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The prevalence of global positioning system (GPS) equipped in vehicular networks exposes users’ location information to the
location-based services. We argue that such data contains rich informative cues on drivers’ private behaviors and preferences,
which will lead to the location privacy attacks. In this paper, we proposed a sophisticated prediction model to predict driver’s
next location by using a k-order Markov chain-based third-rank tensor representing the partially observed transfer information of
vehicles. Then Bayesian Personalized Ranking (BPR) is used to learn the unobserved transitions within the tensor for transition
predication. Experimental results manifest the efficacy of the proposed model in terms of location predication accuracy, compared
with several state-of-the-art predication methods. We also point out that the precision achieved by such advanced predication
model is restricted to the order of the Markov chain 𝑘. Accordingly, we propose a schema to decrease the risks of such attacks
by preventing the conformation of higher order Markov chain. Experimental results obtained based on the real-world vehicular
network data demonstrated the effectiveness of our proposed schema.

1. Introduction

With the prevalence of global positioning system (GPS)
and vehicular networks, the usage of smart phones and
in-car navigation systems plays an increasingly important
role in our daily lives. While enjoying the convenience
brought by various location-based services (LBSs), such as
mapping, route finding, and automotive traffic monitoring,
people inevitably release their physical location information
for public access. Unfortunately, such disclosure of location
information consequently induces serious privacy issues [1–
3]. For example, some social networks users need to report
their sequential locations to a service provider in a periodic
or on-demand manner to obtain its desired location-based
services, for example, advertising and restaurant recom-
mendation, while the disclosed personal location data may
be used for location privacy attacks by adversaries. Thus,
location privacy protection in LBSs has attracted a lot of
research attention from both industry and academia. The
location privacy concern does appear not only in mobile
social networks, but also in vehicular networks. Essentially,

vehicular networks are similar to mobile social networks
in terms of mobility, connectivity, and ubiquity. Vehicles
are equipped with wireless sensor devices and modeled as
moving nodes, forming networks for vehicle to vehicle (V2V)
and vehicle to infrastructure (V2I) [4]. Signals captured
from these moving nodes can then be used to detect road
conditions such as traffic flow and traffic signals [5]. The
vehicular networks are expected to play critical roles in our
daily life such as road infrastructure monitoring, driving risk
detection, and passenger communication.

However, adversaries can also use the location informa-
tion to estimate users’ private information such as social
ties [6] or personal activities [7]. It is more dangerous if
adversaries use such inference to carry out physical loca-
tion attacks. Privacy preservation is an important compo-
nent of customer-centric pervasive services. Without the
guarantee of privacy protection, users would be hesitant
to use LBSs which continuously monitor their locations
[3]. Several research studies have been proposed to protect
location privacy from being disclosed through inference-
based approaches, such as K-anonymity [8], pseudonyms and
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mix-zones [9], and path confusion [10]. These approaches
anonymize accurate information of users and make them
indistinguishable among the neighboring users. While
strengthening users’ privacy, these methods in turn weaken
the functionality of the service by updating the inaccurate
spatial information or information with the high latency on
purpose [11].

Another potential privacy threat is that the current loca-
tion information of users can be inferred from the historical
data even though they are not directly disclosed. Wu et al.
have demonstrated that there is a strong spatiotemporal reg-
ularity with vehicle mobility through a conditional entropy
analysis [12], which indicates that the ability of prediction of
future locations must be considered when we cope with the
location privacy attacks. We can imagine that the adversary
could ambush a vehicle by using the location prediction
method to infer the possible future locations. In this paper,
we will focus on preventing those potential attacks from a
perspective of location prediction. A common scenario is that
the adversary can predict user’s next location at time t using
location prediction models for privacy attacks. Our objective
is then to propose a schema to prevent the vehicles from such
privacy attacks.

In the literature, there exist a lot of works related to
location predication. In [13], the authors proposed to use GPS
traces to infer themode of a personal transportation and then
to predict their routes based on people’s historical trajectory
data. Other works include determining which road a driver
is on in spite of the noisy GPS data [14] and predicting the
destination of a trip [15]. In [16], the author also pointed
out a lot of personal information can be inferred from their
long-term location history, for example, age, work role, work
group, work frequency, coffee drinker, smoker, work room,
and which train station they favored. However there are few
works addressing the location predication problem from a
perspective of privacy protection. In fact, the report from
US Department of Justice had revealed that approximately
26,000 persons are victims of GPS stalking annually [17].
All the aforementioned could provide the opportunities for
adversaries to launch a location-based attack, as shown in
Figure 1. Assuming that adversaries can predict the target
vehicle’s future location based on the effective prediction
approach, the adversaries then can be well prepared near the
predicted location to ambush the coming target.

Under the aforementioned scenarios, we argue that the
location privacy problem in vehicular networks is a pre-
diction related problem. Some research on location privacy
attacks is proposed on top of a Markov chain (MC) model
[18, 19], which has demonstrated their effectiveness on
the prediction results. In this paper, we proposed a more
sophisticated predication model, that is, a k-order Markov
chain-based tensor model, to predict the future locations
of vehicles. The successive locations can be obtained by
using a Bayesian Personalized Ranking (BPR) approach.
Our experimental results show that the predication accuracy
achieved by our proposed approach is much higher than that
of the conventional approach. This indicates that a carefully
designed learning approach can successfully discover the
partially observed transitions between a number of successive
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Figure 1: An example of location attack.

next locations and the missing transitions. Then, we analyze
how the order of 𝑘 can affect the prediction accuracy of MC-
based model. At last, we propose a schema by setting up a
reasonable time slot to prevent vehicles from conforming the
higher orderMarkov chain to lower the predication accuracy;
thus the vehicle is protected from the risk of location attacks.

The key contributions of this work can be summarized as
follows:

(i) We proposed a sophisticated location prediction
model which will be referred to as k-order FPMC in
this paper.

(ii) We analyzed the key factors of the proposed predic-
tion model to the prediction accuracy and pointed
out that the location privacy problem in vehicular
networks is restricted to the order k of Markov chain
and proposed a strategy to protect the privacy leaking
from such predication model.

(iii) We evaluated the proposed approach using the real-
world traffic trace data. Experimental results obtained
manifest the efficacy of our proposed approach.

The rest of the paper is organized as follows. Section 2
reviews the related works on location privacy and location
prediction. The system model and the adversarial model
adopted in this paper are introduced in Section 3.We propose
a novel approach for mining vehicles’ trajectory as well as
the strategies against privacy attack in Sections 4 and 5,
respectively. Section 6 presents the experimental results and
we conclude the paper in Section 7.

2. Related Works

In this section, we briefly review the existing literatures with
a focus on recent developments in location prediction and
location privacy protection, respectively.

For location prediction, Krumm [20] proposed to predict
drivers’ turn proportions at road intersections at a fine-
grained level. The idea is to choose the higher likelihood
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on a turn that links more destinations. Veloso et al. [21]
proposed to utilize aNaive Bayesmodel to predict the relation
between pick-up and drop-off locations, and their work also
explored the possibility to predict area type of the next
pick-up location, given the features of drop-off location, for
example, time and day, weather condition, and area type
of current drop-off location. Ziebart et al. [22] proposed to
model observed behaviors by learning context-aware action
utilities for turn prediction, route prediction, and destination
prediction.Wu et al. [12] proposed to develop an efficient data
delivery by predicting vehicle trajectories via multiple order
Markov chain. Qin et al. [23] studied the mobile advertising
problem in vehicular network and proposed to adoptMarkov
chain to capture the patterned vehicular centrality and to
infer the future traffic flow. Chen et al. [24] analyzed the
predictability of taxi mobility via a Markov predictor.

All the aforementioned work built up their predication
model on top of Markov chain to facilitate the trajectory
prediction,which failed to solve prediction problemwith cold
start issue, as the conventional Markov chain model cannot
work on things never happened before. In ourmodel, we take
the preference between locations into consideration; thus we
can acquire an average preference from other users between
two locations that the user never leaves a footprint.

For the issue of location privacy, the related attacks have
been studied in the literature. Location prediction attacks
proposed by Minami and Borisov [18] studied an issue of
inference attacks on the GPS traces. The analysis revealed
that if there is an adversary who could access to a mobile
user’s previous location data, a Markovmodel-based location
predictor could be adopted to assist the next location attack.

Shokri et al. [19] formalized a sporadic location-based
application and found that an adversary who knows person-
alized transitionmatrices of the users could deanonymize and
deobfuscate traces with higher accuracy than an adversary
who only knows each user’s prior probabilities on locations.
De Mulder et al. [25] demonstrated that it is possible to
build up the profiles of users’ movements based on the GSM
location data, which lead to identify the users in a subsequent
period with great accuracy (about 80% of the time). The
location profile model used is a simple first-order Markov
chain. Gambs et al. [26] designed the novel distances to
quantify the similarity between two MMCs and described
how these metrics can be combined to build deanonymizers.
These three methods also usedMarkov chain to carry out the
prediction, also met the problem we mentioned before, and
will be compared with our proposed approach at the section
of experiments.

The deanonymization attack is very accurate with a
success rate of up to 45% on the Geolife dataset [27]. It
reminds us that the anonymizers can be deanonymized by a
specific method; therefore it is necessary to lower the attack
success rate after the adversary knowswho you are.While our
proposed method allows the adversary to know who you are,
it is hard for the adversary to determine where you are going.

There are also some works that focused on the defenses
by providing only partial data about the users’ locations and
identities [11]. K-anonymity [8] provides a form of plausible
deniability by ensuring that the user cannot be individually
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Figure 2: System model.

identified from a group of k users. This can be achieved in
vehicular networks by setting a large k-anonymous region
which included k users, instead of just reporting a single GPS
location.

Pseudonyms and mix-zones [9] provide a certain degree
of anonymity to the individual user. When the users enter a
mix-zone, they change a new, unused pseudonym. In addi-
tion, they do not send their location information to any loca-
tion-based application when they are in the mix-zone. Mix-
zones also impose the limits on the frequent updating, that is,
the exposure of the pattern of closely spaced queries, allowing
one to easily follow the user. Path confusion [10] avoids
linking consecutive location samples to individual vehicles
through target tracking algorithms with high certainty. The
main impediment to the use of path confusion is the process-
ing delay; one must wait until users’ paths have intersected
before revealing those locations to a location-based service.

In this paper, we propose a sophisticated model to reveal
that the location privacy could be obtained by the prediction
model with high success rate. The experimental results and
the analysis over the real vehicle GPS traces data collected
in a mega city, Shanghai, China, suggest that we need to use
an obfuscation approach instead of anonymization method,
by hiding previous location to avoid releasing consecutive
information to protect the user’s location privacy from such
advanced prediction model.

3. Models and Goals

We define the system model, the adversarial model, and the
security goal in this section.Our systemmodel consists of two
components, that is, vehicles and base station, which is shown
in Figure 2. Basically, the vehicles distribute their trajectory
information to the base station constantly.

3.1. Adversarial Model. We also consider two kinds of
adversarial models in the proposed system. One is outside
adversary model, and another one is inside adversary. From
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the point of outside attacker, he can listen, insert, delete,
and modify the communication message between the base
station and vehicles in the system.This threat can be avoided
by adopting conventional entity identity authentication and
key exchange protocols [28], such as SSL [29] and TLS [30].
More serious threats are posed from inside attackers. For
instance, a database administrator in the base station might
sell customers’ historical location information to certain data
analytics companies, in order to have financial income. Since
this attacker could access customers’ sensitive information
directly, the conventional privacy preservation approaches
are therefore challenged a lot.

3.2. Goals. There are two goals in this system, that is, the
security goal and the prediction goal.

In this paper, the prediction goal is simply measured by
the prediction accuracy. And the security goal is defined as
follows.

Definition 1. The vehicular location achieves (𝑝, 𝑡) location
privacy, if the successful prediction rate is less than 𝑝 in time𝑡.

In Section 4, we present the details of our proposed
predication model.

4. Tensor-Based Location
Prediction Framework

In this section, we present our location prediction framework
in great detail. We first describe the temporal characteristics
of the trajectory and the motivation of adopting tensor to
represent the trace data characterizing the temporal relations
of data in Section 4.1. We then propose to adopt a tensor
factorization approach towards recovering the missing data
in Section 4.2. Finally, we describe the learning process of the
prediction model by using BPR criteria in Section 4.3.

Here we introduce notations used throughout this paper.
Let 𝑉 = {V1, V2, . . . , V|𝑉|} denote a set of vehicles. As taxies
are randomly distributed in the city running along the roads
and are constrained by road conditions, we thus denote
trajectories of taxies by using the successive crossroads they
have passed. Let 𝐿𝑉 = {1, 2, . . . , 𝑛} denote a set of crossroads,
where each cross is geocoded by {longitude, latitude}, and 𝑛 is
the total number of crossroads. For each taxi V, the historical
trajectory is denoted as 𝐿V fl {𝐿V1, 𝐿V2, . . . , 𝐿V𝑡−1} with 𝐿V𝑡 ⊆ 𝐿V,
and 𝑡 is the time slots, and 𝐿 fl {𝐿V1 , 𝐿V2 , . . . , 𝐿V|𝑉|} denotes
the trajectories over the entire set of vehicles. And each road
segment is labeled by its adjacent crosses.

4.1. High Order MC Representation via Tensor. In this sec-
tion, we describe the details of the construction of third-
rank tensor, each item of which represents the approximate
probability of transferring from a specified combination of
intersections (locations) to another intersection (location) for
a particular vehicle.

An𝑚 order Markov chain is defined as
Pr (𝑋𝑡 = 𝑥 | 𝑋𝑡−1 = 𝑥𝑡−1, 𝑋𝑡−2 = 𝑥𝑡−2, . . . , 𝑋𝑡−𝑛
= 𝑥𝑡−𝑛) , (1)

where 𝑋𝑡−1, . . . , 𝑋𝑡−𝑛 is a sequence of random variables and𝑥𝑡−𝑛 is their realizations. Markov chain models sequential
behaviors by learning a transition graph over items, and
thus Markov chain can be directly adapted to predict the
future locations based on one’s recent trajectory data. Our
proposed model is to predict the next personalized location
via the ranking of probabilities that a vehicle V will move
from its current location to the next location. In vehicular
networks, network topology changed rapidly and our target
is to investigate the main factors affecting the prediction
accuracy. Unfortunately, the first-order Markov chain is
unable to capture the rapid changing features in this scenario.
Consequently, we extend the low order Markov chain to a
high order version. Assuming that the order of Markov chain
is set to 3, we will predict the next location of taxi V according
to its three previous locations.The transition probability from
current location to next location can be written as

𝑝 (𝐿 𝑡+1 = 𝑙𝑡+1 | 𝐿 𝑡 = 𝑙𝑡, 𝐿 𝑡−1 = 𝑙𝑡−1, 𝐿 𝑡−2 = 𝑙𝑡−2) , (2)

where 𝑙𝑡+1 is the next location of taxi V, 𝑙𝑡 is the current
location of V at time 𝑡, and 𝑙𝑡−1, 𝑙𝑡−2 are the previous location
of V at time 𝑡−1 and 𝑡−2, respectively. Let𝐶 denote the set of
current locations 𝑐 and 𝑐 = {𝐿 𝑡−1 = 𝑙𝑡−1, 𝐿 𝑡−2 = 𝑙𝑡−2, 𝐿 𝑡−3 =𝑙𝑡−3}. The probability of next location can be deduced from
the current location as 𝑝(𝐿V|𝐶V). And we define each item of
the 3-order tensor is the transition probability between two
adjacent crosses denoted as 𝑥V,𝑐,𝑙 and 𝑥V,𝑐,𝑙 = 𝑝(𝑙V|𝑐V). Then,
each vehicle is associated with a specific transition matrix 𝜒V,
and a transition tensor is yielded from all the vehicles. More
specifically, 𝑆 ⊆ 𝑉 × 𝐶 × 𝐿 in our paper is used to represent
the transitions for each taxi V, where 𝐶 and 𝐿 denote the set
of the previous locations and next locations, respectively.𝜒V,𝑐,𝑙
represents the observed transitions of V from 𝑐 to location 𝑙.

Given the location set𝐿V,𝑥V,𝑐,𝑙 can be estimated as follows:

𝑥V,𝑐,𝑙 = 𝑝 (𝑙 ∈ 𝐿V | 𝑐 ∈ 𝐶V) = 𝑝 (𝑙 ∈ 𝐿V ∧ 𝑐 ∈ 𝐶V)𝑝 (𝑐 ∈ 𝐶V)
= 𝑝 (𝑙𝑡+1 ∈ 𝐿V𝑡+1 ∧ 𝑙𝑡 ∈ 𝐿V𝑡 ∧ 𝑙𝑡−1 ∈ 𝐿V𝑡−1 ∧ 𝑙𝑡−2 ∈ 𝐿V𝑡−2)𝑝 (𝑙𝑡 ∈ 𝐿V𝑡 ∧ 𝑙𝑡−1 ∈ 𝐿V𝑡−1 ∧ 𝑙𝑡−2 ∈ 𝐿V𝑡−2)
= 󵄨󵄨󵄨󵄨{(𝐿V) : 𝑙𝑡+1 ∧ 𝑙𝑡 ∧ 𝑙𝑡−1 ∧ 𝑙𝑡−2}󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{(𝐿V) : 𝑙𝑡 ∧ 𝑙𝑡−1 ∧ 𝑙𝑡−2}󵄨󵄨󵄨󵄨 .

(3)

Figure 3(b) illustrates the location transitions for a partic-
ular vehicle. Figure 3(a) plots a snapshot of the road network
which contains seven intersections and there is a taxi V
passing by the location 𝐶 at time 𝑡. Assuming the order of
Markov chain is set to 3, we need to consider 3 previous
locations in our model and construct the transition matrix
between the combinations of three locations and the next
location. Considering the entire set of the locations, there will
be way too many such combinations. In fact, the number of
the combinations of road intersections is constrained by the
layout of the road network. Thus, in this paper we only take
the practical combinations into consideration. The values of
matrix items shown in Figure 3(b) are obtained according to
the number of occurrence of the transitions from a particular
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Figure 3: AThird-rank transition tensor construction.

combination of intersections to a location in the observed
historical data of a vehicle. “?” denotes the missing value or
the unobserved data. It is natural to extend the transition
probability matrix to be a third-rank tensor by incorporating
the personalization dimension as shown in Figure 3(c).Then,
our objective is to infer the proper tensor model from the
observed transitions to estimate the transition preference for
those unobserved transition pairs.

4.2. A Pairwise Interaction-Based Tensor Factorization. In
this section, we demonstrate the details of our adapted pair-
wise interaction-based tensor factorization towards inferring
the unobserved data within the previously constructed ten-
sor.

As aforementioned, the transition tensor is only partially
observed. Similar to the conventional matrix factorization
approach which infers the missing data via factorized latent
features, here we adopt the low-rank factorization model
to fill in missing values. The matrix factorization methods,
for example, nonnegative matrix factorization (NMF) and
singular value decomposition (SVD), have been successfully
applied to many applications such as image processing, link

prediction, and rating prediction. For the tensor factoriza-
tion, tucker decomposition (TD) and canonical decomposi-
tion (CD) are the two popular techniques which have been
successfully used for tag recommendation. In this paper, we
adopt a special case of canonical decomposition proposed in
[31] which is called the pairwise interaction tensor factoriza-
tion model (PITF).

With the PITF model, we can easily model the pairwise
interactions among all three components of the third-rank
tensor (i.e., vehicle 𝑉, Markov chain 𝐶, and next location 𝐿),
written as

𝑥̂V,𝑐,𝑙 = ∑
𝑓

V̂𝐿V,𝑓 ⋅ 𝑙̂𝑉𝑙,𝑓 +∑
𝑓

𝑐̂𝐿𝑐,𝑓 ⋅ 𝑙̂𝐶𝑙,𝑓 +∑
𝑓

V̂𝐶V,𝑓 ⋅ 𝑐̂𝑉𝑐,𝑓, (4)

where V̂𝐿V,𝑓 and 𝑙̂𝑉𝑙,𝑓 represent the𝑓th latent feature for vehicle V
and next location 𝑙, respectively. In (4), a tensor𝜒 is factorized
into three pairwise interaction matrix models. Note that the
pairwise interaction between vehicle and its 3-order history
trajectory is not related to the prediction of next location, and
thus we remove the term of V̂𝐶V,𝑓 ⋅ 𝑐̂𝑉𝑐,𝑓 as it is independent of 𝑙
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as shown in [32]. Accordingly, (4) can be rewritten in a more
compact form as follows:

𝑥̂V,𝑐,𝑙 = ∑
𝑓

V̂𝐿V,𝑓 ⋅ 𝑙̂𝑉𝑙,𝑓 +∑
𝑓

𝑐̂𝐿𝑐,𝑓 ⋅ 𝑙̂𝐶𝑙,𝑓. (5)

The parameter set is given as

𝑉̂ ⊆ R
|𝑉|×𝐹,

𝐶̂ ⊆ R
|𝐶|×𝐹,

𝐿̂𝑉 ⊆ R
|𝐿|×𝐹,

𝐿̂𝐶 ⊆ R
|𝐿|×𝐹,

(6)

where 𝐹 is the dimension of the latent feature space. And
hereafter we use Θ to represent the parameter set {𝑉, 𝐶, 𝐿𝑉,𝐿𝐶}.
4.3. BPR Learning Criterion. In this section, we detail the
learning process of the unobserved data of tensor by using
BPR criteria and the stochastic gradient descent algorithm
collaboratively.

The objective of location prediction is in fact to select
the most likely arrived location among all the locations. An
alternative way is to derive a proper ranking >V,𝑡 of the pos-
sibility over the candidate locations. We adopt the sequential
Bayesian Personalized Ranking (S-BPR) optimization crite-
rion [33] here. S-BPR regards the rating prediction problem
as a ranking problem and assumes every two locations have a
sequential relation 𝑙𝑖>V,𝑡𝑙𝑗, written as

𝑙𝑖>V,𝑡𝑙𝑗 : ⇐̂⇒𝑥̂V,𝑡,𝑙𝑖 > 𝑥̂V,𝑡,𝑙𝑗 . (7)

Equation (7) indicates that given the current Markov chain𝑐, if V has visited location 𝑙𝑖 more frequently than location𝑙𝑗, the probability that V visits 𝑙𝑖 via 𝑐 is bigger than that
of visiting 𝑙𝑗. However, the conventional implicit feedback-
based learning approach BPR can only infer that vehicle V
prefers 𝑙𝑖 compared to 𝑙𝑗 without knowing the scale of the
preference. For example, although we know that V prefers 𝑙𝑖
to 𝑙𝑧, we cannot tell how much is the difference between 𝑙𝑗
and 𝑙𝑧. We can only drive the preference pair 𝑙𝑖>V,𝑡𝑙𝑗, 𝑙𝑖>V,𝑡𝑙𝑧.
To address such issue, we incorporate BPRwith confidence as
proposed in [34, 35] to model the difference and return each
feedbackwith a confidenceweight.The frequency of traveling
between locations was adopted to build the preference pairs.
For instance, given 𝑐, the vehicle V has been to the location 𝑙𝑖
twice and turns to 𝑙𝑗 once.We could conclude that the vehicle
prefers to go to 𝑙𝑖 rather than to 𝑙𝑗. Consequently, if we know
this vehicle has never turned to location 𝑙𝑧, we are intuitively
more confident to generate the pair of 𝑙𝑖>V,𝑡𝑙𝑧.

We propose a confidence score 𝐶⟨V,𝑖,𝑗⟩ to measure to what
extent V prefers location 𝑙𝑖 to location 𝑙𝑗 which is given as

𝐶⟨V,𝑖,𝑗⟩ = 1 − 𝑇𝑖 − 𝑇𝑗𝑇𝑖 + 𝑇𝑗 , (8)

where 𝑇𝑖 and 𝑇𝑗 are the frequency of the vehicle traveling
along the given 𝑐 to locations 𝑙𝑖 and 𝑙𝑗, respectively.

Then, the optimal ranking 𝑙𝑖>V,𝑡𝑙𝑗 can be addressed by
maximizing the following posterior probability:

argmax
Θ

𝑝 (Θ | 𝑙̂V,𝑐,𝑙𝑖 > 𝑠̂V,𝑐,𝑙𝑗)
∝ argmax

Θ

(̂𝑙V,𝑐,𝑙𝑖Θ > 𝑙̂V,𝑐,𝑙𝑗) 𝑝 (Θ) .
(9)

By assuming all the vehicles are independent of each other,𝑝(Θ) is a normal distribution with zero mean and a variance-
covariance matrix 𝜆Θ𝐼, that is, 𝑝(Θ) ∼ 𝑁(0, 𝜆Θ𝐼). Mean-
while, we adopt the logistic sigmoid 𝜎(𝑥) fl 1/(1 + 𝑒−𝑥) to
approximate the likelihood of vehicle’s preference over 𝑙𝑖 and𝑙𝑗 and utilize 𝐶⟨V,𝑖,𝑗⟩ to measure the confidence

𝑝 (̂𝑙V,𝑐,𝑙𝑖Θ > 𝑙̂V,𝑐,𝑙𝑗)
= 𝜎 (̂𝑙V,𝑐,𝑙𝑖 − 𝑙̂V,𝑐,𝑙𝑗) = 1

1 + 𝑒−𝐶⟨V,𝑖,𝑗⟩ (̂𝑙V,𝑐,𝑙𝑖 −̂𝑙V,𝑐,𝑙𝑗 ) .
(10)

Furthermore, the alternating maximum a posteriori estima-
tion in logarithmic scale is calculated as follows:

argmax
Θ

∏
(V,𝑐,𝑙)⊂𝑉×𝐶×𝐿

𝜎 (̂𝑙V,𝑐,𝑙𝑖 − 𝑙̂V,c,𝑙𝑗) 𝑝 (Θ)

= argmax
Θ

ln( ∏
(V,𝑐,𝑙)⊂𝑉×𝐶×𝐿

𝜎 (̂𝑙V,𝑐,𝑙𝑖 − 𝑙̂V,𝑐,𝑙𝑗) 𝑝 (Θ))
= argmax
Θ

∑
(V,𝑐,𝑙)⊂𝑉×𝐶×𝐿

ln𝜎 (̂𝑙V,𝑐,𝑙𝑖 − 𝑙̂V,𝑐,𝑙𝑗)
− 𝜆Θ ‖Θ‖2𝐹 .

(11)

Then, the stochastic gradient descent algorithm is used to
optimize the above objective function. Once the parameter
set Θ = {𝑉, 𝐶, 𝐿𝑉, 𝐿𝐶} is acquired, the third-rank tensor of
transition preference over locations can be recovered. The
probability of different next location for each vehicle can then
be obtained.The complete process of our proposed prediction
model is detailed in Algorithm 1.

5. Security Analysis

In this section, we present the prediction accuracy, the
security analysis, and their relation.

5.1. A Discussion of Predication Accuracy. Here, we discuss
the way of lowering the prediction accuracy andmake itmore
difficult for the adversary to grasp vehicle’s movement and
launch an attack.

Given the obtained next location prediction list 𝑁 for a
target taxi V∗, we first analyze the factors of affecting predict
accuracy. As shown in Figure 4, there is a vehicle at location𝐴. If we only know its current location, there will be four
choices to predict. The next location is to be predicted based
on the vehicle’s current location, which can be formalized
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(1) Input:Data D(2) for V ⊂ 𝑉, 𝑙 ⊂ 𝐿 do(3) 𝐶 ← 𝑘-order Markov chain (𝐿)(4) end for

(5) draw ̂⃗𝑉, ̂⃗𝐶, ̂⃗𝐿𝑉, ̂⃗𝐿𝐶 fromN(0, 𝜆Θ𝐼)(6) repeat(7) draw (V, 𝑐, 𝑖, 𝑗) form𝐷(8) 𝑇𝑖 ← frequency from c to location i(9) 𝑇𝑗 ← frequency from c to location j(10) if 𝑇𝑖 < 𝑇𝑗 then(11) swap 𝑙𝑖 with 𝑙𝑗(12) end if(13) 𝐶⟨V,𝑖,𝑗⟩ = 1 − (𝑇𝑖 − 𝑇𝑗)/(𝑇𝑖 + 𝑇𝑗)
(14) 𝑙̂V,𝑐,𝑙𝑖 ,𝑙𝑗 ← 𝑙̂V,𝑐,𝑙𝑖 − 𝑙̂V,𝑐,𝑙𝑗
(15) 𝛿 ← (1 − 𝜎(𝐶⟨V,𝑖,𝑗⟩̂𝑙V,𝑐,𝑙𝑖 ,𝑙𝑗 ))
(16) for 𝑓 = 1 to 𝑘 do
(17) V̂𝐿V,𝑓 ← V̂𝐿V,𝑓 + 𝛼(𝐶⟨V,𝑖,𝑗⟩𝛿(̂𝑙𝑉𝑙𝑖 ,𝑓 − 𝑙̂𝑉𝑙𝑗 ,𝑓) − 𝜆𝜃V̂𝐿V,𝑓)
(18) 𝑐̂𝐿𝑐,𝑓 ← 𝑐̂𝐿𝑐,𝑓 + 𝛼(𝐶⟨V,𝑖,𝑗⟩𝛿(̂𝑙𝐶𝑙𝑖 ,𝑓 − 𝑙̂𝐶𝑙𝑗 ,𝑓) − 𝜆𝜃𝑐̂𝐿𝑐,𝑓)
(19) 𝑙̂𝑉𝑙𝑖 ,𝑓 ← 𝑙̂𝑉𝑙𝑖 ,𝑓 + 𝛼(𝐶⟨V,𝑖,𝑗⟩𝛿V̂𝐿V,𝑓 − 𝜆𝜃 𝑙̂𝑉𝑙𝑖 ,𝑓)
(20) 𝑙̂𝑉𝑙𝑗 ,𝑓 ← 𝑙̂𝑉𝑙𝑗 ,𝑓 + 𝛼(−𝐶⟨V,𝑖,𝑗⟩𝛿V̂𝐿V,𝑓 − 𝜆𝜃 𝑙̂𝑉𝑙𝑗 ,𝑓)
(21) 𝑙̂𝐶𝑙𝑖 ,𝑓 ← 𝑙̂𝐶𝑙𝑖 ,𝑓 + 𝛼(𝐶⟨V,𝑖,𝑗⟩𝛿𝑐̂𝐿𝑐,𝑓 − 𝜆𝜃 𝑙̂𝐶𝑙𝑖 ,𝑓)
(22) 𝑙̂𝐶𝑙𝑗 ,𝑓 ← 𝑙̂𝐶𝑙𝑗 ,𝑓 + 𝛼(−𝐶⟨V,𝑖,𝑗⟩𝛿𝑐̂𝐿𝑐,𝑓 − 𝜆𝜃 𝑙̂𝐶𝑙𝑗 ,𝑓)
(23) end for

(24) until convergenceOutput: ̂⃗𝑉, ̂⃗𝐶, ̂⃗𝐿𝑉, ̂⃗𝐿𝐶

Algorithm 1: Our proposed tensor-based prediction model.

A B

C D

Figure 4: A snapshot to illustrate how road structure affects the
prediction accuracy.

using the 1-order Markov chain. However, if we know that
this vehicle came from location 𝐵, then it infers that we are
less likely to come back to 𝐵. With the sequence (𝐵, 𝐴), we
can find out the next location is most likely to appear in
the next three locations, which can be formalized using the
2-order Markov chain. Furthermore, if we extend the case
to the 3-order chain, knowing this vehicle previous driving
sequence is (𝐷, 𝐵, 𝐴), then the probability that it comes back
to location 𝐵 based on the 2-order Markov chain will be

further lowered. And the vehicle has less chance to go to
location 𝐶 as going to C will make a detour. In general, we
argue that the prediction accuracy is affected by the order
of Markov chain. Protecting location privacy means to lower
the prediction accuracy for the adversary. So we propose
a strategy to prevent the adversary from acquiring the
consecutive location information to form high order Markov
chain. As the vehicle’s average speed and average length
between two consecutive intersections can be speculated in
the city, thus a time slot inwhich one cannot query the vehicle
about the location information can be deducted.

5.2. Security Analysis for Goals. The security of k-order
FPMC strategy is analyzed inTheorem 2.

Theorem 2. The (𝑝, 𝑡) customers’ location privacy is preserved
in the k-order FPMC strategy, when the successful prediction
rate of the k-order FPMC strategy in time 𝑓(1) is less than 𝑝,
where 𝑓(𝑘) is a function which indicates the average time for
vehicles passing k consecutive location points.

Proof. Intuitively, in the k-order FPMC strategy, since the
vehicular location is reported to the center in time 𝑓(𝑘),
the trajectory during the time 𝑓(𝑘 − 1) to 𝑓(𝑘) cannot be
predicted to the inside attacker, according to the ability of
inside attacker defined in the adversarial model. Therefore,
the customers’ location privacy is preserved. Furthermore, if
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the inside attacker uses the discontinuous customer’s location
information, the successful prediction rate is 𝑝, due to the
assumption in the theorem.

We further use the mathematical induction to formally
demonstrate the concrete probability that the adversary A
obtains the user’s trajectory in time 𝑓(𝑘).

(1) Pr[A1] is less than 𝑝, due to the assumption.
(2) Assume that Pr[A𝑡] represents the successful predic-

tion rate of A in time 𝑓(𝑡). Therefore, Pr[A𝑘−1] = 𝑝
means that the adversary computes the user’s route
in time 𝑓(𝑘 − 1) as 𝑝 due to 𝑓(𝑘 − 2). Since all
the successful prediction rate is the same from the
viewpoint of the adversary, the successful prediction
rate Pr[A𝑘] ofA in time 𝑓(𝑘) is

Pr [A𝑘] = Pr [A𝑘−1] = Pr [A𝑘−2] = ⋅ ⋅ ⋅ = Pr [A1]
≤ 𝑝. (12)

Compared with Definition 1, the (𝑝, 𝑡) customers’ location
privacy is preserved in the k-order FPMC strategy. In sum-
mary, the k-order FPMC strategy achieves the security goal,
as long as Pr[A1] is less than 𝑝.

Note that Pr[A1] is negligible, because the user’s histori-
cal data cannot be obtained by the inside attack from the very
beginning.Thus, the user’s route is privacy-preserving for the
inside attack in the k-order FPMC strategy.

The rest is to quantitatively measure the successful pre-
diction rate 𝑝 and the time interval 𝑡 of the k-order FPMC
strategy. More technical details for the parameters 𝑝 and 𝑡 are
demonstrated in Section 6.

6. Experimental Analysis

In this section, we first present the details of the dataset
used in the experiments. Then, we evaluate our proposed
method and compare the model performance with several
competitive prediction algorithms. The experimental results
show that our approach significantly outperforms the-state-
of-art approaches. It is possible for the adversary to utilize
such sophisticated approach to launch the location attack
successfully. We also provide the strategy and analyze the
possibilities of reducing such risks.

6.1. Dataset Description. In this paper, we adopt the real
traces and traffic statistics in Shanghai SUVnet [36]. We
study the V2V network formed by more than 4,000 taxies in
Shanghai, which aremonitored by SUVnet.TheGPS locations
of all taxies are periodically collected. The updating time
interval is around 30 seconds.

A 12.6 km × 12.9 km region in Shanghai is used as our
test-bed. As shown in Figure 5, the highlighted streets on the
MapInfo-empowered map form a road network graph. The
statistics of the datasets being used in our experiments are
tabulated in Table 1. In all our experiments, we use four-day
data (𝑆train) for training and the next one-day data (𝑆test) for
testing. The algorithm was trained with 𝑆train and then the
performance is measured on 𝑆test.

Figure 5: A snapshot of selected areas road network in Shanghai.

Table 1: The statistics of the Shanghai SUVnet datasets.

Taxi number Node Road Days
645 124 211 5

6.2. Evaluation Metric. Recall that the prediction task is to
provide a list of predicted locations amongwhich only atmost
one will be picked by the researcher or the adversary.This will
make the prediction precision evaluated by the conventional
precision metric to be lower than 1/|list|. Instead, we adopt
a precision metric for our particular prediction task, and we
divide the test data into 24 parts according to the hours of
the day and perform the proposed method for each hour and
then take the average as the final results; the proposed metric
is given as

𝑃@𝑁 = 1|𝑉| 1|𝑇| ∑𝑃𝑢@𝑁 = ∑ 1|𝑉 ∗ 𝑇| ∑ 𝑆V𝑁V
, (13)

where |𝑉| denotes the number of the vehicles and 𝑆V and𝑁V represent the counts of correct predictions and the
total number of recommendation rounds for each vehicle,
respectively.

6.3. Performance Comparison. In this section, we compare
our method with the following state-of-the-art alternatives:

(1) MC. ConventionalMarkov chain is widely adopted in
many prediction tasks including location prediction
[12, 19, 23–26]. In this paper, we apply the conven-
tional Markov chain to predict the next location for
comparison.

(2) ANN. Artificial Neural Networks (ANN) consider the
next place prediction as a classification task, given the
current place, and the other features, that is, time, to
output the predicted next location [37, 38]. We apply
ANN in this paper as a none Markov model baseline.

(3) Random. This method is a random guess on the set of
adjacent intersections of vehicle’s current location.

6.4. Experimental Results. To evaluate the prediction model,
we first compare our proposedmethod with the conventional
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(a) 3-order Markov chain comparison
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(b) 2-order Markov chain comparison
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(c) 1-order Markov chain comparison

Figure 6: Prediction comparison under different orders of Markov chain.

Markov chain approach and random guess.The experimental
results are shown in Figure 6. Each subfigure of Figure 6
represents the obtained results set with different settings of
the order of Markov chain. It is obvious that our proposed
k-order FPMC approach outperforms the conventional
Markov chain-based model and the random approach. The

main reason behind is that the tensor-based approach is
capable of capturing the spatiotemporal regularities of the
vehicles’ traces better and capturing their resemblance simul-
taneously.

From Figure 6, we can also observe that when 𝑁 (the
size of the candidate location set) goes to 5, the precision
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Figure 7: Performance comparison under different prediction
models.

almost reached 100%. Actually, one intersection usually has 4
adjacent intersections on average, and the result is in line with
the actual situation. However, when we talk about location
privacy problem, what we are concerned about is mainly the
result of 𝑃@ 1. The adversary takes the most likely location
from the prediction list as the target location. From the results
of𝑃@ 1, we can conclude that the localization attack using our
proposed sophisticated method is a serious threat.

In order to reflect how the order of Markov chain 𝑘
influences the prediction accuracy in our framework, we
conduct a comparison for different setting 𝑘 (varying from 1
to 3). As shown in Figure 9(a), we can see that the 2-order and
3-order one almost have the same prediction accuracy, but
when the order deceases to 1, the location prediction accuracy
drops sharply. There is nearly 20% disparity between the 2-
order and 1-order chains, which demonstrates our conjecture
as illustrated in Section 5.1. And we could decrease the risk of
the location attacks by carefully concealing the consecutive
location information and making the information unable to
form a high order Markov chain.

We also conduct the experiments by using ANN a chic
prediction model for prediction comparison. From Figure 7,
we can observe that the 2-order Markov chain FPMC have
the best performance in terms of the prediction accuracy𝑃@ 1, which further manifest the advantage of our proposed
prediction method. The 1-order Markov chain FPMC have
the worst performance which demonstrates that our t-limit
model can achieve the security goal.

In order to distinguish the experimental results obtained
by FPMC and MC with different order settings, we represent
the results in Figures 9(a) and 9(b), respectively. We can
observe that 2-order MC performs better than 3-order MC,
while 2-order FPMC performs nearly the same as 3-order
FPMC. Figure 8 illustrates a fine-grained comparison along
with the time. We argue that 3-order FPMC and 3-order MC
can catch the road structure constraints better than 2-order
approaches; however the historical data of 3-order FPMC
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3-order FPMC
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Figure 8: Attack success rate versus time.

is sparse which leads to the less pleasant results for MC.
Nevertheless, for tensor-based approach FPMC, we can infer
a good performance while the historical data is sparse.

To suggest a proper setting of the protection time interval
t, we investigate the average passing time on the road sections.
We calculate the passing time between every road segment at
different time period on each day and calculate the variance
during each day. Table 2 tabulates the detailed time variance
for 24 time periods. From the table we can see that the average
passing time tends to be stable, and the difference is no
more than 90 s. Therefore, it is reasonable for us to say that
the average road passing time indicates a good time interval
setting to protect location privacy. During the time interval,
we suggest vehicle not to release its location; thus the 2-order
Markov chain can not be formed easily which will restrict the
performance of most of existing location prediction models
and thus reduce the risk of the localization attacks.

7. Conclusion

In this paper, we proposed a novel approach to predict
vehicle’s next location and a strategy to protect vehicle
location privacy from such model. First, BPR-based k-order
Markov chain tensor model is proposed to predict the
location preference by exploring the Markov property of the
taxis’ travel trajectory found in datasets. Then, based on the
road structure we argue that the order of Markov chain k
plays an important role to affect the prediction accuracy.
Therefore, we analyzed the average road segment passing
time and suggest breaking the continuity of the passing loca-
tions during the time period to prevent the adversary from
forming a high order Markov chain. The proposed approach
carefully combines the factors of spatial and temporal infor-
mation. Performance evaluations are conducted based on
the Shanghai SUVnet dataset which shows that the proposed
approach can improve the prediction accuracy significantly
compared to several existing state-of-the-art methods, and
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(a) FPMC comparison
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(b) The conventional MC comparison

Figure 9: Prediction comparison.

Table 2: The statistics of the road segment passing time.

Time Time variance (s2)
0 4440.0
1 5692.0
2 5901.0
3 7964.0
4 9288.0
5 7926.0
6 5950.0
7 4208.0
8 3003.0
9 3928.0
10 4330.0
11 4051.0
12 4146.0
13 5421.0
14 3784.0
15 3594.0
16 3629.0
17 2826.0
18 2867.0
19 3018.0
20 3742.0
21 3722.0
22 3085.0
23 2489.0

our proposed privacy protection schema is feasible to prevent
leaking location privacy from such sophisticated predication
model.
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