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This paper considers the distributed robust attitude tracking problem ofmultiple spacecraft subject to disturbances and unmodelled
dynamics. We designed a distributed robust attitude controller for each spacecraft using the relative attitudes and relative angular
velocities of neighbors to ensure that the attitude tracking errors between the leader and the followers converge to zero under the
condition that the communication graph among the followers is undirected and connected and at least one follower has the access
to the leader. The control algorithm achieves robust attitude tracking under the existence of the disturbances and unmodelled
dynamics by selecting the control gains according to the given condition.

1. Introduction

In the recent ten years, many researchers of the control
field began to study the coordinated control of multiagent
systems because of its broad applications including forma-
tion, flocking, and cooperative control [1–4]. It is well-
known that cooperative attitude control of multiple rigid
bodies is an important research direction and has received
much attention in the last decade. The existing literature
of multiagent systems contains the work with integrator
dynamics and general linear dynamics [1, 2, 4–6]. The topic
of our paper, cooperative attitude tracking for multiple
spacecraft, ismore difficult. References [7–9] have considered
the attitude control problem of single spacecraft or single
rigid body by using some methods such as adaptive control
and sliding mode control. For the attitude tracking problem
of multiple rigid bodies or multiple spacecraft, distributed
control strategies seem to be a proper method because
there are some advantages such as less communication and
decentralized computing [10].

Many researchers in the field of control engineering
have considered the distributed attitude control problem of
multiple rigid bodies. A leader-follower strategy for attitude
coordination was studied in [11], while the cooperative
attitude control problem was considered in [12]. The authors
in [13] adopted the contraction analysis theory to guarantee

the exponential convergence of attitude synchronization
problemofmultiple spacecraft.The communication topology
in [13] is a bidirectional ring. Using quaternion to describe
the spacecraft’s attitude, [14] studied the distributed attitude
synchronization problem. In contrast, the authors in [15]
used modified Rodriguez parameters (MRPs) to represent
the attitude of the spacecraft. Under the assumption that the
communication topology is a directed spanning tree, [16]
addressed the distributed attitude synchronization problem
for multiple spacecraft with unknown inertia matrices. In
a word, all the existing works above mainly considered the
cases where the exact model knowledge of each spacecraft
is known or the cases where the external disturbance does
not exist. However, there might exist some disturbances
and unmodelled dynamics in practical applications. Refer-
ences [17–19] considered the distributed coordinated con-
trol problem for multimanipulator systems or decentralized
consensus problem for multiagent systems. The semiglobal
leader-following consensus problem of linear multiagent
systems with input saturation via low-gain feedback was
investigated in [20, 21] based on state feedback and output
feedback.

In this paper, we consider the distributed robust attitude
tracking problem subject to disturbances and unmodelled
dynamics for multiple spacecraft. In this paper, we adopt
MRPs to describe the attitude for the spacecraft. We design
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a robust controller for each spacecraft in a distributedmanner
using the relative attitudes and the angular velocities of
neighbors. Under the assumption that the communication
topology among the followers is undirected and at least one
follower can get the information from the leader, the pro-
posed controller could guarantee that the combined errors
between the leader spacecraft and the follower spacecraft
would converge to zero. Although [22, 23] dealt with the
robust consensus tracking problem for multiagent system
where the agent dynamics were restricted to being single
or double integrators with disturbances and unmodelled
dynamics. In contrast to [22, 23] which only considered
the robust tracking problem with linear dynamics, this
paper considers the attitude tracking problem of multiple
spacecraft where the attitude dynamics of spacecraft are
totally nonlinear. The proposed controller solves the robust
attitude tracking problem in the presence of disturbances
and unmodelled dynamics by selecting the control gains
according to the given condition. Under the proposed control
strategy, only a subgroup of the followers have the access to
the leader; that is, the robust attitude tracking can be achieved
using only the neighboring information.

The structure of this paper is arranged as follows. Some
existing results and mathematical preliminaries are intro-
duced in Section 2. Section 3 investigated the distributed
robust attitude tracking controllers. Section 4 represents
the simulation examples. The conclusion of this paper is
Section 5.

2. Mathematical Preliminaries

2.1. Notation and GraphTheory. 𝐼𝑝 means the identity matrix
of dimension 𝑝. R𝑛×𝑛 represent the set of 𝑛 × 𝑛 real matrices.
Let 𝑇 represent the transpose for real matrices. Let 𝐴 ⊗ 𝐵

be the Kronecker product of matrices 𝐴 and 𝐵. Let ‖𝑥‖

be the 2-norm of a vector 𝑥. diag(𝐴1, . . . , 𝐴𝑁) denotes a
block-diagonal matrix with matrices 𝐴 𝑖, on its diagonal, 𝑖 =

1, . . . , 𝑁. We say a vector 𝑥 ∈ L∞, when all the elements of
𝑥 are bounded.

A directed graph G is a pair (V,E), where V =

{V1, . . . , V𝑁} is a set of nodes andE ⊆ V ×V is a set of edges,
in which an edge is represented by an ordered pair of distinct
nodes. For an edge (V𝑖, V𝑗), we call node V𝑖 the parent node,
node V𝑗 the child node, and V𝑖 a neighbor of V𝑗. If (𝑖, 𝑗) ∈ E
means (𝑗, 𝑖) ∈ E, we say the graph is undirected. A path
from node V𝑖

1

to node V𝑖
𝑙

is a sequence of ordered edges of
the form (V𝑖

𝑘

, V𝑖
𝑘+1

), 𝑘 = 1, . . . , 𝑙 − 1. The adjacency matrix
𝐴 = [𝑎𝑖𝑗] ∈ R𝑁×𝑁 associated with the directed graph G
is defined by 𝑎𝑖𝑖 = 0, 𝑎𝑖𝑗 = 1 if (V𝑗, V𝑖) ∈ E and 𝑎𝑖𝑗 = 0

otherwise. The Laplacian matrix 𝐿 = [𝑙𝑖𝑗] ∈ R𝑁×𝑁 is defined
as 𝑙𝑖𝑖 = ∑

𝑁

𝑗=0,𝑗 ̸=𝑖
𝑎𝑖𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗, 𝑖 ̸= 𝑗.

Lemma 1 (see [24]). Zero is a simple eigenvalue of 𝐿 and the
associated eigenvector is 1 if and only if the undirected graph
is connected, where 1 = [1, . . . , 1]

𝑇
∈ R𝑁 is a unitary column

vector. All of the nonzero eigenvalues of 𝐿 are real and positive
for an undirected graph.

2.2. Attitude Dynamics. In this paper, we consider the dis-
tributed robust attitude tracking problem for a group of 𝑁 +

1 spacecrafts. We adopt MRPs to represent the attitude of
a spacecraft with respect to the inertial frame. The MRP
vector 𝜎𝑖 ∈ R3 is defined by 𝜎𝑖 = ê𝑖 tan(𝜙𝑖/4) for the 𝑖th
spacecraft, where ê𝑖 is the Euler axis and 𝜙𝑖 is the Euler
angle [25]. In our following discussion, it is assumed that the
leader spacecraft is indexed by 0 and the follower spacecrafts
are labeled by 1, . . . , 𝑁. For the 𝑖th follower spacecraft, the
attitude dynamics is described by [26]

𝐽𝑖�̇�𝑖 = −𝜔
×

𝑖
𝐽𝑖𝜔𝑖 + 𝑢𝑖 + 𝑓



𝑖
,

�̇�𝑖 = 𝐺 (𝜎𝑖) 𝜔𝑖, 𝑖 = 1, . . . , 𝑁,

(1)

where 𝐽𝑖 ∈ R3×3 is the inertia matrix, 𝜔𝑖 ∈ R3 denotes the
attitude angular velocity with respect to the inertial frame in
the body-fixed frame, 𝑢𝑖 ∈ R3 is the control input, 𝜔×

𝑖
∈ R3×3

is the skew-symmetric matrix such that 𝜔×
𝑖
V = 𝜔𝑖 × V for any

vector V ∈ R3,𝑓
𝑖
represents the disturbances and unmodelled

dynamics, and

𝐺 (𝜎𝑖) =
1

2
(

1 − 𝜎
𝑇

𝑖
𝜎𝑖

2
𝐼3 + 𝜎

×

𝑖
+ 𝜎𝑖𝜎
𝑇

𝑖
) . (2)

Rewrite the dynamics equation to get a simpler form as
follows:

�̇�𝑖 = − 𝐽
−1

𝑖
𝜔
×

𝑖
𝐽𝑖𝜔𝑖 + 𝐽

−1

𝑖
𝑢𝑖 + 𝑓𝑖,

�̇�𝑖 = 𝐺𝑖𝜔𝑖,

(3)

where 𝑓𝑖 = 𝐽
−1

𝑖
𝑓


𝑖
. Note that we define a new form 𝑓𝑖(𝑡)

instead of 𝐽−1
𝑖

𝑓


𝑖
(𝑡) to represent the disturbances and unmod-

elled dynamics, which does not affect the overall analysis
in this paper. This modification is only for simplicity in the
subsequent discussion.We assume that the leader is not a real
spacecraft, but just a reference signal. So we do not consider
the disturbances and unmodelled dynamics for the leader.

We assume that there is no access to any follower
spacecraft from the leader. And the leader’s information can
only be obtained by a subset of the followers. We use an
undirected graph to represent the communication topology
of the𝑁 followers. The access of the followers to the leader is
represented by a diagonal matrix 𝐴0 = diag(𝑎10, . . . , 𝑎𝑁0) ∈

R𝑁×𝑁. 𝑎𝑖0 = 1, 𝑖 = 1, . . . , 𝑁, if the 𝑖th spacecraft has the
access to the leader and 𝑎𝑖0 = 0 otherwise. To facilitate the
stability analysis of the closed-loop control system, we make
the following assumptions on 𝑓𝑖(𝑡) and the communication
graph among the 𝑁 + 1 spacecraft. Our control objective is
to drive the follower spacecraft’s attitudes 𝜎𝑖, 𝑖 = 1, . . . , 𝑁,
to follow the leader spacecraft’s attitude 𝜎0 in the presence
of the disturbances and unmodelled dynamics existing in the
follower spacecraft’s attitude dynamics. It is reasonable that
there exist external disturbances and parameter uncertainties
in the attitude dynamics for the followers in some applica-
tions.

Assumption 2. Thedisturbances term𝑓𝑖(𝑡) and the first-order
and second-order time derivatives of 𝑓𝑖(𝑡) are bounded; that
is, 𝑓𝑖(𝑡), ̇𝑓𝑖(𝑡),

̈𝑓𝑖(𝑡) ∈ L∞, 𝑖 = 1, . . . , 𝑁.
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Assumption 3. The graph G is connected and at least one
follower has the access to the leader.

3. Main Results

This section considers the distributed robust attitude tracking
problem for multiple spacecraft described by (3). The follow-
ers’ attitudes are desired to follow the leader in the presence
of the disturbances and unmodelled dynamics. Note that the
attitude of the leader is a time-varying signal.The distributed
attitude tracking problem is defined as follows.

Definition 4. The distributed robust attitude tracking prob-
lem is said to be solved, if the local control laws 𝑢𝑖, 𝑖 =

1, . . . , 𝑁, are designed for (3) in the presence of disturbances
and unmodelled dynamics such that lim𝑡→∞‖𝜎𝑖 − 𝜎0‖ = 0

and lim𝑡→∞‖𝜔𝑖 − 𝜔0‖ = 0, 𝑖 = 1, . . . , 𝑁.

Using the local information available to the 𝑖th spacecraft,
the angular velocity tracking error 𝑒𝜔

𝑖

, the attitude tracking
error 𝑒𝜎

𝑖

, and the combined tracking error 𝑒𝑖 for each follower
spacecraft at each time are defined by

𝑒𝜔
𝑖

=

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝜔𝑖 − 𝜔𝑗) + 𝑎𝑖0 (𝜔𝑖 − 𝜔0) ,

𝑒𝜎
𝑖

=

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝜎𝑖 − 𝜎𝑗) + 𝑎𝑖0 (𝜎𝑖 − 𝜎0) ,

𝑒𝑖 = 𝑒𝜔
𝑖

+ 𝛼𝑒𝜎
𝑖

, 𝑖, 𝑗 = 1, . . . , 𝑁,

(4)

where 𝑎𝑖𝑗 is the (𝑖, 𝑗)th element of the adjacency matrix and
𝛼 ∈ R is a positive constant.

A distributed robust attitude tracking controller is pro-
posed for each follower as

𝑢𝑖 = 𝐽𝑖 (−𝑓𝑖 + 𝜌𝑖 + 𝑎𝑖0�̇�0 − 𝑘𝑐𝑒𝑖 − 𝛼𝐺𝑖𝜔𝑖) ,

̇̂
𝑓
𝑖
= 𝑘1 ̇𝑒𝑖 + 𝑘2 sgn (𝑒𝑖) + 𝑘3𝑒𝑖, 𝑖 = 1, . . . , 𝑁,

(5)

using only the local information of neighboring spacecraft,
where 𝜌𝑖 = 𝐽

−1

𝑖
𝜔
×

𝑖
𝐽𝑖𝜔𝑖, 𝑘𝑐, 𝑘1, 𝑘2, and 𝑘3 ∈ R are positive

constant control gains to be determined and sgn(⋅) is the sign
function. Since the disturbances and unmodelled dynamics
term 𝑓𝑖 is unknown, we use its estimate 𝑓𝑖 to obtain the
control law 𝑢𝑖. We can see that 𝑓𝑖 is calculated by the
combined tracking error 𝑒𝑖 for each spacecraft. To facilitate
the further analysis, a group of concatenated vectors and
diagonal matrices are defined as

𝜔 = [𝜔
𝑇

1
⋅ ⋅ ⋅ 𝜔

𝑇

𝑁
]
𝑇

, 𝜎 = [𝜎
𝑇

1
⋅ ⋅ ⋅ 𝜎
𝑇

𝑁
]
𝑇

,

𝑢 = [𝑢
𝑇

1
⋅ ⋅ ⋅ 𝑢
𝑇

𝑁
]
𝑇

, 𝑓 = [𝑓
𝑇

1
⋅ ⋅ ⋅ 𝑓

𝑇

𝑁
]
𝑇

,

𝑓 = [𝑓
𝑇

1
⋅ ⋅ ⋅ 𝑓

𝑇

𝑁
]
𝑇

, 𝑒𝜔 = [𝑒
𝑇

𝜔
1

⋅ ⋅ ⋅ 𝑒
𝑇

𝜔
𝑁

]
𝑇

,

𝑒𝜎 = [𝑒
𝑇

𝜎
1

⋅ ⋅ ⋅ 𝑒
𝑇

𝜎
𝑁

]
𝑇

, 𝑒 = [𝑒
𝑇

1
⋅ ⋅ ⋅ 𝑒
𝑇

𝑁
]
𝑇

,

𝜌 = [𝜌
𝑇

1
⋅ ⋅ ⋅ 𝜌
𝑇

𝑁
]
𝑇

, 𝐺 = diag (𝐺1, . . . , 𝐺𝑁) ,

𝐽 = diag (𝐽1, . . . , 𝐽𝑁) .

(6)

Then, it can be derived that

𝑒𝜔 = (𝑀 ⊗ 𝐼3) 𝜔 − 𝐴0 ⊗ 𝜔0,

𝑒𝜎 = (𝑀 ⊗ 𝐼3) 𝜎 − 𝐴0 ⊗ 𝜎0,

𝑒 = 𝑒𝜔 + 𝛼𝑒𝜎

= (𝑀 ⊗ 𝐼3) (𝜔 + 𝛼𝜎) − 𝐴0 ⊗ (𝜔0 + 𝛼𝜎0) ,

(7)

where 𝑀 ≜ 𝐿 + 𝐴0. The time derivative of the concatenated
combined tracking error 𝑒 is given by

̇𝑒 = ̇𝑒𝜔 + 𝛼 ̇𝑒𝜎

= (𝑀 ⊗ 𝐼3) (−𝜌 + 𝐽
−1

𝑢 + 𝑓 + 𝛼𝐺𝜔)

− 𝐴0 ⊗ (�̇�0 + 𝛼�̇�0)

= (𝑀 ⊗ 𝐼3) (−𝜌 + 𝐽
−1

𝐽 (−𝑓 + 𝜌 + 𝐴0 ⊗ �̇�0

− 𝑘𝑐𝑒 − 𝛼𝐺𝜔) + 𝑓 + 𝛼𝐺𝜔)

− 𝐴0 ⊗ (�̇�0 + 𝛼�̇�0)

= (𝑀 ⊗ 𝐼3) (𝑓 − 𝑓 − 𝑘𝑐𝑒 + 𝐴0 ⊗ �̇�0)

− 𝐴0 ⊗ (�̇�0 + 𝛼�̇�0) .

(8)

In addition, define a filtered tracking error 𝑟(𝑡) ∈ R3×𝑁 by

𝑘𝑐 (𝑀 ⊗ 𝐼3) 𝑟 = 𝑘𝑐 ̇𝑒 + 𝑒, (9)

deriving that ̇𝑒 = (𝑀 ⊗ 𝐼3)𝑟 − (1/𝑘𝑐)𝑒 and

𝑟 = (𝑀 ⊗ 𝐼3)
−1

̇𝑒 +
1

𝑘𝑐

(𝑀 ⊗ 𝐼3)
−1

𝑒

= ∫

𝑡

0

𝑚𝑑𝜏 − 𝑓 − 𝑘𝑐𝑒 +
1

𝑘𝑐

(𝑀 ⊗ 𝐼3)
−1

𝑒,

(10)

where ∫
𝑡

0
𝑚𝑑𝜏 = 𝑓 + 𝐴0 ⊗ �̇�0 − (𝑀 ⊗ 𝐼3)

−1
𝐴0 ⊗ (�̇�0 + 𝛼�̇�0).

Using ̇𝑒 = (𝑀⊗𝐼3)𝑟− (1/𝑘𝑐)𝑒, the time derivative of 𝑟 is given
by

̇𝑟 = 𝑚 −
̇̂

𝑓 − 𝑘𝑐 ̇𝑒 +
1

𝑘𝑐

(𝑀 ⊗ 𝐼3)
−1

̇𝑒

= 𝑚 − 𝑘2 sgn (𝑒) − 𝑘3𝑒 − 𝑘1 (𝑀 ⊗ 𝐼3) 𝑟 +
𝑘1

𝑘𝑐

𝑒

− 𝑘𝑐 (𝑀 ⊗ 𝐼3) 𝑟 + 𝑒 +
1

𝑘𝑐

𝑟 −
1

𝑘2
𝑐

(𝑀 ⊗ 𝐼3)
−1

𝑒.

(11)
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Remark 5. It can be concluded that the convergence of the
filtered tracking error 𝑟(𝑡) guarantees the convergence of
the concatenated combined tracking error 𝑒(𝑡), which can
be proved using the Lyapunov-based analysis by selecting a
Lyapunov function 𝑉(𝑒) = (1/2)𝑒

𝑇
𝑒.

Lemma 6 (see [22]). A function 𝑠(𝑡) ∈ R defined as follows is
positive semidefinite:

𝑠 (𝑡) = 𝑒(0)
𝑇
𝑘2 sgn (𝑒 (0)) − 𝑒(0)

𝑇
𝑚(0)

− ∫

𝑡

0

𝑟
𝑇
(𝑀 ⊗ 𝐼3) (𝑚 − 𝑘2 sgn (𝑒)) 𝑑𝜏,

(12)

if the control gains 𝑘2 and 𝑘𝑐 satisfy

𝑘2 > ‖𝑚 (𝑡)‖ + 𝑘𝑐 ‖�̇� (𝑡)‖ . (13)

Theorem 7. Suppose that Assumptions 2 and 3 hold. The
distributed robust attitude tracking problem of the spacecraft
in (3) is solved by the distributed attitude tracking control law
(5) if the control gains are selected such that

𝑘2 > ‖𝑚 (𝑡)‖ + 𝑘𝑐 ‖�̇� (𝑡)‖ ,

𝑘3 =
𝑘1

𝑘𝑐

+ 1,

𝑀 ⊗ 𝐼3 −
1

𝑘2
𝑐

𝐼3×𝑁 > 0.

(14)

Proof. Note that 𝑀 = 𝐿 + 𝐴0 and 𝐿 is the Laplacian matrix
associated with graph G. Under the Assumption 2, 𝑀 is
positive definite [27]. Then, it can be seen that

𝑒 = (𝑀 ⊗ 𝐼3) (𝜔 + 𝛼𝜎) − 𝐴0 ⊗ (𝜔0 + 𝛼𝜎0)

= (𝑀 ⊗ 𝐼3) (𝜔 + 𝛼𝜎) − 𝐴0 ⊗ (𝜔0 + 𝛼𝜎0)

− 𝐿 ⊗ (𝜔0 + 𝛼𝜎0)

= (𝑀 ⊗ 𝐼3) [(𝜔 + 𝛼𝜎) − 𝐼𝑁 ⊗ (𝜔0 + 𝛼𝜎0)] ,

(15)

where we have used the fact that 𝐿⊗(𝜔0+𝛼𝜎0) = (𝐿⊗𝐼3)(𝐼𝑁⊗

(𝜔0 + 𝛼𝜔0)) = 0 because 1 is the eigenvector of the Laplacian
matrix 𝐿 associated with the simple eigenvalue 0 according to
Lemma 1 and 𝐼𝑁⊗(𝜔0+𝛼𝜔0) ∈ span{1}.Then, it follows from
(15) and the positive definiteness of the matrix 𝑀 that 𝑒 = 0

if and only if

𝜔0 + 𝛼𝜎0 = ⋅ ⋅ ⋅ = 𝜔𝑁 + 𝛼𝜎𝑁, (16)

which, as proved in [28], in turn implies that

lim
𝑡→∞

𝜎𝑖 − 𝜎0
 = 0, lim

𝑡→∞

𝜔𝑖 − 𝜔0
 = 0, 𝑖 = 1, . . . , 𝑁. (17)

So, the distributed robust attitude tracking problem is solved
if and only if 𝑒(𝑡) = 0 as 𝑡 → ∞.

Choose the Lyapunov function candidate

𝑉 (𝑡) =
1

2
𝑒
𝑇
𝑒 +

1

2
𝑟
𝑇
(𝑀 ⊗ 𝐼3) 𝑟 + 𝑠, (18)

where 𝑠 is defined in (12). From Assumption 2, 𝑓𝑖(𝑡),

̇𝑓𝑖(𝑡),
̈𝑓𝑖(𝑡) ∈ 𝐿∞, 𝑖 = 1, . . . , 𝑁, which implies that

�̇� and �̈� are both bounded. In view of the boundedness
of the initial state of the leader spacecraft, we know that
�̇�0(0), �̈�0(0), �̇�0(0), �̈�0(0) ∈ 𝐿∞. Based on the definition
of 𝑚(𝑡) in (10), we can see that ‖𝑚(𝑡)‖ and ‖�̇�(𝑡)‖ are
both bounded. Then, it follows from Lemma 6, the positive
definiteness of the matrix 𝑀, and the first condition in (14)
that the Lyapunov function candidate𝑉(𝑡) is positive definite.
Then the time derivative of 𝑉(𝑡) along the trajectory of (10),
(11), and (12) is given by

�̇� (𝑡) = 𝑒
𝑇

̇𝑒 + 𝑟
𝑇
(𝑀 ⊗ 𝐼3) ̇𝑟 + ̇𝑠

= 𝑒
𝑇
((𝑀 ⊗ 𝐼3) 𝑟 −

1

𝑘𝑐

𝑒) + 𝑟
𝑇
(𝑀 ⊗ 𝐼3)

× (𝑚 − 𝑘2 sgn (𝑒) − 𝑘3𝑒 − 𝑘1 (𝑀 ⊗ 𝐼3) 𝑟 +
𝑘1

𝑘𝑐

𝑒

− 𝑘𝑐 (𝑀 ⊗ 𝐼3) 𝑟 + 𝑒 +
1

𝑘𝑐

𝑟 −
1

𝑘2
𝑐

(𝑀 ⊗ 𝐼3)
−1

𝑒)

− 𝑟
𝑇
(𝑀 ⊗ 𝐼3) (𝑚 − 𝑘2 sgn (𝑒)) .

(19)

By using the second condition in (14), we can obtain that

�̇� (𝑡) = −
1

𝑘𝑐

𝑒
𝑇
𝑒 − 𝑘1𝑟

𝑇
(𝑀 ⊗ 𝐼3) (𝑀 ⊗ 𝐼3) 𝑟

− 𝑘𝑐𝑟
𝑇
(𝑀 ⊗ 𝐼3) ((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁) 𝑟

+ 𝑟
𝑇
((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁) 𝑒.

(20)

Since

𝑟
𝑇
((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁) 𝑒

= −
1

2𝑘𝑐

[𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

𝑇

× [𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

+
1

2𝑘𝑐

𝑘
2

𝑐
𝑟
𝑇
((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁)

2

𝑟 +
1

2𝑘𝑐

𝑒
𝑇
𝑒,

(21)

it follows that

�̇� (𝑡) = −
1

𝑘𝑐

𝑒
𝑇
𝑒 − 𝑘1𝑟

𝑇
(𝑀 ⊗ 𝐼3) (𝑀 ⊗ 𝐼3) 𝑟

− 𝑘𝑐𝑟
𝑇
(𝑀 ⊗ 𝐼3) ((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁) 𝑟
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−
1

2𝑘𝑐

[𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

𝑇

× [𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

+
1

2𝑘𝑐

𝑘
2

𝑐
𝑟
𝑇
((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁)

2

𝑟 +
1

2𝑘𝑐

𝑒
𝑇
𝑒

= −
1

2𝑘𝑐

𝑒
𝑇
𝑒 − 𝑘1𝑟

𝑇
(𝑀 ⊗ 𝐼3) (𝑀 ⊗ 𝐼3) 𝑟

−
1

2𝑘𝑐

[𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

𝑇

× [𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

− 𝑘𝑐𝑟
𝑇
(𝑀 ⊗ 𝐼3) ((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁) 𝑟

+
1

2
𝑘𝑐𝑟
𝑇
((𝑀 ⊗ 𝐼3) −

1

𝑘2
𝑐

𝐼3×𝑁)

2

𝑟

= −
1

2𝑘𝑐

𝑒
𝑇
𝑒 − 𝑘1𝑟

𝑇
(𝑀 ⊗ 𝐼3) (𝑀 ⊗ 𝐼3) 𝑟

−
1

2𝑘𝑐

[𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

𝑇

× [𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

− 𝑘𝑐𝑟
𝑇
[(𝑀 ⊗ 𝐼3)

2
−

1

𝑘2
𝑐

(𝑀 ⊗ 𝐼3) −
1

2
(𝑀 ⊗ 𝐼3)

2

−
1

2𝑘4
𝑐

𝐼3×𝑁 +
1

𝑘2
𝑐

(𝑀 ⊗ 𝐼3)] 𝑟

= −
1

2𝑘𝑐

𝑒
𝑇
𝑒 − 𝑘1𝑟

𝑇
(𝑀 ⊗ 𝐼3) (𝑀 ⊗ 𝐼3) 𝑟

−
1

2𝑘𝑐

[𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

𝑇

× [𝑒 − 𝑘𝑐 ((𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁) 𝑟]

−
1

2
𝑘𝑐𝑟
𝑇
[(𝑀 ⊗ 𝐼3) +

1

𝑘2
𝑐

𝐼3×𝑁]

× [(𝑀 ⊗ 𝐼3) −
1

𝑘2
𝑐

𝐼3×𝑁] 𝑟,

(22)

where we have used the equation𝑀
𝑇

= 𝑀 since the graphG
is undirected.

1 2

3 4

0

Figure 1: The communication topology of spacecraft.

In view of the third condition in (14), we obtain that
𝑀 ⊗ 𝐼3 − (1/𝑘

2

𝑐
)𝐼3×𝑁 > 0. Then, if follows from (22) that

�̇�(𝑡) ≤ 0. Since 𝑉(𝑡) > 0 and �̇�(𝑡) ≤ 0, it is easy to see that
𝑉(𝑡) ≤ 𝑉(0) ∈ 𝐿∞. From the definition of 𝑉(𝑡), we can see
that 𝑒(𝑡), 𝑟(𝑡) ∈ 𝐿∞. Based on the boundedness of 𝑓(𝑡), 𝑒(𝑡),
�̇�0(𝑡), �̇�0(𝑡), (5), and (8), we can obtain 𝑓(𝑡), ̇𝑒(𝑡) ∈ 𝐿∞. Then,
it follows from (10) and the boundedness of 𝑚(𝑡), ̇̂

𝑓(𝑡), and
̇𝑒(𝑡) that ̇𝑟(𝑡) ∈ 𝐿∞, which in turn guarantees that �̈�(𝑡) =

𝑓(𝑒, ̇𝑒, 𝑟, ̇𝑟) is bounded. According to Barbalat’s lemma [29],
we get that �̇�(𝑡) → 0 as 𝑡 → ∞; that is, lim𝑡→∞𝑒(𝑡) = 0,
𝑖 = 1, . . . , 𝑁. Thus, the distributed robust attitude tracking
problem is solved.

Remark 8. Thecooperative attitude synchronization problem
formultiple rigid bodies has been solved in [15, 30]. However,
the authors in [15, 30] only considered the nominal model of
the attitude dynamics, while in this paper the disturbances
and unmodelled dynamics are contained during the analysis.
This paper proposed a sufficient condition for achieving
distributed robust attitude tracking between the following
spacecraft and the leader, which is a more challenging task
because of the disturbances and unmodelled dynamics.

Remark 9. Compared to [22, 31] where the robust consensus
tracking problems were considered and the agent dynamics
were restricted to being single or double integrator, this paper
considers robust attitude tracking of multiple spacecraft
where the attitude dynamics of spacecraft are nonlinear.
Additionally, [32, 33] considered the rendezvous problem
and the adaptive consensus problem for multiple mobile
linear agents with preserved network connectivity, which is
an interesting topic for the distributed cooperative control
of multiple spacecraft. However, it is more challenging and
cannot be obtained easily by extending the results in our
paper. We will consider the network connectivity preserving
case in our future research.

4. Simulation Examples

Consider a group of five spacecraft whose communication
topology is given by Figure 1. The inertia matrices of the
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Table 1: Spacecraft inertias.

Number Parameters/(kg⋅m2)
𝐽0 [1.1 0.35 0.45; 0.35 1.0 0.5; 0.45 0.5 1.3]
𝐽1 [1 0.1 0.1; 0.1 0.1 0.1; 0.1 0.1 0.9]
𝐽2 [1.5 0.2 0.3; 0.2 0.9 0.4; 0.3 0.4 2.0]
𝐽3 [0.8 0.1 0.2; 0.1 0.7 0.3; 0.2 0.3 1.1]
𝐽4 [1.2 0.3 0.7; 0.3 0.9 0.2; 0.7 0.2 1.4]

spacecraft are shown in Table 1. We choose the initial attitude
𝜎𝑖(0),𝜔𝑖(0), 𝑖 = 0, . . . , 4, randomly. In this section, we assume
that the leader spacecraft’s information can only be obtained
by spacecrafts 1 and 2. We design the control input 𝑢0 as

𝑢0 = 𝐽0 [𝜌0 − 𝑘0 (𝜔0 − 𝜔
𝑑

0
)] , (23)

where 𝜌0 = 𝐽
−1

0
𝜔
×

0
𝐽0𝜔0 and 𝑘0 = diag(1, 1, 1), to track a

given angular velocity 𝜔
𝑑

0
= [0.2 sin(0.3𝑡); 0.1 sin(0.4𝑡);

0.15 cos(0.5𝑡)].
To verify the theoretical result of our paper, let the

constants in Theorem 7 be 𝑘𝑐 = 10, 𝑘1 = 0.1, 𝑘2 = 0.003,
𝑘3 = 1.01, and 𝛼 = 1. The disturbances and unmodelled
dynamics 𝑓



𝑖
(𝑡), 𝑖 = 1, . . . , 4, for the follower spacecraft are

given by

𝑓


𝑖
(𝑡) =

[
[
[
[

[

𝑓


𝑖1
(𝑡)

𝑓


𝑖2
(𝑡)

𝑓


𝑖3
(𝑡)

]
]
]
]

]

=

[
[
[
[
[
[
[

[

(0.03 −
𝑖

100
) sin (0.3𝑡)

(0.04 −
𝑖

100
) cos (0.3𝑡)

(0.03 −
𝑖

100
) sin(0.3𝑡 +

𝜋

4
)

]
]
]
]
]
]
]

]

.

(24)

The attitudes and the attitude angular velocities of the five
spacecrafts are shown in Figures 2 and 3, from which we
can see that the distributed robust attitude tracking problem
is solved provided that the disturbances and unmodelled
dynamics exist in the attitude dynamics. The tracking errors
𝑒𝑖, 𝑖 = 1, . . . , 4, of the follower spacecraft are given in Figure 4,
which clearly converge to zero as 𝑡 → ∞.

5. Conclusion

In this paper, we considered the distributed robust attitude
tracking problem of multiple spacecraft with disturbances
and unmodelled dynamics. We designed distributed robust
controllers for multiple spacecraft based on the relative
attitudes and relative attitude angular velocities of neighbors
to track the leader’s time-varying attitude in the presence
of disturbances and unmodelled dynamics. The proposed
control algorithm achieves robust attitude tracking for the
case that the communication graph among follower space-
crafts is an undirected connected graph and at least one
follower has the access to the leader by selecting the control
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gains according to the given condition.The distributed robust
attitude tracking of multiple spacecraft without velocity
measurements and robust attitude tracking under directed
communication topologies are interesting topics for future
research.
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