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Real hypersurfaces satisfying the condition 𝜙𝑙 = 𝑙𝜙(𝑙 = 𝑅(⋅, 𝜉)𝜉) have been studied by many authors under at least one more
condition, since the class of these hypersurfaces is quite tough to be classified. The aim of the present paper is the classification
of real hypersurfaces in complex projective plane C𝑃2 satisfying a generalization of 𝜙𝑙 = 𝑙𝜙 under an additional restriction on a
specific function.

1. Introduction

An 𝑛-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature 𝑐 is called complex space form,
which is denoted by𝑀

𝑛
(𝑐). A complete and simply connected

complex space form is a projective space C𝑃𝑛 if 𝑐 > 0, a
hyperbolic space C𝐻𝑛 if 𝑐 < 0, or a Euclidean space C𝑛 if
𝑐 = 0. The induced almost contact metric structure of a real
hypersurface𝑀 of𝑀

𝑛
(𝑐) will be denoted by (𝜙, 𝜉, 𝜂, 𝑔).

Real hypersurfaces in C𝑃𝑛 which are homogeneous were
classified by Takagi [1].The same author classified real hyper-
surfaces in C𝑃𝑛, with constant principal curvatures in [2],
but only when the number 𝑔 of distinct principal curvatures
satisfies 𝑔 = 3. Kimura showed in [3] that if a Hopf real
hypersurface 𝑀 in C𝑃𝑛 has constant principal curvatures,
then the number of distinct principal curvatures of𝑀 is 2, 3,
or 5. Berndt gave the equivalent result for Hopf hypersurfaces
in C𝐻𝑛 [4], where he divided real hypersurfaces into four
model spaces, named 𝐴

0
, 𝐴
1
, 𝐴
2
, and 𝐵. Real hypersurfaces

of types 𝐴
1
and 𝐴

2
in C𝑃𝑛 and of types 𝐴

0
, 𝐴
1
, and 𝐴

2
in

C𝐻𝑛 are said to be hypersurfaces of type A for simplicity.
Another class of real hypersurfaces that appears quite often
is the Hopf hypersurfaces where the structure vector field is a
principal vector field. For more details and examples on real
hypersurfaces of type 𝐴 and Hopf, we refer to [5].

A Jacobi field along geodesics of a given Riemannian
manifold (𝑀,𝑔) plays an important role in the study of
differential geometry. It satisfies a well-known differential
equation which inspires Jacobi operators. For any vector field
𝑋, the Jacobi operator is defined by 𝑅

𝑋
: 𝑅
𝑋
(𝑌) = 𝑅(𝑌,𝑋)𝑋,

where 𝑅 denotes the curvature tensor and 𝑌 is a vector field
on𝑀.𝑅

𝑋
is a self-adjoint endomorphism in the tangent space

of𝑀 and is related to the Jacobi differential equation, which
is given by ∇

𝛾́
(∇
𝛾́
𝑌) + 𝑅(𝑌, 𝛾́)𝛾́ = 0 along a geodesic 𝛾 on𝑀,

where 𝛾́ denotes the velocity vector along 𝛾 on𝑀.
In a real hypersurface𝑀 of a complex space form𝑀

𝑛
(𝑐),

𝑐 ̸= 0, the Jacobi operator on𝑀 with respect to the structure
vector field 𝜉 is called the structure Jacobi operator and is
denoted by 𝑅

𝜉
(𝑋) = 𝑅(𝑋, 𝜉)𝜉 = 𝑙𝑋.

Real hypersurfaces have been studied from many points
of view. Certain authors have studied real hypersurfaces
under conditions which include the operator 𝑙 [6–9]. Other
authors have studied real hypersurfaces under the condition
𝜙𝑙 = 𝑙𝜙, equipped with one or two additional conditions [10–
15], proving that these hypersurfaces are Hopf and classifying
them as type 𝐴.

In the present paper we classify real hypersurfaces of
complex projective planes, satisfying

(𝜙𝑙 − 𝑙𝜙)𝑋 = 𝜓 (𝑋) 𝑙𝑋, (1)
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restricted in the subspace D = ker(𝜂) of 𝑇
𝑝
𝑀 for every point

𝑝 ∈ 𝑀, where ker(𝜂) consists of all vector fields orthogonal to
the Reeb flow vector field 𝜉 and the form 𝜓 is assumed to be
nonlinear with respect to scalar product. If𝜓 is linear, then by
replacing𝑋 with 2𝑋, we obtain (𝜙𝑙 − 𝑙𝜙)𝑋 = 2𝜓(𝑋)𝑙𝑋 which
implies 𝜓(𝑋)𝑙𝑋 = 0. So (1) takes the simpler form 𝜙𝑙 = 𝑙𝜙.

Since this class is rather difficult to classify, a second
condition is imposed. However it is not a condition acting in
vector fields, but only in the function 𝛼 = 𝑔(𝐴𝜉, 𝜉) : ∇

𝜉
𝜉 ⋅ 𝛼 =

0, where 𝐴 is the shape operator. Geometrically speaking, we
demand the function 𝛼 to be constant in the direction of the
integral curves of 𝜉. Namely, we prove the following.

MainTheorem.A real hypersurface𝑀 of a complex projective
plane C𝑃2, satisfying (𝜙𝑙 − 𝑙𝜙)𝑋 = 𝜓(𝑋)𝑙𝑋, ∀𝑋 ∈ D (𝜓 is
nonlinear), and ∇

𝜉
𝜉 ⋅ 𝛼 = 0, is Hopf. Furthermore, if 𝛼 =

𝑔(𝐴𝜉, 𝜉) ̸= 0 then𝑀 is locally congruent to a model space of
type 𝐴 and 𝜓(𝑋)𝑙𝑋 = 0.

For the case of C𝑃𝑛 in order to determine real hypersur-
face of type𝐴, the technical assumption 𝜂(𝐴𝜉) ̸= 0 is needed.
Actually, there is a nonhomogeneous tube with 𝐴𝜉 = 0 (of
radius 𝜋/4) over a certain Kaehler submanifold inC𝑃𝑛, when
its focal map has constant rank on𝑀 [16].

2. Preliminaries

Let 𝑀
𝑛
be a Kaehlerian manifold of real dimension 2𝑛,

equipped with an almost complex structure 𝐽 and a Hermi-
tian metric tensor 𝐺. Then for any vector fields 𝑋 and 𝑌 on
𝑀
𝑛
(𝑐), the following relations hold:

𝐽
2
𝑋 = −𝑋,

𝐺 (𝐽𝑋, 𝐽𝑌) = 𝐺 (𝑋, 𝑌) ,

∇̃𝐽 = 0,

(2)

where ∇̃ denotes the Riemannian connection of 𝐺 of𝑀
𝑛
.

Now, let𝑀
2𝑛−1

be a real (2𝑛 − 1)-dimensional hypersur-
face of𝑀

𝑛
(𝑐), and denote by𝑁 a unit normal vector field on a

neighborhood of a point in𝑀
2𝑛−1

(from now onwe will write
M instead of𝑀

2𝑛−1
). For any vector field 𝑋 tangent to𝑀 we

have 𝐽𝑋 = 𝜙𝑋+ 𝜂(𝑋)𝑁, where 𝜙𝑋 is the tangent component
of 𝐽𝑋, 𝜂(𝑋)𝑁 is the normal component, and

𝜉 = −𝐽𝑁,

𝜂 (𝑋) = 𝑔 (𝑋, 𝜉) ,

𝑔 = 𝐺|𝑀 .

(3)

By properties of the almost complex structure 𝐽 and the
definitions of 𝜂 and 𝑔, the following relations hold [17]:

𝜙
2
= −𝐼 + 𝜂 ⊗ 𝜉,

𝜂 ∘ 𝜙 = 0,

𝜙𝜉 = 0,

𝜂 (𝜉) = 1,

(4)

𝑔 (𝜙𝑋, 𝜙𝑌) = 𝑔 (𝑋, 𝑌) − 𝜂 (𝑋) 𝜂 (𝑌) ,

𝑔 (𝑋, 𝜙𝑌) = −𝑔 (𝜙𝑋, 𝑌) .
(5)

The above relations define an almost contact metric
structure on 𝑀 which is denoted by (𝜙, 𝜉, 𝑔, 𝜂). By virtue
of this structure, we can define a local orthonormal basis
{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛−1
, 𝜙𝑒
1
, 𝜙𝑒
2
, . . . , 𝜙𝑒

𝑛−1
, 𝜉}, called 𝜙-basis. Fur-

thermore, let 𝐴 be the shape operator in the direction of 𝑁,
and denote by∇ the Riemannian connection of 𝑔 on𝑀.Then
𝐴 is symmetric and the following equations are satisfied:

∇
𝑋
𝜉 = 𝜙𝐴𝑋,

(∇
𝑋
𝜙)𝑌 = 𝜂 (𝑌)𝐴𝑋 − 𝑔 (𝐴𝑋, 𝑌) 𝜉.

(6)

As the ambient space 𝑀
𝑛
(𝑐) is of constant holomorphic

sectional curvature 𝑐, the equations of Gauss andCodazzi are,
respectively, given by

𝑅 (𝑋, 𝑌)𝑍 =
𝑐

4
[𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌

+ 𝑔 (𝜙𝑌, 𝑍) 𝜙𝑋 − 𝑔 (𝜙𝑋,𝑍) 𝜙𝑌 − 2𝑔 (𝜙𝑋, 𝑌) 𝜙𝑍]

+ 𝑔 (𝐴𝑌,𝑍)𝐴𝑋 − 𝑔 (𝐴𝑋,𝑍)𝐴𝑌,

(7)

(∇
𝑋
𝐴)𝑌 − (∇

𝑌
𝐴)𝑋 =

𝑐

4
[𝜂 (𝑋) 𝜙𝑌 − 𝜂 (𝑌) 𝜙𝑋

− 2𝑔 (𝜙𝑋, 𝑌) 𝜉] .

(8)

The tangent space 𝑇
𝑝
𝑀, for every point 𝑝 ∈ 𝑀, is

decomposed as follows:

𝑇
𝑝
𝑀 = ker (𝜂)⊥ ⊕ ker (𝜂) , (9)

where ker(𝜂)⊥ = span{𝜉} and ker(𝜂) is defined as follows:

ker (𝜂) = {𝑋 ∈ 𝑇
𝑝
𝑀 : 𝜂 (𝑋) = 0} . (10)

Based on the above decomposition, by virtue of (6), we
decompose the vector field 𝐴𝜉 in the following way:

𝐴𝜉 = 𝛼𝜉 + 𝛽𝑈, (11)

where 𝛽 = |𝜙∇
𝜉
𝜉| and 𝑈 = −(1/𝛽)𝜙∇

𝜉
𝜉 ∈ ker(𝜂), provided

that 𝛽 ̸= 0.
As stated before, if the vector field 𝜉 is a principal vector

field, the real hypersurface is called 𝐻𝑜𝑝𝑓 hypersurface. In
this case the vector field 𝐴𝜉 is expressed as 𝐴𝜉 = 𝛼𝜉, 𝛼 =
𝑔(𝐴𝜉, 𝜉).

Finally, differentiation of a function 𝑓 along a vector field
𝑋 will be denoted by (𝑋𝑓). All manifolds of this paper are
assumed to be connected and of class 𝐶∞.

3. Auxiliary Relations

In the study of real hypersurfaces of a complex space form
𝑀
𝑛
(𝑐), 𝑐 ̸= 0, it is a crucial condition that the structure

vector field 𝜉 is principal. The purpose of this paragraph is
to establish relations that will help us prove this condition.
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Let N = {𝑝 ∈ 𝑀 : 𝛽 ̸= 0 in a neighborhood of 𝑝}.
If we had at least one point of N, where 𝛼 = 0, then from
(7) we would obtain 𝑙𝑈 = (𝑐/4 − 𝛽2)𝑈 and 𝑙𝜙𝑈 = (𝑐/4)𝜙𝑈.
Combining the last two equations with (1) we would take
𝛽 = 0 which is a contradiction. Therefore 𝛼 ̸= 0 inN.

Lemma 1. LetM be a real hypersurface of a complex projective
plane C𝑃2, satisfying (1). Then the following relations hold in
N:

𝐴𝑈 = (
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)𝑈 + 𝛽𝜉,

𝐴𝜙𝑈 = (
𝛾

𝛼
−
𝑐

4𝛼
) 𝜙𝑈,

(12)

∇
𝜉
𝜉 = 𝛽𝜙𝑈,

∇
𝑈
𝜉 = (

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)𝜙𝑈,

∇
𝜙𝑈
𝜉 = (

𝑐

4𝛼
−
𝛾

𝛼
)𝑈,

(13)

∇
𝜉
𝑈 = 𝜅

1
𝜙𝑈,

∇
𝑈
𝑈 = 𝜅

2
𝜙𝑈,

∇
𝜙𝑈
𝑈 = 𝜅

3
𝜙𝑈 + (

𝛾

𝛼
−
𝑐

4𝛼
) 𝜉,

(14)

∇
𝜉
𝜙𝑈 = −𝜅

1
𝑈 − 𝛽𝜉,

∇
𝑈
𝜙𝑈 = −𝜅

2
𝑈 − (

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
) 𝜉,

∇
𝜙𝑈
𝜙𝑈 = −𝜅

3
𝑈,

(15)

where 𝜅
1
, 𝜅
2
, and 𝜅

3
are smooth functions inN.

Proof. From (7) we get

𝑙𝑋 =
𝑐

4
[𝑋 − 𝜂 (𝑋) 𝜉] + 𝛼𝐴𝑋 − 𝑔 (𝐴𝑋, 𝜉) 𝐴𝜉 (16)

which for𝑋 = 𝑈 and𝑋 = 𝜙𝑈 yields

(i) 𝑙𝑈 = 𝑐
4
𝑈 + 𝛼𝐴𝑈 − 𝛽𝐴𝜉,

(ii) 𝑙𝜙𝑈 = 𝑐
4
𝜙𝑈 + 𝛼𝐴𝜙𝑈.

(17)

The scalar products of (17)(i) with 𝑈 and 𝜙𝑈 yield, respec-
tively,

𝑔 (𝐴𝑈,𝑈) =
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
, (18)

𝑔 (𝐴𝑈, 𝜙𝑈) = 𝑔 (𝐴𝜙𝑈,𝑈) =
𝛿

𝛼
, (19)

where 𝛾 = 𝑔(𝑙𝑈, 𝑈) and 𝛿 = 𝑔(𝑙𝑈, 𝜙𝑈). From (18), (19), and
𝑔(𝐴𝑈, 𝜉) = 𝑔(𝐴𝜉, 𝑈) = 𝛽 we obtain 𝐴𝑈 = (𝛾/𝛼 + 𝛽2/𝛼 −
𝑐/4𝛼)𝑈 + 𝛽𝜉. From (19), 𝑔(𝐴𝜙𝑈, 𝜉) = 𝑔(𝐴𝜉, 𝜙𝑈) = 0, and

𝜖 = 𝑔(𝑙𝜙𝑈, 𝜙𝑈) we obtain 𝐴𝜙𝑈 = (𝜖/𝛼 − 𝑐/4𝛼)𝜙𝑈 + (𝛿/𝛼)𝑈.
In order to prove (12) we need to show that 𝛾 = 𝜖 and 𝛿 = 0.
Combining the analysis of𝐴𝑈 and𝐴𝜙𝑈with (11) and (17) we
obtain 𝑙𝑈 = 𝛾𝑈 + 𝛿𝜙𝑈 and 𝑙𝜙𝑈 = 𝛿𝑈 + 𝜖𝜙𝑈. The last two
equations and 𝜙𝑙𝑈 − 𝑙𝜙𝑈 = 𝜓(𝑈)𝑙𝑈 which holds due to (1)
yield

(i) 𝛾 − 𝜖 = 𝜓 (𝑈) 𝛿,

(ii) − 2𝛿 = 𝜓 (𝑈) 𝛾.
(20)

Moreover, the decompositions of 𝑙𝑈 and 𝑙𝜙𝑈 combined with
𝜙𝑙𝜙𝑈 + 𝑙𝑈 = 𝜓(𝜙𝑈)𝑙𝜙𝑈 which holds due to (1) and (4) yield

(i) 𝛾 − 𝜖 = 𝜓 (𝜙𝑈) 𝛿,

(ii) 2𝛿 = 𝜓 (𝜙𝑈) 𝜖.
(21)

Let us assume that 𝛿 ̸= 0 in a neighborhood of a point in
N. Then (20)(i) and (21)(i) give 𝜓(𝑈) = 𝜓(𝜙𝑈). Apparently
𝜓(𝑈)𝛾 ̸= 0; otherwise (20)(ii) would yield 𝛿 = 0. As a result,
(20) and (21) lead, respectively, to −𝛾(𝛾 − 𝜖) = 2𝛿2 and 𝜖(𝛾 −
𝜖) = 2𝛿2. The last two relations are added and result in (𝛾 −
𝜖)2 = −4𝛿2 which is a contradiction. This means that 𝛿 = 0
holds, and (20) and (21) imply 𝛾 = 𝜖.

Equation (13) is obtained from (12) and relation (6) for
𝑋 = 𝜉,𝑋 = 𝑈, and𝑋 = 𝜙𝑈. Next we recall the rule

𝑋𝑔 (𝑌, 𝑍) = 𝑔 (∇
𝑋
𝑌,𝑍) + 𝑔 (𝑌, ∇

𝑋
𝑍) . (22)

By virtue of (22) for 𝑋 = 𝑍 = 𝜉, 𝑌 = 𝑈 and for 𝑋 =
𝜉, 𝑌 = 𝑍 = 𝑈, it is shown, respectively, that ∇

𝜉
𝑈 ⊥ 𝜉 and

∇
𝜉
𝑈 ⊥ 𝑈, whichmeans∇

𝜉
𝑈 = 𝜅

1
𝜙𝑈. In a similar way, (22) for

𝑋 = 𝑌 = 𝑍 = 𝑈 and 𝑋 = 𝑍 = 𝑈, 𝑌 = 𝜉 yields, respectively,
∇
𝑈
𝑈 ⊥ 𝑈 and ∇

𝑈
𝑈 ⊥ 𝜉. So ∇

𝑈
𝑈 = 𝜅

2
𝜙𝑈 holds. Finally, (22)

for𝑋 = 𝜙𝑈, 𝑌 = 𝑍 = 𝑈 and𝑋 = 𝜙𝑈, 𝑌 = 𝑈, 𝑍 = 𝜉 (with the
aid of (13)) yields, respectively, ∇

𝜙𝑈
𝑈 ⊥ 𝑈 and 𝑔(∇

𝜙𝑈
𝑈, 𝜉) =

𝛾/𝛼 − 𝑐/4𝛼. Therefore we have ∇
𝜙𝑈
𝑈 = 𝜅

3
𝜙𝑈+ (𝛾/𝛼 − 𝑐/4𝛼)𝜉

and (14) has been proved. In order to prove (15) we use the
second of (6) with the combinations, (i) 𝑋 = 𝜉, 𝑌 = 𝑈, (ii)
𝑋 = 𝑌 = 𝑈, and (iii) 𝑋 = 𝜙𝑈, 𝑌 = 𝑈, and make use of (11),
(12), and (14).

Lemma2. LetM be a real hypersurface of a complex projective
plane C𝑃2, satisfying (1). Then in N one has (𝜙𝑈(𝛾/𝛼 −
𝑐/4𝛼)) = (3𝛽/𝛼)[(𝛾/𝛼 − 𝑐/4𝛼)2 − 𝑐/4].

Proof. Putting 𝑋 = 𝑈, 𝑌 = 𝜉 in (8), we obtain (∇
𝑈
𝐴)𝜉 −

(∇
𝜉
𝐴)𝑈 = −(𝑐/4)𝜙𝑈. Combining the last equation with (11)

and Lemma 1, it follows that

[(𝑈𝛼) − (𝜉𝛽)] 𝜉 + [(𝑈𝛽) − (𝜉(
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
))]𝑈

+ [𝛾 −
𝑐

4
+ 𝜅
2
𝛽 − (

𝛾

𝛼
−
𝑐

4𝛼
)(

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)

− 𝜅
1

𝛽2

𝛼
]𝜙𝑈 = −

𝑐

4
𝜙𝑈.

(23)
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The last equation because of the linear independency of 𝑈,
𝜙𝑈, and 𝜉 yields

(𝑈𝛼) = (𝜉𝛽) , (24)

(𝑈𝛽) = (𝜉(
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)) , (25)

𝛾 + 𝜅
2
𝛽 − (

𝛾

𝛼
−
𝑐

4𝛼
)(

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
) − 𝜅
1

𝛽2

𝛼
= 0. (26)

In the same way, putting 𝑋 = 𝜙𝑈, 𝑌 = 𝜉 in (8), we obtain
(∇
𝜙𝑈
𝐴)𝜉 − (∇

𝜉
𝐴)𝜙𝑈 = (𝑐/4)𝑈. Combining the last equation

with (11) and Lemma 1, we have

(𝜙𝑈𝛽) + (
𝛾

𝛼
−
𝑐

4𝛼
)(

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
) − 𝜅
1

𝛽2

𝛼
− 𝛽
2

− 𝛾 = 0,

(27)

𝜅
3
𝛽 = 𝜉 (

𝛾

𝛼
−
𝑐

4𝛼
) , (28)

(𝜙𝑈𝛼) + 3𝛽 (
𝛾

𝛼
−
𝑐

4𝛼
) − 𝜅
1
𝛽 − 𝛼𝛽 = 0. (29)

Similarly, putting 𝑋 = 𝑈, 𝑌 = 𝜙𝑈 in (8), we get (∇
𝑈
𝐴)𝜙𝑈 −

(∇
𝜙𝑈
𝐴)𝑈 = −(𝑐/2)𝜉, which, by use of (11) and Lemma 1,

implies that

− 𝜅
2

𝛽2

𝛼
− 3𝛽(

𝛾

𝛼
−
𝑐

4𝛼
) −

𝛽3

𝛼

+ (𝜙𝑈(
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)) = 0,

(30)

𝑈(
𝛾

𝛼
−
𝑐

4𝛼
) = 𝜅
3

𝛽2

𝛼
. (31)

We expand (30) and then replace the terms 𝜅
2
, (𝜙𝑈𝛽),

and (𝜙𝑈𝛼) from (26), (27), and (29), respectively. The final
equation is

(𝜙𝑈(
𝛾

𝛼
−
𝑐

4𝛼
)) =

3𝛽

𝛼
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
] . (32)

Lemma3. Let𝑀 be a real hypersurface of a complex projective
plane C𝑃2, satisfying (1). Then, 𝜅

3
= 0 holds inN.

Proof. Because of (14), (15), (28), (31), and Lemma 2, the well-
known relation [𝑈, 𝜙𝑈] = ∇

𝑈
𝜙𝑈 − ∇

𝜙𝑈
𝑈 takes the form

[𝑈, 𝜙𝑈] (
𝛾

𝛼
−
𝑐

4𝛼
) = −

𝜅
2
𝜅
3
𝛽2

𝛼

− 𝜅
3
𝛽(

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
)

−
3𝛽𝜅
3

𝛼
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
]

− 𝜅
3
𝛽(

𝛾

𝛼
−
𝑐

4𝛼
) .

(33)

On the other hand (27), (29), (31), and Lemma 2 yield

[𝑈, 𝜙𝑈] (
𝛾

𝛼
−
𝑐

4𝛼
)

= 𝑈(𝜙𝑈(
𝛾

𝛼
−
𝑐

4𝛼
)) − 𝜙𝑈(𝑈(

𝛾

𝛼
−
𝑐

4𝛼
))

=
3 (𝑈𝛽)

𝛼
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
]

−
3𝛽 (𝑈𝛼)

𝛼2
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
]

+
6𝜅
3
𝛽3

𝛼2
(
𝛾

𝛼
−
𝑐

4𝛼
) −

𝛽2

𝛼
(𝜙𝑈 (𝜅

3
))

+
2𝜅
3
𝛽

𝛼
(
𝛾

𝛼
−
𝑐

4𝛼
)(

𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
) −

2𝜅
3
𝛽𝛾

𝛼

−
𝜅
1
𝜅
3
𝛽3

𝛼2
−
𝜅
3
𝛽3

𝛼
−
3𝜅
3
𝛽3𝛾

𝛼3
+
3𝜅
3
𝑐𝛽3

4𝛼3
.

(34)

The last equations using (24), (25), and (28) yield

3

𝛼
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
] (𝜉𝛽) −

3𝛽

𝛼2
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
]

⋅ (𝜉𝛼) − 𝛽 (𝜙𝑈𝜅
3
) = [2𝑐 − 𝛽𝜅

2
+
𝛽2

𝛼
𝜅
1

− 8 (
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
5𝛽2

𝛼
(
𝛾

𝛼
−
𝑐

4𝛼
)] 𝜅
3
.

(35)

Following a similar way, we calculate [𝜉, 𝜙𝑈](𝛾/𝛼 −
𝑐/4𝛼) = (∇

𝜉
𝜙𝑈 − ∇

𝜙𝑈
𝜉)(𝛾/𝛼 − 𝑐/4𝛼) and then [𝜉, 𝜙𝑈](𝛾/𝛼 −

𝑐/4𝛼) = 𝜉(𝜙𝑈(𝛾/𝛼−𝑐/4𝛼))−𝜙𝑈(𝜉(𝛾/𝛼−𝑐/4𝛼)). By equalizing
the results we obtain

3

𝛼
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
] (𝜉𝛽)

−
3𝛽

𝛼2
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
] (𝜉𝛼) − 𝛽 (𝜙𝑈𝜅

3
)

= [𝛾 − (
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
6𝛽2

𝛼
(
𝛾

𝛼
−
𝑐

4𝛼
)] 𝜅
3
.

(36)

Comparing (35) with (36) and by making use of (26) we
obtain

𝜅
3
[(
𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
] = 0. (37)

Due to (32), we have 𝛾 ̸= 𝑐/4. So if we had 𝜅
3

̸= 0 in
neighborhood of point in N then (37) would imply (𝛾/𝛼 −
𝑐/4𝛼)2 = 𝑐/4. By differentiating the last relation with respect
to 𝜉, in combination with 𝛾 ̸= 𝑐/4 and (28), we would obtain
𝜅
3
= 0 which is a contradiction.
Therefore 𝜅

3
holds inN.
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4. Proof of Main Theorem

We first prove the following proposition.

Proposition 4. Let 𝑀 be a real hypersurface of a complex
projective plane C𝑃2 (𝑐 ̸= 0), satisfying (1) and (∇

𝜉
𝜉𝛼) = 0.

Then𝑀 is Hopf.

Proof. We keep working inN. By virtue of Lemma 3 and (11),
(28), and (31), we obtain [𝐴𝜉, 𝜉](𝛾/𝛼 − 𝑐/4𝛼) = 𝐴𝜉(𝜉(𝛾/𝛼 −
𝑐/4𝛼)) − 𝜉(𝐴𝜉(𝛾/𝛼 − 𝑐/4𝛼)) = 0. However, from Lemmas
1, 2, and 3 and (11) we calculate [𝐴𝜉, 𝜉](𝛾/𝛼 − 𝑐/4𝛼) =

(3𝛽/𝛼)(∇
𝐴𝜉
𝜉 − ∇
𝜉
𝐴𝜉)(𝛾/𝛼 − 𝑐/4𝛼) = (𝛾/𝛼 − 𝑐/4𝛼 + 𝛽2/𝛼 −

𝜅
1
)((𝛾/𝛼−𝑐/4𝛼)2−𝑐/4).The two expressions of [𝐴𝜉, 𝜉](𝛾/𝛼−

𝑐/4𝛼) yield

(
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
− 𝜅
1
)((

𝛾

𝛼
−
𝑐

4𝛼
)
2

−
𝑐

4
) = 0. (38)

Let us assume that there exists a point in N, such that
(𝛾/𝛼−𝑐/4𝛼)2 −𝑐/4 ̸= 0 in a neighborhood of this point.Then
(38) implies

𝜅
1
=
𝛾

𝛼
−
𝑐

4𝛼
+
𝛽2

𝛼
. (39)

Based on the definition of the vector field 𝑈 in Section 2,
condition (∇

𝜉
𝜉𝛼) = 0 is equivalent to 𝜙𝑈𝛼 = 0. The last

relation, (39), and (29) yield

𝛾 −
𝑐

4
=
𝛼2 + 𝛽2

2
. (40)

By virtue of (39) and (40) we simplify (27) and obtain

𝜙𝑈𝛽 =
3𝛽4

4𝛼2
+ 𝛽
2
+
𝛼2

4
+
𝑐

4
. (41)

We modify (32) by replacing the term 𝛾/𝛼 − 𝑐/4𝛼 from (40).
Then we make calculations with the aid of (41), (𝜙𝑈𝛼) = 0, to
obtain 𝛽2 + 𝛼2 = 2𝑐. The last equation is differentiated with
respect to 𝜙𝑈, giving (𝜙𝑈𝛽) = 0. As a result, (41) yields 𝑐 < 0
which is a contradiction and (𝛾/𝛼 − 𝑐/4𝛼)2 = 𝑐/4 holds inN.

Combining (𝜙𝑈𝛼) = 0 and (29) we acquire

𝜅
1
= 3 (

𝛾

𝛼
−
𝑐

4𝛼
) − 𝛼. (42)

The combination of (26) and (42) leads to

𝜅
2
𝛽 = 4

𝛽2

𝛼
(
𝛾

𝛼
−
𝑐

4𝛼
) − (𝛾 −

𝑐

4
) − 𝛽
2
. (43)

In addition, (27), (𝛾/𝛼 − 𝑐/4𝛼)2 = 𝑐/4, and (42) yield

(𝜙𝑈𝛽) = (
𝛾

𝛼
−
𝑐

4𝛼
)(

2𝛽2 + 𝛼2

𝛼
) . (44)

We estimate the vector field 𝑅(𝜙𝑈, 𝜉)𝑈 from (7) and
Lemma 1 as 𝑅(𝜙𝑈, 𝜉)𝑈 = 𝛽(𝛾/𝛼 − 𝑐/4𝛼)𝜙𝑈. The same vector

field is calculated from 𝑅(𝜙𝑈, 𝜉)𝑈 = ∇
𝜙𝑈
∇
𝜉
𝑈 − ∇

𝜉
∇
𝜙𝑈
𝑈 −

∇
[𝜙𝑈,𝜉]

𝑈, (42), (𝛾/𝛼 − 𝑐/4𝛼)2 = 𝑐/4, and (𝜙𝑈𝛼) = 0 :

𝑅(𝜙𝑈, 𝜉)𝑈 = −4𝛽(𝛾/𝛼 − 𝑐/4𝛼)𝜙𝑈 − 2(𝛾/𝛼 − 𝑐/4𝛼)𝜅
2
𝜙𝑈 +

𝛼𝜅
2
𝜙𝑈 + 𝛼𝛽. The two expressions of 𝑅(𝜙𝑈, 𝜉)𝑈 are equalized

and the outcome is modified as follows: first wemultiply with
𝛽, then we replace the term 𝜅

2
𝛽 from (43), and finally we

divide with 𝛾 − 𝑐/4. After these steps, we are led to

𝛽2

𝛼
− 8

𝛽2

𝛼2
(
𝛾

𝛼
−
𝑐

4𝛼
) + 2 (

𝛾

𝛼
−
𝑐

4𝛼
) − 𝛼 = 0. (45)

We differentiate the above relation and utilize (𝜙𝑈𝛽) ̸= 0
(otherwise (44) yields 𝑐 < 0which is a contradiction) in order
to get 𝛾/𝛼 − 𝑐/4𝛼 = 𝛼/8. The last two equations give 𝛼 = 0
which is a contradiction. Therefore we have a contradiction
inN; henceN = 0 and𝑀 is Hopf.

From Proposition 4 we have on𝑀

𝐴𝜉 = 𝛼𝜉, 𝛼 = 𝑔 (𝐴𝜉, 𝜉) (46)

and 𝛼 is a constant [5]. We consider 𝜙-basis {𝑒, 𝜙𝑒, 𝜉} which
satisfies

𝐴𝑒 = 𝜆
1
𝑒,

𝐴𝜙𝑒 = 𝜆
2
𝜙𝑒,

𝐴𝜉 = 𝛼𝜉.

(47)

From (7) and (47) we obtain

𝑙𝑒 =
𝑐

4
𝑒 + 𝛼𝜆

1
𝑒,

𝑙𝜙𝑒 =
𝑐

4
𝜙𝑒 + 𝛼𝜆

2
𝜙𝑒.

(48)

By making use of (1) with 𝑋 = 𝑒, in combination with (48),
we obtain

𝛼 (𝜆
1
− 𝜆
2
) = 0. (49)

If 𝛼 ̸= 0 then 𝜆
1
= 𝜆
2
= 𝜆 and 𝜆 is the root of the quadratic

𝑡2−𝛼𝑡−𝑐/4 [5] and consequently a constant.The classification
follows from [3]. Since 𝑀 is of type 𝐴 then (due to [5]) 𝑀
satisfies 𝜙𝐴 = 𝐴𝜙. The last condition and (1) and (15) lead
to 𝜓(𝑋)𝑙𝑋 = 0, ∀𝑋 ∈ D, which is combined with 𝑙𝜉 = 0,
resulting in 𝜓(𝑋)𝑙𝑋 = 0, ∀𝑋 ∈ 𝑇

𝑝
𝑀 = 0.

Competing Interests

The author declares that there are no competing interests.

References

[1] R. Takagi, “On homogeneous real hypersurfaces in a complex
projective space,” Osaka Journal of Mathematics, vol. 10, pp.
495–506, 1973.

[2] R. Takagi, “Real hypersurfaces in a complex projective space
with constant principal curvatures,” Journal of theMathematical
Society of Japan, vol. 27, pp. 43–53, 1975.



6 International Journal of Mathematics and Mathematical Sciences

[3] M. Kimura, “Real hypersurfaces and complex submanifolds
in complex projective space,” Transactions of the American
Mathematical Society, vol. 296, no. 1, pp. 137–149, 1986.

[4] J. Berndt, “Real hypersurfaces with constant principal curva-
tures in complex hyperbolic space,” Journal für die Reine und
Angewandte Mathematik, vol. 395, pp. 132–141, 1989.

[5] R. Niebergall and P. J. Ryan, Real Hypersurfaces in Complex
Space Forms, vol. 32 ofMathematical Sciences Research Institute
Publications, Cambridge University Press, Cambridge, UK,
1997.

[6] J. T. Cho and U.-H. Ki, “Real hypersurfaces in complex space
forms with Reeb flow symmetric structure Jacobi operator,”The
Canadian Mathematical Bulletin, vol. 51, no. 3, pp. 359–371,
2008.

[7] T. A. Ivey and P. J. Ryan, “The structure Jacobi operator for real
hypersurfaces inCP2 andC𝐻2,”Results inMathematics, vol. 56,
pp. 473–488, 2009.

[8] U.-H. Ki, J. D. Dios Perez, F. G. Santos, and Y. J. Suh, “Real
hypersurfaces in complex space forms with 𝜀-parallel Ricci
tensor and structure Jacobi operator,” Journal of the Korean
Mathematical Society, vol. 44, no. 2, pp. 307–326, 2007.

[9] Th. Theofanidis, “Real hypersurfaces with pseudo-D-parallel
structure Jacobi operator in complex hyperbolic spaces,” Col-
loquium Mathematicum, vol. 134, no. 1, pp. 93–112, 2014.

[10] J. T. Cho andU.-H. Ki, “Real hypersurfaces of a complex projec-
tive space in terms of the Jacobi operators,” Acta Mathematica
Hungarica, vol. 80, no. 1-2, pp. 155–167, 1998.

[11] H. Ki, “The Ricci tensor and the structure Jacobi operator of
real hypersurfaces in complex space forms,” in Proceedings of
the 9th InternationalWorkshop onDifferential Geometry, pp. 85–
96, Kyungpook National University, Taegu, Republic of Korea,
2005.

[12] U.-H. Ki, S. J. Kim, and S.-B. Lee, “The structure Jacobi operator
on real hypersurfaces in a nonflat complex space form,” Bulletin
of the Korean Mathematical Society, vol. 42, no. 2, pp. 337–358,
2005.

[13] U.-H. Ki, A.-A. Lee, and S.-B. Lee, “On real hypersurfaces of a
complex space form in terms of Jacobi operators,” Communica-
tions of the Korean Mathematical Society, vol. 13, no. 2, pp. 317–
336, 1998.

[14] U.-H. Ki, S. Nagai, and R. Takagi, “Real hypersurfaces in
non-flat complex space forms concerned with the structure
Jacobi operator and Ricci tensor,” in Topics in Almost Hermitian
Geometry and Related Fields, pp. 140–156, World Scientific,
Hackensack, NJ, USA, 2005.

[15] T.Theofanidis and Ph. J. Xenos, “Real hypersurfaces of non-flat
complex space forms in terms of the Jacobi structure operator,”
Publicationes Mathematicae Debrecen, vol. 87, no. 1-2, pp. 175–
189, 2015.

[16] T. E. Cecil and P. J. Ryan, “Focal sets and real hypersurfaces
in complex projective space,” Transactions of the American
Mathematical Society, vol. 269, no. 2, pp. 481–499, 1982.

[17] D. E. Blair, Riemannian Geometry of Contact and Symplectic
Manifolds, vol. 203 ofProgress inMathematics, Birkhäuser, 2002.
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