coupling matrix
for some connected chaotic networks, expressed that the
randomly selected cluster synchronization manifolds could
be stabilized. A novel and effective approach was provided to
reach cluster synchronization of complex network and ensure
their stability for a given nearest neighborhood network
with zero-flux or periodic boundary conditions. In a few
words, cluster synchronization, due to its significant practical
implications, was considered widely and deeply by many
researchers from various fields.

Moreover, owning to uncertain interferences caused by
man-made and particularly natural factors, perturbation is a
very universal and vital property in many real systems.There
are lots of previous works contributing to studying stochastic
phenomena of complex networks. For instance, in [17], the
authors considered the case where only a single node was
affected by stochastic perturbations. Reference [18] talked
over an array of networks with scalar Wiener processes,
which implied that each node is influenced by the same noise.
Apparently, this assumption might be a little unrealistic for
the real-world networks whichwere commonly influenced by
different multidimensional perturbations. In [19], the writers
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discussed a class of coupled neural networks with stochastic
noise and intermittent control. Also, their Wiener processes
were of a vector form that can be viewed as an improvement
of [18]. Consequently, the complex networks should be and
must be brought in stochastic perturbations.

Recently, more and more researchers turn their attention
to switched system in control theory domain. Generally
speaking, a switched system includes two basic elements at
least: one is several dynamical subsystems and the other one is
a switching law used to specify some active subsystem at each
instant of time. In view of different characteristics of complex
networks, switching law also has several distinct patterns.
For example, [20] probed into a blinking network whose
switching couplings were according to certain probability.
The writing pointed out that this kind of networks could
synchronize for nearly all instances of the fast random
switching process. As a matter of fact, from the mathematical
point of view, switching signals between different network
models can be governed by a Markovian chain. Recurring to
linear matrix inequality, [21] considered the synchronization
of a class of complex networks with Markovian jumping
parameters whose coupling configuration was not dependent
on mode switching. In addition, the synchronization issue
in an array of neural networks with mixed delays and
stochastic hybrid jumping couplings was investigated in [22]
by adaptive control scheme. Nevertheless, if all nodes placed
restriction on sharing common time-delay in a Markovian
chain, this will lead to unpractical results. However, as far as
I am concerned, the result on synchronization of stochastic
networks with Markovian switching and time-varying delay
coupling is seldom.

In view of the preceding discussion, this paper will focus
on the issue of the synchronization of stochastic complex
networks with Markovian switching and time-varying delay
coupling by impulsive pinning control method. By the aid
of the Lyapunov-Krasovskii functional method and some
common linear matrix inequality in this field, several valid
sufficient conditions will be obtained to ensure the cluster
synchronization.

This paper is organized as follows. In Section 2, we
introduce the generally considered model for a stochastic
complex network. Moreover, some preliminary definitions
and theorems needed for the rest of the paper are also
provided. Section 3 shows some synchronization criteria
for the discussed complex networks by logic and pleasing
proof. In Section 4, three numerical simulations are given
to illustrate our theoretical results. Ultimately, the paper
concludes in Section 5.

Notations. In this paper, the superscript 𝑇 will denote the
transpose of a matrix or a vector. R𝑛 will denote the 𝑛-
dimensional Euclidean space and R𝑛×𝑛 the set of all 𝑛 × 𝑛
real matrices. 1

𝑛
= (1, 1, . . . , 1)

𝑇

∈ R𝑛, and 𝐼
𝑛
is an 𝑛-

dimensional identity matrix. Tr(⋅) stands for the trace of the
corresponding matrix. For square matrix 𝑀, the notation
𝑀 > 0 (<0) will mean that𝑀 is a positive-definite (negative-
definite)matrix.𝜆max(𝐴) and 𝜆min(𝐴)will denote the greatest
and least eigenvalues of a symmetric matrix, respectively, and
𝑝̌ = max{𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑛
}, 𝑝 = min{𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑛
}.

2. Preliminaries

Let (Ω,F, {F
𝑡
}
𝑡≥0
,P) be a complete probability space with a

filtration {F
𝑡
}
𝑡≥0

that is right continuous with F
0
including

all the P-null sets. 𝐶([−𝜏, 0];R𝑛

) will denote the family of
continuous functions 𝜙 from [−𝜏, 0] to R𝑛 with the uniform
norm ‖𝜙‖

2

= sup
−𝜏≤𝑠≤0

𝜙(𝑠)
𝑇

𝜙(𝑠). And 𝐶2

F0
([−𝜏, 0];R𝑛

)

denote the family of allF
0
measurable,𝐶([−𝜏, 0];R𝑛

)-valued
stochastic variables 𝜉 = {𝜉(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} such that
∫
0

−𝜏

E|𝜉(𝑡)|
2

𝑑𝑡 ≤ ∞, where E stands for the correspondent
expectation operator with respect to the given probability
measureP.

As follows, some definitions, lemmas, and notations are
revealed which will be used throughout this paper.

Definition 1. If 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅

𝑚×𝑚 is an irreducible matrix
such that 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
≥ 0 for all 𝑖 ̸= 𝑗 and ∑𝑚

𝑗=1
𝑎
𝑖𝑗
= 0 for all

𝑖 = 1, 2, . . . , 𝑚, one says that 𝐴 ∈ A1.

Definition 2 (see [16, 23]). Let

𝐴 =

[
[
[
[

[

𝐴
11
𝐴

12
⋅ ⋅ ⋅ 𝐴

1𝑑

𝐴
21
𝐴

22
⋅ ⋅ ⋅ 𝐴

2𝑑

...
... d

...
𝐴

𝑑1
𝐴

𝑑2
⋅ ⋅ ⋅ 𝐴

𝑑𝑑

]
]
]
]

]

(1)

be an𝑚×𝑚 symmetric matrix such that 𝐴
𝑢V ∈ 𝑅

𝑘𝑢×𝑘V , 𝑢, V =
1, 2, . . . , 𝑑. If each block 𝐴

𝑢V is a zero-row-sum matrix, one
says that 𝐴 ∈ M1. Furthermore, if 𝐴

𝑢𝑢
∈ A1, 𝑢 = 1, 2, . . . , 𝑑,

one says that 𝐴 ∈ M2. It also follows from the symmetry of
𝐴 that 𝐴

𝑢V = 𝐴
𝑇

V𝑢, 𝐴𝑢V, 𝐴V𝑢 are zero-row-sum matrices and
𝐴

𝑢V is a zero-column-sum matrix.

Remark 3. Definition 2 defines a diffusively coupled matrix;
if 𝑎

𝑖𝑗
> 0 for 𝑖 ̸= 𝑗, then the coupling between 𝑖 and 𝑗 is called

cooperative coupling; if 𝑎
𝑖𝑗
< 0 for 𝑖 ̸= 𝑗, then the coupling

between 𝑖 and 𝑗 is called competitive coupling [16].

Before discussing the synchronization of the considered
complex networks, we will introduce the mathematical defi-
nition of cluster synchronization.

Definition 4 (see [24]). Let 𝐺
1
= {1, 2, . . . , 𝑘

1
}, 𝐺

2
= {𝑘

1
+

1, 𝑘
1
+2, . . . , 𝑘

1
+𝑘

2
}, . . . , 𝐺

𝑑
= {𝑘

1
+𝑘

2
+⋅ ⋅ ⋅+𝑘

𝑑−1
+1, . . . , 𝑘

1
+

𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑑
} be a partition of the set 𝐺 = {1, 2, . . . , 𝑚} for

1 < 𝑑 < 𝑚, 1 < 𝑘
𝑙
< 𝑚, and ∑𝑑

𝑙=1
𝑘
𝑙
= 𝑚. Moreover

for every 𝑖 ∈ 𝐺, let ̌𝑖 be the counting index of the subset
in which the number is 𝑖; that is, 𝑖 ∈ 𝐺 ̆𝑖

. A network with 𝑚
nodes is said to realize cluster synchronization with partition
{𝐺

1
, 𝐺

2
, . . . , 𝐺

𝑑
}, if the state variables of the nodes satisfy

lim
𝑡→+∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ = 0 for ̌𝑖 = ̌𝑗 and lim

𝑡→+∞
‖𝑥

𝑖
(𝑡) −

𝑥
𝑗
(𝑡)‖ ̸= 0 for ̌𝑖 ̸= ̌𝑗 for all initial values.
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The state equation of the switched network consisting
of 𝑁 identical nodes without delay and time-varying delay
coupling and Markovian jumping are given as follows:

𝑑𝑥
𝑖
(𝑡) =

{

{

{

𝑓 ̌𝑖
(𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
(𝑟(𝑡))

𝑖𝑗
Σ (𝑥

𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑏
(𝑟(𝑡))

𝑖𝑗
Σ (𝑥

𝑗
(𝑡 − 𝜏

𝑐
(𝑡))

−𝑥
𝑖
(𝑡 − 𝜏

𝑐
(𝑡)) )

}

}

}

𝑑𝑡

+ 𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)) , 𝑟 (𝑡))

× 𝑑𝑤
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))

𝑇

∈ R𝑛 is the
state vector of the 𝑖th node of the network, 𝑓(𝑡, 𝑥

𝑖
(𝑡), 𝑥

𝑖
(𝑡 −

𝜏(𝑡))) = [𝑓
1
(𝑡, 𝑥

𝑖
(𝑡), 𝑥

𝑖
(𝑡 − 𝜏(𝑡))), 𝑓

2
(𝑡, 𝑥

𝑖
(𝑡), 𝑥

𝑖
(𝑡 − 𝜏(𝑡))), . . . ,

𝑓
𝑛
(𝑡, 𝑥

𝑖
(𝑡), 𝑥

𝑖
(𝑡 − 𝜏(𝑡)))]

𝑇 is a continuous vector-valued func-
tion, and 𝑟(𝑡) are the continuous-time Markov processes
that describe the evolution of the modes at time 𝑡. Σ =

diag(󰜚
1
, 󰜚

2
, . . . , 󰜚

𝑛
) is an inner coupling matrix of the net-

works that satisfies 󰜚
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛. Here, 𝐴(𝑟(𝑡))

=

[𝑎
(𝑟(𝑡))

𝑖𝑗
] ∈ M1 and 𝐵

(𝑟(𝑡))

= [𝑏
(𝑟(𝑡))

𝑖𝑗
] ∈ M1 are the outer coup-

ling matrices of the network at time 𝑡. 𝜏(𝑡) is the inner
time-varying delay satisfying 𝜏 ≥ 𝜏(𝑡) ≥ 0 and
𝜏
𝑐
(𝑡) is the coupling time-varying delay satisfying 𝜏

𝑐
≥

𝜏
𝑐
(𝑡) ≥ 0. Finally, 𝜎

𝑖
(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏

𝑐
(𝑡)), 𝑟(𝑡)) =

𝜎
𝑖
(𝑡, 𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑥

1
(𝑡 − 𝜏(𝑡)), . . . , 𝑥

𝑛
(𝑡 − 𝜏(𝑡)), 𝑥

1
(𝑡 −

𝜏
𝑐
(𝑡)), . . . , 𝑥

𝑛
(𝑡 − 𝜏

𝑐
(𝑡)), 𝑟(𝑡)) ∈ R𝑛×𝑛 and 𝑤

𝑖
(𝑡) = (𝑤

𝑖1
(𝑡),

𝑤
𝑖2
(𝑡), . . . , 𝑤

𝑖𝑛
(𝑡))

𝑇

∈ R𝑛 is a bounded vector-form Wiener
process, satisfying

E [𝑤
𝑖𝑗
(𝑡)] = 0, E [𝑤

2

𝑖𝑗
(𝑡)] = 1,

E [𝑤
𝑖𝑗
(𝑡) 𝑤

𝑖𝑗
(𝑠)] = 0 (𝑠 ̸= 𝑡) .

(3)

Suppose that 𝑟(𝑡) (𝑡 > 0) is a right-continuous Markov chain
on a probability space that takes on values in a finite space
𝑆 = 1, 2, . . . ,𝑀 whose generator Γ = [𝛾

𝑖𝑗
] ∈ R𝑀×𝑀 is given

by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) if 𝑖 = 𝑗,

(4)

for some Δ > 0, where 𝛾
𝑖𝑗
= 0 is the transition speed from 𝑖 to

𝑗 if 𝑖 ̸= 𝑗 and 𝛾
𝑖𝑖
= −∑

𝑖 ̸= 𝑗
𝛾
𝑖𝑗
. By the way, this writing requires

that 𝐴(𝑟(𝑡)) is irreducible.
The following are some initial conditions for (2) described

by
𝑥
𝑖
(𝑠) = 𝜉

𝑖
(𝑠) , − ̌𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, (5)

where ̌𝜏 = max{𝜏(𝑡), 𝜏
𝑐
(𝑡)}, 𝜉

𝑖
∈ 𝐶

𝑏

F0
([− ̌𝜏, 0],R𝑛

) with the
norm ‖𝜉

𝑖
‖
2

= sup
− ̌𝜏≤𝑠≤0

𝜉
𝑖
(𝑠)

𝑇

𝜉
𝑖
(𝑠).

In this paper, we will make use of the impulse pinning
controllers as follows:

Δ𝑥
𝑖
(𝑡

𝑘
) = 𝑥

𝑖
(𝑡

+

𝑘
) − 𝑥

𝑖
(𝑡

−

𝑘
) = 𝜖

𝑖𝑘
𝑥
𝑖
(𝑡

−

𝑘
) − 𝑠 (𝑡

𝑘
) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

, 𝑖 = 1, 2, . . . , 𝑁,

(6)

where 𝜖
𝑖𝑘
are constants and 𝑙 < 𝑁.

It is worth noting that system (2) achieves synchroniza-
tion, that is, 𝑥

𝑖
(𝑡) = 𝑠 ̌𝑖

(𝑡), which implies that we have the
following synchronized state equation:

𝑑𝑠 ̌𝑖
(𝑡) = 𝑓 ̌𝑖

(𝑡, 𝑠 ̌𝑖
(𝑡) , 𝑠 ̌𝑖

(𝑡 − 𝜏 (𝑡))) 𝑑𝑡. (7)

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠 ̌𝑖

(𝑡) (𝑖 = 1, 2, . . . , 𝑁) be the
synchronization errors. Then, the error system according to
controller (6) can be written as

𝑑𝑒
𝑖
(𝑡)=

{

{

{

𝑓 ̌𝑖
(𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))−𝑓 ̌𝑖

(𝑡, 𝑠 ̌𝑖
(𝑡) , 𝑠 ̌𝑖

(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
(𝑟(𝑡))

𝑖𝑗
Σ𝑒

𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝑏
(𝑟(𝑡))

𝑖𝑗
Σ𝑒

𝑗
(𝑡 − 𝜏

𝑐
(𝑡))
}

}

}

𝑑𝑡

+ 𝜎
𝑟(𝑡)

𝑖
(𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏

𝑐
(𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+

, 𝑖 = 1, 2, . . . , 𝑁.

Δ𝑒
𝑖
(𝑡

𝑘
) = 𝜖

𝑖𝑘
𝑒
𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+

, 𝑖 = 1, 2, . . . , 𝑁.

(8)

Definition 5. The complex network (2) is said to reach cluster
synchronization when the trivial solution of system (8)
satisfies the inequality

𝑁

∑

𝑖=1

E
󵄩󵄩󵄩󵄩𝑒𝑖(𝑡, 𝑡0, 𝜉𝑖)

󵄩󵄩󵄩󵄩

2

≤ 𝐾𝑒
−𝜅𝑡

, (9)

for some positive constants 𝐾 and 𝜅 under any initial data
𝜉
𝑖
∈ C𝑏

F0
([−𝜏, 0];R𝑛

).

Definition 6 (see [21, 25]). A continuous function 𝑓 ̌𝑖
(𝑡, 𝑥, 𝑦) :

[0, +∞] × R𝑛

× R𝑛

→ R𝑛 is said to belong to the function
class QUAD. denoted by 𝑓 ∈ QUAD(𝑃, Δ, 𝜂 ̌𝑖

, 𝜁 ̌𝑖
), for some

given matrix Σ = diag{󰜚
1
, 󰜚

2
, . . . , 󰜚

𝑛
}, if there exist a positive-

definite diagonal matrix 𝑃 = diag{𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑛
}, a diagonal

matrix Δ = diag{𝛿
1
, 𝛿

2
, . . . , 𝛿

𝑛
}, and constants 𝜂 ̌𝑖

> 0, 𝜁 ̌𝑖
> 0

such that 𝑓 ̌𝑖
(⋅) satisfies the condition

(𝑥 − 𝑦)
𝑇

𝑃 ((𝑓 ̌𝑖
(𝑡, 𝑥, 𝑧) − 𝑓 ̌𝑖

(𝑡, 𝑦, 𝑤)) − ΔΣ (𝑥 − 𝑦))

≤ −𝜂 ̌𝑖
(𝑥 − 𝑦)

𝑇

(𝑥 − 𝑦) + 𝜁 ̌𝑖
(𝑧 − 𝑤)

𝑇

(𝑧 − 𝑤)

(10)

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ R𝑛.

Remark 7 (see [25]). The function class QUAD includes
almost all the well-known chaotic systems with or without
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delays such as the Lorenz system, the Rössler system, the
Chen system, the delayed Chua circuit, the logistic delayed
differential system, the delayed Hopfield neural network, and
the delayed CNNs.

The following assumptions will be used to establish the
synchronization conditions.

(H1) 𝜏(𝑡) and 𝜏
𝑐
(𝑡) are bounded and continuously differen-

tiable functions such that 0 < 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) < 𝜏 < 1,
0 < 𝜏

𝑐
(𝑡) ≤ 𝜏

𝑐
, and ̇𝜏

𝑐
(𝑡) < 𝜏

𝑐
< 1. Let 𝜏̌ = max{𝜏, 𝜏

𝑐
}.

(H2) Suppose that 𝜎(𝑡, 𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐
(𝑡)), 𝑟) =

𝜎(𝑡, 𝑒
1
(𝑡), . . . , 𝑒

𝑁
(𝑡), 𝑒

1
(𝑡−𝜏(𝑡)), . . . , 𝑒

𝑁
(𝑡−𝜏(𝑡)), 𝑒

1
(𝑡−

𝜏
𝑐
(𝑡)), . . . , 𝑒

𝑁
(𝑡 − 𝜏

𝑐
(𝑡)), 𝑟). Thereby, there are some

positive-definite constantmatricesΥ𝑟

𝑖1
,Υ𝑟

𝑖2
, andΥ𝑟

𝑖3
for

𝑖 = 1, 2, . . . , 𝑁 and 𝑟 = 1, 2, . . . ,𝑀 such that

Tr [𝜎
𝑖
(𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏

𝑐
(𝑡)) , 𝑟)

𝑇

× 𝜎
𝑖
(𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏

𝑐
(𝑡)) , 𝑟) ]

≤

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡)

𝑇

Υ
𝑟

𝑖1
𝑒
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

𝑇

Υ
𝑟

𝑖2
𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

Υ
𝑟

𝑖3
𝑒
𝑗
(𝑡 − 𝜏

𝑐
(𝑡)) .

(11)

Lemma 8 (see [26]). Consider a stochastic delayed differential
equation with Markovian switching expressed as

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡)

(12)

on 𝑡 ≥ 0 with initial value 𝑥
0
= 𝜉 ∈ 𝐶

𝑏

𝐹0

([−𝜏, 0];R𝑛

), where

𝑓 : R
𝑛

×R
+
× 𝑆 󳨀→ R

𝑛

, 𝜎 : R
𝑛

×R
+
× 𝑆 󳨀→ R

𝑛×𝑚

.

(13)

Let 𝐶2,1

(R
+
× R𝑛

;R
+
) be the family of all the nonnegative

functions𝑉(𝑡, 𝑥, 𝑟) onR
+
×R𝑛

×𝑆which are twice continuously
differentiable in 𝑥 and once differentiable in 𝑡. Let 𝑉 ∈

𝐶
2,1

(R
+
×R𝑛

×𝑆;R
+
). Define an operatorL𝑉 fromR𝑛

×R
+
×𝑆

to R𝑛 by

L𝑉 (𝑡, 𝑥, 𝑟) = 𝑉
𝑡
(𝑡, 𝑥, 𝑟) + 𝑉

𝑥
(𝑡, 𝑥, 𝑟) 𝑓 (𝑡, 𝑥, 𝑟)

+
1

2
Tr [𝜎(𝑡, 𝑥, 𝑟)𝑇𝑉

𝑥𝑥
𝜎 (𝑡, 𝑥, 𝑟)]

+

𝑀

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑡, 𝑥, 𝑗) ,

(14)

where 𝑉
𝑡
(𝑡, 𝑥, 𝑟) = 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑡, 𝑉

𝑥
(𝑡, 𝑥, 𝑟) = (𝜕𝑉(𝑡, 𝑥, 𝑟)/

𝜕𝑥
1
, . . . , 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑥

𝑛
), and 𝑉

𝑥𝑥
(𝑡, 𝑥, 𝑟) = (𝜕

2

𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑥
𝑖

𝑥
𝑗
)
𝑛×𝑛

. If 𝑉 ∈ 𝐶2,1

(R
+
×R𝑛

× 𝑆;R
+
), then

E𝑉 (𝑡, 𝑥 (𝑡) , 𝑟) = E𝑉 (𝑡
0
, 𝑥 (𝑡

0
) , 𝑟) + E∫

𝑡

𝑡0

L𝑉 (𝑠, 𝑥 (𝑠) , 𝑟) 𝑑𝑠

(15)

for all ∞ > 𝑡 > 𝑡
0
≥ 0 as long as the expectations of the

integrals exist.

3. Main Result

This section will show our main results with rigorous proof.

Theorem 9. Suppose that (H1) and (H2) are true and 𝑓 ̌𝑖
∈

QUAD (𝑃, Δ, 𝜂 ̌𝑖
, 𝜁 ̌𝑖
). If there are some positive constants 𝜃, 𝛼

𝑟
,

and 𝛽
𝑟
such that

[
[

[

𝐴(𝑟)
𝑠

+ ̌𝛿𝐼
𝑁
− 𝛼

𝑟
𝐼
𝑁

𝐵 (𝑟)

2

𝐵(𝑟)
𝑇

2
−𝛽

𝑟
𝐼
𝑁

]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

(16)

0 ≤ 𝜏̌ ≤ 1 −

̌𝑞 (𝑏̌ + ̌𝑐)

1 + 𝜃
, (17)

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0, (18)

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

> Γ̃
−11

𝑀
, (19)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞
𝑟
+
𝑏̌ ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏

+
̌𝑐 ̌𝑞

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐 ,

Γ̃ = diag {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑀
} + Γ,

𝑎
𝑟
=

𝜆max (−2𝜂 ̌𝑖
𝐼
𝑁
+ 𝑝̌∑

𝑁

𝑗=1
Υ

𝑟

𝑗1
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
, ̌𝑎= max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑎
𝑟
,

𝑏
𝑟
=

𝜆max (∑
𝑁

𝑗=1
𝑃Υ

𝑟

𝑗2
+ 2𝜁 ̆𝑖

𝐼
𝑁
)

𝑝
, 𝑏̌ = max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑏
𝑟
,

𝑐
𝑟
=

𝜆max (∑
𝑁

𝑗=1
𝑃Υ

𝑟

𝑗3
+ 2𝛽

𝑟
𝑃Σ)

𝑝
, ̌𝑐 = max

𝑟∈𝑆

𝑐
𝑟
,

(20)

then the global and exponential synchronization of the stochas-
tic complex network (8) can be achieved.

Proof. Inequality (19) indicates that there is a sufficiently
small constant 𝜃 > 0 such that

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

≥ (1 + 𝜃) Γ̃
−11. (21)

Let (1 + 𝜃)Γ̃−11 = 𝑞 = (𝑞
1
, 𝑞

2
, . . . , 𝑞

𝑀
)
𝑇. Thus

Γ̃𝑞 = (1 + 𝜃) 1
𝑀
; (22)

namely,

(𝑏
𝑟
+ 𝑐

𝑟
) 𝑞

𝑟
≤ 1 while 𝑎

𝑟
𝑞
𝑟
+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠
= 1 + 𝜃. (23)
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Figure 1: The topology structures of the switching networks that have 7 nodes divided into 2 clusters (nodes {1, 2, 3} and nodes {4, 5, 6, 7}).
(a) and (c) show the topology structures of the coupling matrices 𝐴(1) and 𝐴(2), respectively; (b) and (d) express the topology structures of
the coupling matrices 𝐵(1) and 𝐵(2), respectively.
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Figure 2: The trajectories of the state variables of 𝑥
𝑖1
and 𝑥

𝑖2
(𝑖 = 1, 2, . . . , 7) in system (46) by impulse control.

For 1 ≤ 𝑟 ≤ 𝑀, define the Lyapunov-Krasovskii function

𝑉 (𝑡, 𝑒 (𝑡) , 𝑟) =
1

2
𝑞
𝑟

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡) (24)

and let 𝑒𝑘(𝑡) = (𝑒
1𝑘
(𝑡), 𝑒

2𝑘
(𝑡), . . . , 𝑒

𝑁𝑘
(𝑡))

𝑇, 𝑘 = 1, 2, . . . , 𝑛. By
Lemma 8, for any 𝑡 ∈ [𝑡

𝑘−1
, 𝑡

𝑘
), 𝑘 = 1, 2, . . ., we have

L𝑉 (𝑡, 𝑒 (𝑡) , 𝑟)

= 𝑞
𝑟

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃
{

{

{

𝑓 ̌𝑖
(𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓 ̌𝑖
(𝑡, 𝑠 ̌𝑖

(𝑡) , 𝑠 ̌𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑟) Σ𝑒

𝑗
(𝑡)

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟) Σ𝑒

𝑗
(𝑡 − 𝜏

𝑐
(𝑡))
}

}

}

+
1

2
𝑞
𝑟

𝑁

∑

𝑖=1

Tr {𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)) , 𝑟)

𝑇
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× 𝑃𝜎
𝑖
(𝑡, 𝑥 (𝑡), 𝑥 (𝑡 − 𝜏 (𝑡)), 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)), 𝑟)}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡)

≤ 𝑞
𝑟
{−

𝑁

∑

𝑖=1

𝜂 ̌𝑖
𝑒
𝑖
(𝑡)

𝑇

𝑒
𝑖
(𝑡) +

𝑁

∑

𝑖=1

𝜁 ̌𝑖
𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝛿
𝑘
𝑒
𝑘

(𝑡)
𝑇

𝑒
𝑘

(𝑡) +

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘

(𝑡)
𝑇

𝐴 (𝑟) 𝑒
𝑘

(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘

(𝑡)
𝑇

𝐵 (𝑟) 𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))

+
1

2
𝑝̌

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

Υ
𝑟

𝑗1
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇

Υ
𝑟

𝑗2
𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

Υ
𝑟

𝑗3
𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))]}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡)

= 𝑞
𝑟

{

{

{

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

(−𝜂 ̌𝑖
𝐼
𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗1
+ 𝛼

𝑟
𝑃Σ)𝑒

𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇

(𝜁 ̌𝑖𝐼𝑁

+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗2
)𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

(
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗3
+ 𝛽

𝑟
𝑃Σ)

×𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

}

}

}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡)

+ 𝑞
𝑟
{

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘

(𝑡)
𝑇

[𝐴 (𝑟) + ( ̌𝛿 − 𝛼
𝑟
) 𝐼

𝑁
] 𝑒

𝑘

(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘

(𝑡)
𝑇

𝐵 (𝑟) 𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))

−

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))

𝑇

𝛽
𝑟
𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))}

≤ 𝑞
𝑟

{

{

{

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

(−𝜂 ̌𝑖
𝐼
𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗1
+ 𝛼

𝑟
𝑃Σ)𝑒

𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇

(𝜁 ̌𝑖
𝐼
𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗2
)𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

(
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
𝑟

𝑗3
+ 𝛽

𝑟
𝑃Σ)

×𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡)) }

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡) .

(25)

Set

𝐸 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇

𝑃𝑒
𝑖
(𝑡) . (26)

And then we have

L𝑉 (𝑡) ≤ 𝑎
𝑟
𝑞
𝑟
𝐸 (𝑡) + 𝑏

𝑟
𝑞
𝑟
𝐸 (𝑡 − 𝜏 (𝑡)) + 𝑐

𝑟
𝑞
𝑟
𝐸 (𝑡 − 𝜏

𝑐
(𝑡))

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠
𝐸 (𝑡)

(27)

and (23) deduces that

L𝑉 (𝑡) ≤ (1 + 𝜃) 𝐸 (𝑡) + 𝑏̌ ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡)) + ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐
(𝑡)) .

(28)

Define

𝑊(𝑡) = 𝑒
𝛾𝑡

𝑉 (𝑡) . (29)

By the aid of (28), we will deal with the operator

L𝑊(𝑡) = 𝑒
𝛾𝑡

[𝛾𝑉 (𝑡) +L𝑉 (𝑡)]

≤ 𝑒
𝛾𝑡

[𝛾 ̌𝑞𝐸 (𝑡) + (1 + 𝜃) 𝐸 (𝑡) + 𝑏̌ ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡))

+ ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐
(𝑡)) ] .

(30)

The generalized Itô formula shows that

𝑒
𝛾𝑡

E𝑉 (𝑡) = 𝑒
𝛾𝑡0E𝑉 (𝑡

0
) + E∫

𝑡

𝑡0

L𝑊(𝑠) 𝑑𝑠 (31)

for any 𝑡
𝑘
> 𝑡 > 𝑡

0
> 𝑡

𝑘−1
≥ 0. Hence we have

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ 𝑒
𝛾𝑡0E𝑉 (𝑡

0
)

+ E∫
𝑡

𝑡0

𝑒
𝛾𝑠

[𝛾 ̌𝑞𝐸 (𝑠) + (1 + 𝜃) 𝐸 (𝑠)

+𝑏̌ ̌𝑞𝐸 (𝑠 − 𝜏 (𝑠)) + ̌𝑐 ̌𝑞𝐸 (𝑠 − 𝜏
𝑐
(𝑠)) ] 𝑑𝑠
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≤ ̌𝑞𝑒
𝛾𝑡0E𝐸 (𝑡

0
) + (𝛾 ̌𝑞 + 1 + 𝜃)∫

𝑡

𝑡0

𝑒
𝛾𝑠

E𝐸 (𝑠) 𝑑𝑠

+ 𝑏̌ ̌𝑞𝑒
𝛾𝜏

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ ̌𝑐 ̌𝑞𝑒
𝛾𝜏𝑐 ∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝐸 (𝑠 − 𝜏

𝑐
(𝑠)) 𝑑𝑠.

(32)

Let 𝑠 − 𝜏(𝑠) = 𝑢; we have

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠 = ∫
𝑡−𝜏(𝑡)

𝑡0−𝜏(𝑡0)

𝑒
𝛾𝑢

E𝐸 (𝑢)
𝑑𝑢

1 − ̇𝜏 (𝑡)

≤
1

1 − 𝜏
∫

𝑡

𝑡0−𝜏

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢.

(33)

Similarly, it can be obtained that

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠 ≤

1

1 − 𝜏
𝑐

∫

𝑡

𝑡0−𝜏𝑐

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢.

(34)

Substituting (33) and (34) into (32) can result in

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ 𝑞
𝑟
𝑒
𝛾𝑡0E𝑉 (𝑡

0
) + 𝜑∫

𝑡

𝑡0−
̌𝜏

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢. (35)

With help ofGronwall inequality, the following inequality can
be achieved:

E𝐸 (𝑡) ≤
̌𝑞

𝑞
E𝐸 (𝑡

0
) 𝑒

𝜑(𝑡−𝑡0+
̌𝜏)+𝛾(𝑡0−𝑡). (36)

On the other hand, in view of the construction of 𝐸(𝑡), we
have

𝐸 (𝑡
𝑘
) ≤ (1 + 𝜖

𝑘
)
2

𝐸 (𝑡
−

𝑘
) , (37)

where |1 + 𝜖
𝑘
| = max

𝑖=1,2,...,𝑁
|1 + 𝜖

𝑖𝑘
|.

Let 𝑘 = ⌊(𝑡 − 𝑡
0
)/𝑇⌋; according to (36) and (37), for any

𝑡 ∈ [𝑡
𝑘−1
, 𝑡

𝑘
), one has

E [𝑉 (𝑡)] ≤
̌𝑞

𝑞
E𝐸 (𝑡

𝑘
) 𝑒

𝜑(𝑡−𝑡𝑘+
̌𝜏)+𝛾(𝑡𝑘−𝑡)

≤
̌𝑞

𝑞
E𝑉 (𝑡

−

𝑘−1
) 𝑒

𝜑(𝑡−𝑡𝑘−1+
̌𝜏)+𝛾(𝑡𝑘−𝑡)+2 ln |1+𝜖𝑘−1|

≤ ⋅ ⋅ ⋅ ≤ (
̌𝑞

𝑞
)

𝑘−1

E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+∑

𝑘−1

V=1 2 ln |1+𝜖V|.

(38)

Let |1 + 𝜖| = maxV∈𝑍+ |1 + 𝜖V|; we have

E [𝐸 (𝑡)] ≤ E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+2(𝑘−1) ln( ̌𝑞/𝑞)|1+𝜖|

. (39)

By means of condition (18) in Theorem 9, there is a
number 𝜂 such that E𝐸(𝑡) ≤ E𝐸(𝑡

0
)𝑒

−𝜂𝑡. Consequently,
E‖𝑒

𝑖
(𝑡)‖ ≤ (𝐸(𝑡

0
)/𝑝̌)

1/2

𝑒
−(𝜂/2)(𝑡−𝑡0). The proof of Theorem 9 is

completed.

When the time-varying delays are constant (i.e., 𝜏(𝑡) = 𝜏,
𝜏
𝑐
(𝑡) = 𝜏

𝑐
), we obtain the following corollary.

Corollary 10. Suppose that (H1) and (H2) are true and 𝑓 ̌𝑖
∈

QUAD (𝑃, Δ, 𝜂 ̌𝑖
, 𝜁 ̌𝑖
). If there are some positive constants 𝜃, 𝛼

𝑟
,

and 𝛽
𝑟
such that

[
[

[

𝐴(𝑟)
𝑠

+ ̌𝛿𝐼
𝑁
− 𝛼

𝑟
𝐼
𝑁

𝐵 (𝑟)

2

𝐵(𝑟)
𝑇

2
−𝛽

𝑟
𝐼
𝑁

]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0,

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

> Γ̃
−11

𝑀
,

(40)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞
𝑟
+ 𝑏̌ ̌𝑞𝑒

𝛾𝜏

+ ̌𝑐 ̌𝑞𝑒
𝛾𝜏𝑐 ,

Γ̃ = diag {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑀
} + Γ,

𝑎
𝑟
=

𝜆max (−2𝜂 ̌𝑖
𝐼
𝑁
+ 𝑝̌∑

𝑁

𝑗=1
Υ

𝑟

𝑗1
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
, ̌𝑎= max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑎
𝑟
,

𝑏
𝑟
=

𝜆max (∑
𝑁

𝑗=1
𝑃Υ

𝑟

𝑗2
+ 2𝜁 ̌𝑖

𝐼
𝑁
)

𝑝
, 𝑏̌ = max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑏
𝑟
,

𝑐
𝑟
=

𝜆max (∑
𝑁

𝑗=1
𝑃Υ

𝑟

𝑗3
+ 2𝛽

𝑟
𝑃Σ)

𝑝
, ̌𝑐 = max

𝑟∈𝑆

𝑐
𝑟
,

(41)

then the global and exponential synchronization of the stochas-
tic complex network (8) can be achieved.

When 𝐴(𝑟) and 𝐵(𝑟) are symmetric matrices, for 𝑟 =
1, 2, . . . ,𝑀, and 𝜎(⋅) = 0, we can get the following corollary.

Corollary 11. Suppose that (H1) and (H2) are true and 𝑓 ̌𝑖
∈

QUAD (𝑃, Δ, 𝜂 ̌𝑖
, 𝜁 ̌𝑖
). If there are some positive constants 𝜃, 𝛼

𝑟
,

and 𝛽
𝑟
such that

[
[

[

𝐴 (𝑟) + ̌𝛿𝐼
𝑁
− 𝛼

𝑟
𝐼
𝑁

𝐵 (𝑟)

2

𝐵(𝑟)
𝑇

2
−𝛽

𝑟
𝐼
𝑁

]
]

]

≤ 0, 𝑓𝑜𝑟 𝑟 = 1, 2, . . . ,𝑀,

0 ≤ 𝜏̌ ≤ 1 −

̌𝑞 (𝑏̌ + ̌𝑐)

1 + 𝜃
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0,

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

> Γ̃
−11

𝑀
,

(42)
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Figure 3: The time evolution of 𝑒
𝑖1
and 𝑒

𝑖2
(𝑖 = 1, 2, . . . , 7) in system (46) by impulse control.

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞
𝑟
+
𝑏̌ ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏

+
̌𝑐 ̌𝑞

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐 ,

Γ̃ = diag {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑀
} + Γ,

𝑎
𝑟
=
𝜆max (−2𝜂 ̌𝑖

𝐼
𝑁
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
, ̌𝑎 = max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑎
𝑟
,

𝑏
𝑟
=
2𝜁 ̌𝑖

𝑝
, 𝑏̌ = max

𝑟∈𝑆,𝑖=1,...,𝑁

𝑏
𝑟
,

𝑐
𝑟
=
𝜆max (2𝛽𝑟𝑃Σ)

𝑝
, ̌𝑐 = max

𝑟∈𝑆

𝑐
𝑟
,

(43)

then the global and exponential synchronization of the stochas-
tic complex network (8) can be achieved.

4. Numerical Simulation

This section will employ some numerical examples to illus-
trate the effectiveness of the previous theoretical results.

Consider the following stochastic delayed neural net-
work:

𝑑𝑠 (𝑡) = {−𝐶𝑠 (𝑡) + 𝐷ℎ𝑓 (𝑠 (𝑡)) + 𝐸ℎ (𝑠 (𝑡 − 𝜏 (𝑡)))} 𝑑𝑡

+ 𝜎 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(44)

where ℎ(𝑠) = tanh(𝑠), 𝜏(𝑡) = 1, 𝜎(𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))) =
diag{𝑠

1
(𝑡), 𝑠

2
(𝑡)},

𝐶 = [
1 0

0 1
] , 𝐷 = [

2 −0.1

−5 4.5
] ,

𝐸 = [
−1.5 −0.1

−0.2 −4
] .

(45)

Set𝑃 = diag{1, 1},Δ = diag{5, 11.5}, and let 𝜂 = 0.15, 𝜁 = 3.25
ensure that condition (10) is satisfied. And then

𝑑𝑥
𝑖
(𝑡) =

{

{

{

𝑓 (𝑡, 𝑥
𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+

7

∑

𝑗=1

𝑎
𝑟

𝑖𝑗
Σ𝑥

𝑗
(𝑡) +

7

∑

𝑗=1

𝑏
𝑟

𝑖𝑗
Σ𝑥

𝑗
(𝑡 − 𝜏

𝑐
(𝑡))
}

}

}

𝑑𝑡

+ 𝜎
𝑟

𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 5, 𝑟 = 1, 2,

(46)

Γ = [
−1 1

2 −2
] , 𝜏

𝑐
(𝑡) = 0.1

𝑒
𝑡

1 + 𝑒𝑡
,

𝜎
1

𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)))

= 0.1 diag {𝑥
𝑖1
(𝑡) − 𝑥

𝑖+1,1
(𝑡) , 𝑥

𝑖2
(𝑡) − 𝑥

𝑖+1,2
(𝑡)} ,

𝜎
2

𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)))

= 0.1 diag {𝑥
𝑖1
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖+1,1
(𝑡 − 𝜏 (𝑡)) ,

𝑥
𝑖2
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖+1,2
(𝑡 − 𝜏 (𝑡))} .

(47)

We here consider a network that has 7 nodes divided into
2 clusters as shown in Figure 1. Some computations result in
𝜏 = 1, 𝜏 = 0, 𝜏

𝑐
= 0.025, 𝜏

𝑐
= 0.1, Υ

𝑖𝑗
= 0.01𝐼

2
for 𝑖 =

1, 2, . . . , 𝑁.Thus, the solutions of inequalities can be obtained
as follows (16)–(19): 𝛼

1
= 3.150, 𝛽

1
= 0.001, 𝑎

1
= 2.903, 𝑏

1
=

4.207, and 𝑐
1
= 0.089; 𝛼

2
= 3.806, 𝛽

2
= 0.012, 𝑎

2
= 3.105,

𝑏
2
= 2.103, and 𝑐

2
= 0.105.

In this simulation, the initial conditions, 𝑥
𝑖𝑗
(𝑡

0
) for 𝑖 =

1, 2, . . . , 7, 𝑗 = 1, 2, are all constants. Figure 2 provides the
trajectories of the impulse pinning control gains. By Figure 3,
we show the time evolution of the cluster synchronization
errors with impulse control.
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5. Conclusion

In this writing, we focused on the cluster synchronization
issue of an array of stochastic complex networks withMarko-
vian switching and time-varying delayed couplings. Bymeans
of an impulsive pinning control method imposed on a small
fraction of the nodes, the desired cluster synchronization was
reached, while a novel sufficient condition was derived to
ensure the stability of the considered stochastic networks. At
the end of this paper, a numerical simulation was given to
show the validity of the theoretical analysis.
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“Classes of small-world networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 97, pp.
11149–11152, 2000.

[2] A. Zheleznyak and L. O. Chua, “coexistence of low- and high-
dimensional spatiotemporal chaos in a chain of dissipatively
coupled chua’s circuits,” International Journal of Bifurcation and
Chaos, vol. 4, pp. 639–674, 1994.

[3] M. Faloutsos, P. Faloutsos, and C. Faioutsos, “On power-
law relationships of the internet topology,” in Proceedings of
the ACM SIGCOMM Conference Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp.
251–261, September 1999.

[4] A.Medina, I. Matt, and J. Byers, “On the origin of power laws in
internet topologies,” Computer Communication Review, vol. 30,
pp. 18–28, 2000.

[5] A. Perez-Munuzuri, V. Perez-Munuzuri, V. Perez-Villar, and
L. O. Chua, “Synchronization in an array of linearly coupled
dynamical systems,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, vol. 42, no. 8, pp. 430–
447, 1995.

[6] R. Albert, H. Jeong, and A. L. Barabási, “Diameter of the world-
wide web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[7] S. H. Wang, J. Y. Kuang, J. H. Li, and Y. L. Luo, “Chaos-based
secure communications in a large community,” Physical Review
E, vol. 66, Article ID 065202, 2002.

[8] B. Rakshit, A. R. Chowdhury, and P. Saha, “Parameter esti-
mation of a delay dynamical system using synchronization in
presence of noise,” Chaos, Solitons and Fractals, vol. 32, no. 4,
pp. 1278–1284, 2007.

[9] Z. G. Zheng and G. Hu, “Generalized synchronization versus
phase synchronization,” Physical Review E, vol. 62, article 7882,
2000.

[10] M. G. Earl and S. H. Strogatz, “Synchronization in oscillator
networks with delayed coupling: A stability criterion,” Physical
Review E, vol. 67, no. 3, Article ID 036204, 2003.

[11] E. G. de Oliveira and T. Braun, “Partial synchronization on a
network with different classes of oscillators,” Physical Review E,
vol. 76, Article ID 067201, 2007.

[12] K. Wang, X. Fu, and K. Li, “Cluster synchronization in
community networks with nonidentical nodes,” Chaos. An
Interdisciplinary Journal of Nonlinear Science, vol. 19, no. 2,
Article ID 023106, 2009.

[13] K. Kaneko, “Relevance of dynamic clustering to biological
networks,” Physica D: Nonlinear Phenomena, vol. 75, no. 1–3, pp.
55–73, 1994.

[14] I. Belykh, V. Belykh, K. Nevidin, and M. Hasler, “Persistent
clusters in lattices of coupled nonidentical chaotic systems,”
Chaos, vol. 13, no. 1, pp. 165–178, 2003.

[15] A. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial syn-
chronization: from symmetry towards stability,” Physica D, vol.
172, no. 1–4, pp. 65–87, 2002.

[16] Z. Ma, Z. Liu, and G. Zhang, “A new method to realize cluster
synchronization in connected chaotic networks,” Chaos, vol. 16,
no. 2, Article ID 023103, 2006.

[17] Y. Sun, J. Cao, and Z. Wang, “Exponential synchronization of
stochastic perturbed chaotic delayed neural networks,” Neuro-
computing, vol. 70, no. 13–15, pp. 2465–2477, 2007.

[18] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array
of linearly stochastically coupled networks with time delays,”
Physica A, vol. 385, no. 2, pp. 718–728, 2007.

[19] X. Yang and J. Cao, “Stochastic synchronization of coupled
neural networks with intermittent control,” Physics Letters A,
vol. 373, no. 36, pp. 3259–3272, 2009.

[20] I. V. Belykh, V. N. Belykh, and M. Hasler, “Blinking model and
synchronization in small-world networks with a time-varying
coupling,” Physica D, vol. 195, no. 1-2, pp. 188–206, 2004.

[21] J. Wang, C. Xu, J. Feng, M. K. Kwong, and F. Austin, “Mean-
square exponential synchronization of markovian switching
stochastic complex networks with time-varying delays by pin-
ning control,” Abstract and Applied Analysis, vol. 2012, Article
ID 298095, 2012.

[22] Y. Tang and J.-a. Fang, “Adaptive synchronization in an array
of chaotic neural networks with mixed delays and jumping
stochastically hybrid coupling,” Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 9-10, pp. 3615–
3628, 2009.

[23] W. Wu, W. Zhou, and T. Chen, “Cluster synchronization of
linearly coupled complex networks under pinning control,”
IEEE Transactions on Circuits and Systems. I. Regular Papers,
vol. 56, no. 4, pp. 829–839, 2009.

[24] J. Wang, J. Feng, C. Xu, and Y. Zhao, “Cluster synchronization
of nonlinearly-coupled complex networks with nonidentical
nodes and asymmetrical couplingmatrix,”Nonlinear Dynamics,
vol. 67, no. 2, pp. 1635–1646, 2012.

[25] J. Wang, J. Feng, C. Xu, and Y. Zhao, “Exponential synchro-
nization of stochastic perturbed complex networks with time-
varying delays via periodically intermittent pinning,” Commu-
nications inNonlinear Science andNumerical Simulation, vol. 18,
no. 11, pp. 3146–3157, 2013.

[26] C. Yuan and X. Mao, “Robust stability and controllability of
stochastic differential delay equations with Markovian switch-
ing,” Automatica, vol. 40, no. 3, pp. 343–354, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


