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Drying is an energy intensive and complex nonlinear process and it is difficult to control and make the traditional control meet
the challenges. In order to effectively control the output grain moisture content of a combined infrared radiation and convection
(IRC) grain dryer, taking into account the superiority of the fuzzy control method in dealing with complex systems, in this article,
a genetic optimization dual fuzzy immune PID (Proportional-Integral-Derivative) (GODFIP) controller was proposed from the
aspects of energy savings, stability, accuracy, and rapidity. The structure of the GODFIP controller consists of two fuzzy controllers,
a PID controller, an immune algorithm, and a genetic optimization algorithm. In addition, a NARX model which can give relatively
good predictive output information of the IRC dryer was established and used to represent the actual drying process to verify the
control performance in the control simulation and anti-interference tests. The effectiveness of this controller was demonstrated by
computer simulations, and the anti-interference performance comparative study with the other controllers further confirmed the
superiority of the proposed grain drying controller which has the least value of performance objective function, the shortest rising

time, and the best anti-interference ability compared to the other three compared controllers.

1. Introduction

Grain drying control is very important because it can
decrease the grain loss by controlling the grain moisture and
temperature to the desired level and maintain the quality,
freshness, and longer life storage of grain. There are parameter
uncertainties or variations in the grain dying process, and the
establishment of a good control system for a grain dryer is dif-
ficult. Drying is an energy intensive process, one of the main
control objectives is to dry the moisture content to desired
level with efficient energy consumption and good quality,
besides that stability of the system and robustness of the
controller towards any disturbances are also the fundamental
requirements of a dryer controller [1, 2].

In this research, the control object is a combined infrared
radiation and convection (IRC) grain dryer designed by
our research group which combines the direct and indirect
heating drying technology. Infrared radiation drying is a new
drying technology developed in recent 30 years and now has
become more popular because of its advantages, such as its

low drying time, the reasonable quality of the final dried
product, and its greater energy savings capability, in addition
to its lower price compared to microwave and vacuum
drying methods [3]. So far, the research scope of the infrared
radiation drying technology mainly focuses on the study
of experiments and simulation of drying, but there are no
studies in the aspect of infrared radiation grain drying control
[4-11]. In order to meet the drying control requirements of
the IRC dryer, effective control strategies for the grain dryer
should be further researched on. Usually, in the whole grain
drying process, the speed of the discharging grain motor is
controlled (i.e., the adjustment of the drying time of grain in
the dryer) to realize the drying target by detecting the error
and its rate of change between the desired and the actual grain
output moisture content according to the corresponding
control algorithm.

Traditional control methods have encountered a lot of
obstacles because grain drying is a complicated heat and mass
transfer process which is characterized by long delay process,
highly nonlinearity, multidisturbance, strong coupling, and
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so on. It is difficult to make an accurate mathematical model
of grain drying, so the control of grain drying is a challenging
job [2, 12]. Liu and Bakker-Arkema have also reviewed
some traditional control limitations, such as the controllers
designed by Marchant, Whitfied, McFarlane, and Courtois
et al. Indeed, the classical feedback control is necessary but
is inadequate for controlling grain dryer [2]. The control
effect of the feed-forward control is much better than that
of the feedback control only, but the accuracy of the feed-
forward control is affected by whether or not the system
disturbance is measurable [13]. In addition, Proportional-
Integral-Derivative (PID) controller is successfully applied in
the classic automatic control and still used in the control of
grain drying now, but it relies on the mathematical model
and has some limitations of which the values of the control
parameters (kp', ki', kd') are not changed in the whole
control process, and when the controlled object and the
environment are uncertain, the PID controller will be difficult
to achieve satisfactory control effect and difficult to reach
the control requirements with more strict restriction on
overshoot. Model-predictive control (MPC) is a compound
optimization algorithm which is based on model, rolling
optimization, and feedback correction; it will control output
changes by tracking the change of the set valve, so it is
effective for the nonlinear and large lag process control [2].
In a series of Liu and Bakker-Arkema’s papers, a model-
predictive controller (MPC) was especially designed for grain
drying. The simulation and field tests both showed that
the controller performed well over a wide range of drying
conditions. The distributed-parameter process model that
the MPC employs is more comprehensive than the lumped
parameter model and provides more detailed information on
the process, but it requires more computation time and still
relies on the accuracy of the system mathematical model [2].

In all, a drawback of the above-mentioned studies is
that the authors generally made several simplifications in
developing the dryer mathematical model based on some
assumptions and observations. These simplifications are
expected to affect the performance of these models and
consequently their reliability in representing the real process
when using these models for control purposes. Moreover,
the mathematical models generally consist of sets of highly
complex and nonlinear partial differential equations (PDES)
with several auxiliary algebraic equations that involve trans-
fer coefficients and thermophysical properties that require
highly complicated numerical techniques to solve, rendering
them undesirable options in control systems [14].

Since the 1970s, the research development of computer
control technology and artificial intelligence has provided
new ways for advanced control of the grain drying; thereafter
drying control comes into the intelligent control period, of
which the fuzzy logic controller (FLC) is a typical intelli-
gent controller which imitates humans’ decision-making and
common sense [15, 16]. The FLC does not need to know the
mathematical model of the controlled object and only needs
to accumulate the experience data of a skilled human oper-
ator, which is the biggest difference from the conventional
control. In essence, the FLC provides an algorithm which
can convert the linguistic control strategy based on expert
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knowledge into an automatic control strategy. The FLC is not
only widely used in industry but also a hot research topic
in the control of grain drying now [17-25]. Combining FLC
algorithm with traditional control algorithms, the problem of
grain drying control can be effectively solved.

Fuzzy immune PID controller based on the immune
feedback mechanism combines the intelligent FLC with the
traditional PID controller and has the advantages of simple,
good robustness and independence on the system model,
which uses the characteristics of fuzzy control to learn the
biological immune feedback mechanism under the complex
disturbance and uncertain environment [26-29]. However,
the algorithm also has some limitations, although the PID
control parameters in the control process can be changed, the
change rates of parameters are the same, affecting the control
performance to a certain extent. Aiming at this limitation,
in this paper, an improved fuzzy immune PID controller is
designed to solve the limitation of the general fuzzy immune
PID control algorithm.

In all, based on the idea of artificial intelligence, this
paper proposes an improved fuzzy immune PID controller
combined with two kinds of evolutionary algorithms: the
immune feedback algorithm and the genetic optimization
algorithm, which has improved the limitation of the tradi-
tional PID controller and the general fuzzy immune PID
controller. Because the algorithm adopts two kinds of fuzzy
controller and uses the genetic algorithm to optimize the
initial controller parameters of the model, the proposed
controller in this paper is called the genetic optimization
dual fuzzy Immune PID (GODFIP) controller. Based on
the GODFIP, the speed of discharging grain motor can be
automatically adjusted to achieve the precise control of the
output grain moisture of the IRC grain dryer according to
the difference and its change rate between the output grain
moisture content and the target moisture content. Finally, the
NARX (Nonlinear Autoregressive models with Exogenous
Inputs) model is used to represent the actual drying process
to test the effectiveness of the proposed controller, and the
comparative study with the other related controllers is also
made, and the simulation results show that the control effect
of GODFIP is better than that of other compared controllers.

2. The Mathematical Model of Grain Drying
and Its Control Algorithm Structure

2.1. The Mechanical Structure of the New Grain Dryer. The
IRC grain drying system has been put into use in Harbin
Development Zone, Binxi town, China, Dongyu Machinery
Co. Ltd. Fresh, mature corns were purchased from a local
farm (an agricultural area in north of China).

The IRC grain dryer mechanism system is shown in
Figure 1. It can be seen that the system mainly consists of
the following parts: a wet grain barn, a grain dryer, and
dried grain barn, and 3 elevators used to raise grains to
the barns and 5 belt machines used to transport, of which
the new radiation-convection grain dryer is rectangularity
in shape and the overall dimensions are 4.75m in height,
2.06 m in length, and 1.3m in depth as shown in Figure 2.
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FIGURE 1: Mechanic structure diagram of the IRC grain dryer. (1) Bucket elevator T1, (2) wet grain barn, (3) belt conveyor P1, (4) bucket
elevator T2, (5) belt conveyor P3, (6) belt conveyor P5, (7) dried grain barn, (8) bucket elevator T3, (9) belt conveyor P4, (10) dryer, and (11)

belt conveyor P2.
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FIGURE 2: Scheme of the IRC grain dryer. (1) Main hot air speed. (2) Hot air temperature. (3) Infrared exhaust gas temperature. (4) Infrared
exhaust gas velocity. (5) Exhaust gas temperature and humidity. (6) Drying waste gas. (7) Inlet grain temperature and moisture. (8) Outlet
grain temperature and moisture. (9) Postdrying grain temperature. (10) Infrared grain temperature. (11) Combustion tube temperature. (12)

Flue-gas temperature. (13) Ambient temperature and humidity.

Figure 2 is the schematic diagram of the IRC grain dryer
which consists of four sections: the storage grain section
(0.8 m in height), the convection section (1.1 m in height), the
radiation section (0.8 m in height), and the discharging grain

section (1.2m in height), of which the convection section is
a combination design and there are three kinds of drying
process to choose: counter flow drying; concurrent and
counter flow drying; mix flow drying, and the combustion
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FIGURE 3: Controlling situation and equipment for the IRC grain dryer.

furnace of radiation section is a side heat radiation type
equipped with some corresponding safety devices and can be
automatically ignited. Capacitive moisture sensor is installed
in the inlet and outlet of the grain dryer for the need of
control and some other online sensors detecting the real
drying parameters are also installed as shown in Figure 2
(numbers (1)-(13)).

2.2. The Control System of the IRC Dryer. The controlling
situation and some equipment for the grain dryer are shown
in Figure 3. Programmable controller technology (PLC) +
frequency converter are adopted in the control system and
the drying parameters can be real-time detected, such as
the air temperature and humidity, the grain moisture, and
temperature. The grain discharging speed is controlled by the
frequency converter (VFD-007M43B) installed in the control
cabinet which worked in two operating modes (manual mode
or automatic mode); when working in manual mode, long-
term work experiences are generally needed to manually
adjust the discharging grain speed to achieve the drying
target. In automatic mode, a reliable control algorithm is also
needed to automatically control the dryer.

The control system of the IRC dryer is also equipped
with a computer, which is connected with PLC (S7-300)
through Ethernet. The experimental data can be analyzed and
processed in the computer, and different drying algorithms
can be designed and tested.

2.3. The Process of Radiation-Convection Grain Drying. As
seen from Figures 1 and 2, the drying process is as follows.
(1) First, raise the wet grain into the dryer from the wet grain
barn by the bucket elevator T2 and belt conveyors P2 and
P3; when the upper limit grain level sensor is installed in
the storage section of the grain dryer alarms, the wet grain
feeding is stopped and ready for drying. (2) Secondly, let oil
furnace heat the radiator and begin to carry out radiation
drying in the radiation section by use of the high temperature
of the radiator. (3) Reuse the radiation exhaust gas of infrared
radiation section and mix it with appropriate amount of cold
air to achieve the regulation of the mixed air temperature by
controlling the opening of solenoid valve, and blow the mixed
air into the convection section through pipe to carry out the
convection drying in the convection section based on the heat
and mass exchange principle. (4) Finally, start the discharging
grain wheel and other relevant devices, then discharge the
dried grain into the dried grain barn by the bucket elevator
T3 and belt conveyor P5, and end the drying.

In the whole drying, the speed of discharging grain
motor can be adjusted automatically by an intelligent control
algorithm every time interval or adjusted manually by an
experience worker according to the detected drying parame-
ters.

2.4. The Identification Equation of Drying Process. For the
complex IRC grain dryer, the description of the dynamic
process of grain drying is more difficult. It is an effective way
to learn the characteristics of the drying process by modeling
the input and output data [30].

2.4.1.  Autoregressive Exogenous (ARX). Autoregressive
Exogenous (ARX) model has been widely applied in the
prediction control. It does not need to know the physical
mechanism inside the complex process, so it is regarded as
a “black box” model. It provides a fast and efficient solution
to the actual system output by means of a least squares
approach, and it has the advantages of simple structure and
strong robustness. It is an autoregressive model which has
exogenous inputs, and it relates the current output value of
a time series to past output values of the same series and
current and past values of the driving (exogenous) series.
More details about ARX can be found in [31, 32]. The basic
structure of ARX model identification is shown in

A(z) y(k)=B(z)u(k)+e(k),

Aiz) =1+ Yaz",
2 M
n,—1 )
B(z) =z " Z bz,

j=0

where the ARX order is determined as [n, n, t;], n, is the
model order of A(Z), m, is the model order of B(Z), and
t; is the estimated pure time delay between the exogenous
input signal u(k) and the output signal y(k); e(k) is a white
noise term, generally assumed to be Gaussian and White; k
represents the discrete time step.

The input and output data for identification model of
grain drying are from the drying experiment of the IRC grain
dryer (corn mixed flow and radiation) in December 4, 2015,
a total of 384 sets of data, and the sampling frequency is
60 HZ. The input data of the identified drying model is the
current and past drying time of grain being experienced in
the dryer and the past output grain moisture content of the
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grain dryer; the output data of the model is the current output
grain moisture of the grain dryer real detected by the output
grain moisture sensor which has been calibrated using the
105°C standard oven method (GB 5497-1985).

The corn of the drying experiment purchased from the
local farmers is a natural harvest species: number 1 XingXing
(a breed name of corn), and its initial grain moisture content
is about 26%. The ambient temperature is about minus 10°C,
relative humidity 60-70%. The hot air temperature is between
80 and 120°C, and the hot wind speed is 12 m/s.

By using the identification toolbox in Matlab, ident, the
identified transfer function of the model is a two-order lag
system as shown in (2), of which the identification model
orderis [2 2 1] (the input and output order are, resp., equal
to 2 and the time delay ¢, is equal to 1), and A(Z) and B(Z)
are as shown in (3) and (4).

B(Z 0.3799z7! — 0.3804z72 _
Gl = B4 _ Y A
A(Z)  1-0.7471z71 - 0.2277z
A(z) =1-0.7471z"" - 0.2277272, (3)
B(z) = 0.3799z " — 0.3804z 2. (4)

In this study, we use mean squared error (MSE) and
squared correlation coefficient (R) to evaluate the prediction
performance of the designed drying model shown in

1 & _\2
MSE = _Z (vi=7)"
mia

R
©)

_ \j (m Y2 Yy = Y Vi Xt J’i)z
(m 221 5’\1‘2 - (2:11 j’\z)z) (m 221 ¥ - (Zfﬁl )’i)z)

efo 1],

where m is the actual total number of the dataset and y; and 3;
are actual and predicted values, respectively; the closer MSE
is to zero, the better the prediction performance of model is,
and the closer R (range from 0 to 1) is to 1, the better the model
fits.

Experimental model identification results are shown in
Figure 4. The squared correlation coefficient R between the
model and the measured data is equal to 95.5%, and the MSE
error is equal to 2.29 * 10™*, showing that the resulting linear
model has a good approximation of the actual drying process.

2.4.2. Nonlinear Autoregressive with Exogenous Input (NARX)
Model. The theory of linear systems identification is a rel-
atively matured field [33]; however, as seen from Figure 4,
the ARX identified linear models can not adequately capture
all the magnitudes of the real output response due to the
high degree of nonlinearity of the system, so in this paper a
nonlinear model known as the Nonlinear Autoregressive with
Exogenous input (NARX) model is developed.

The NARX model has been proven to have a superior
performance and has been successfully employed in solving
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FIGURE 4: Fitting effect curve of the ARX model with the actual
curve.

various types of complex nonlinear model problems in recent
years [34-38]. The NARX model uses a nonlinear function
to predict the output grain moisture content of drying by
regressing from the past values of system output y and the
past values of exogenous input u. The form of the NARX
model is shown in

yky=flytk=1),y(k=-2),...
x(k—td_1),...,X(k—td—1’lb+1)],

oy (k=ng),x (k=tg),
(6)

where f[e] is a nonlinear mapping function that estimates the
output y(k) at time sample k. In this study the artificial neural
network is used to regress the nonlinear function f[e]. The
NARX network model structure consists of an input layer,
a hidden layer, and an output layer of which the number of
hidden neurons is 10 and the time lags order for the input
and output series is 2 (i.e., n, = n, = 2). The architecture of
the NARX model adopted in this study to predict the output
moisture content is shown in Figure 5, where x(t) is the
system input (drying time); y(t) is the system output (output
grain moisture content); w is the weights value; b is the bias
value.

In the case of modeling, the input-output data of 384
samples are randomly divided into three parts to develop a
NARX model: 268 training datasets, 58 validation datasets,
and 58 testing datasets. During the training phase, the past
input and output data of training are presented to train and
adjust the neural network by using the Levenberg-Marquardt
algorithm; during validation, the validation data are used to
measure network generalization and to halt training when
generalization stops improving; during testing, the testing
data have no effect on training data, so an independent
measure of network performance can be provided during and
after training.

Table 1 and Figure 6 show the regression prediction results
of the NARX model, and it shows that the NARX model has
high prediction accuracy of which the MSE and R on testing
data are equal to 1.062 % 10~ and 99.78%, respectively, and the
predicted errors (the difference values between the predicted
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FIGURE 5: The architecture of the NARX model.
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TaBLE 1: The simulation prediction results of the NARX model.

Model prediction results

Data Size

MSE R
Training data 268 1.70 * 107 99.68%
Validation data 58 1.08 % 107 99.78%
Testing data 58 1.06 * 107 99.78%

output values of model and the practical output values of
dryer) are basically within in +1%. These results indicate that
the developed NARX model is considered as a much better
representative for the nonlinear grain drying process than the
ARX model (MSE: 2.29 * 10~% R: 95.5%).

2.5. The Control Algorithm Structure of Grain Dryer. There
are many factors that affect the control performance of grain
drying as shown in Figure 7, the main factors of which
are the grain initial temperature and inlet moisture, the
ambient environment temperature and moisture, the hot
air and cooling air flow, the hot air temperature, and the
speed of discharging grain. In addition, the corn used in
the experiment is purchased from different local farmers and

each batch of grain moisture is different, so it will easily lead
to the variations of the grain moisture content in the dryer.
Furthermore, the ambient temperature is below zero, the ice
inside the grain will affect the detection accuracy of the grain
moisture sensor. Therefore, grain drying is such a complex
process that satisfactory control effect is difficult to achieve.

Under a certain period of time and environmental con-
ditions, some variables can be thought to be unchanged for
a certain batch of grain drying, such as the grain initial
temperature and initial moisture content, the ambient envi-
ronment temperature and moisture, the hot air temperature,
humidity, and the hot air flow rate. Usually, in the engineering
practice of grain drying, the drying time is often taken as the
control variable and the output grain moisture content as the
important controlled variable; the other affection factors are
taken as the disturbance signals.

The designed control scheme of this paper is shown in
Figure 8, where the intelligent controller in this paper refers
to the designed dual fuzzy immune PID controller, and the
immune algorithm refers to the feedback control law, e(t)
is the error between the output and the target value, de/dt
is the change rate of e(f), and the interference signal can
be the inlet grain moisture, the ambient temperature, and
so on. The drying time of grain in the dryer can be tuned
by controlling the speed of the discharging grain motor in
the whole drying process according to the corresponding
intelligent control algorithm to achieve the target value; in
addition, the controller’s initial parameters are optimized by
a genetic algorithm.

3. Design of the Genetic Optimization Dual
Fuzzy Immune PID (GODFIP) Controller

3.1. The General Fuzzy Immune PID Controller Design

3.1.1. Biological Immune Principle. Biological immune system
can produce antibodies against a foreign invasion of the
antigen, which plays the defense role. The most important
cells in the immune system are the lymphocytes which are
mainly two kinds: B and T cells; B cells are responsible for
antibody production and carry out the immunity function
and T cells regulate the whole immune process. T cells are
composed of inhibit T cells (T) and helper cells (Ty;), which,
respectively, inhibit and help B cells respond to a stimulus.
When the antigen is increasing, there are more Ty cells and
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less Ty cells in the body which will produce more B cells, that
is, more antibodies; when the antigen is gradually reduced,
Ty cells will increase and inhibit the generation of Ty cells;
thereby reducing the B cells, antibodies decreased. When the
antigen is eliminated, the immune response is completed.

Assuming that the k generation amount of antigen is e(k),
the change rate of the number of antigens is Ae(k); the output
of Ty cells is Ty (k); the output of Ty cell is Tg(k); according
to the immune feedback mechanism, the total stimulation
received by B cells is S(k), as shown in

S(K) = Ty (k) - Ts (k). ?)

Among them Ty(k) = ke(k); Tg(k) = k,flek),
Ae(k)]e(k); f(-) is a nonlinear control function that repre-
sents the ability to suppress external stimuli. Its feedback
control law is shown in (8) and thus is also called the
nonlinear p-type controller.

S(k) = Ty (K) — Ts (k)
= {ky ~ Ky f [ (), e (B)] £ (K))
= k{1 =nf [ (), Ae ()T} & () = K e (),
K, = k{1-nf [e (), Ae (K]}

Among them, k = k, is the speed of control response,
n = ky/k, is related to the stability of the response, and
K, will change with the amount of the antigen. Moreover, a
reasonable adjustment of k and # is also crucial, and it will
enable the control system to have smaller overshoot and faster
response rate.

3.1.2. Design of General Fuzzy Immune PID Feedback Con-
troller. Imitating the above immune feedback mechanism, a
p-type fuzzy immune PID feedback controller is designed,
which combines the fuzzy immune controller with the gen-
eral PID controller.

The discrete form of the ordinary PID controller is as
shown in

u'(k)z(kp'+%+kd'z_l>e(k). 9)

z

The discrete output of the fuzzy immune PID is shown in
(10) by replacing the antigen e(k) and its change rate Ae(k)
of the fuzzy immune system with the output of general PID
controller u' (k) and its change rate A (k), respectively.

u(k) = K,u' (k) = k{1-nf [u' k), (0]}

, ki’ 1z —1
-(kp +z_1+kd >e(k)

2 (10)
ki z-1
= (kp+ p— + kd " )e(k),
where
kp = kkp' {1 = nf ()} = K,kp',
ki = kki' {1 = nf ()} = K ki', (1)

kd = kkd' {1 - nf ()} = K kd'.

Its controller structure is shown in Figure 9, and the
controlled object is the IRC dryer; the controller variable is
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FIGURE 9: Structure of the fuzzy immune PID feedback controller.

the output of the model: y(k) is the outlet grain moisture;
r(k) is the input of the control model which is a step response
function (the target moisture content value); e(k) is the error
between the output and the target value; de/dt is the change
rate of e; 1/ (k) is the output of the general PID controller;
u(k) is the immune controller’s output which can control the
drying time of grain in the dryer (i.e., u(k) can be used to
control the speed of discharging grain motor to obtain the
tuning of the grain drying time).

The Mamdani fuzzy controller designed in the control
algorithm is used to approximate the nonlinear function
(f [u'(k), Au'(k)]), and it has two inputs and one output. The
two input variables of the fuzzy controller are the output
of the PID algorithm (' (k)) and its change rate of error
(Au'(k)), and the output variable of the fuzzy controller is
a nonlinear function (f[u'(k), Au'(k)]). As seen in (11), the
parameters of the controllers kp, ki, and kd can be adjusted
adaptively with the change of u'(k) and Au'(k), which
overcomes the limitations that the general PID controller’s
parameters can not be dynamically adjusted during the
control process.

Firstly, the fuzzy method of the input variables should be
used to transform from the basic domain to the correspond-
ing fuzzy set domain and define the quantification factor of
input variables (K,,; K,,/) to get the fuzzy input (U’ = K, *
u'; AU’ = K,,» * Au'), so the output needs to transform from
the fuzzy set to the basic domain. In this paper, the fuzzy set
domain of the input and output is [-1, 1].

Secondly, the membership functions of input and output
lingual variables should be formed to determine the distri-
bution of different variables. There are commonly three types
of membership function to be used: (1) normal distribution;
(2) triangle; (3) trapezoidal. The numbers of the fuzzy sets
for the input variable and output variable are used to meet
the requirements of accuracy. As the numbers of the fuzzy
sets increase, the numbers of fuzzy control rules increase
accordingly, which will improve the accuracy of control, but
meantime the complexity of control is increased; on the
premise of satisfying the requirement of control precision,
the least numbers of the fuzzy sets can be equal to 3 based
on the principle of determining the minimum inference rules
numbers; in addition, the numbers of the fuzzy sets for the
input and the output can be unequal; in order to improve the

TaBLE 2: Knowledge rules of the fuzzy controller.

' ' Au' (k)
[ k), A (k)] . . N
P NB NS PS
u' (k) Z NS Z PS
N NS PS PB

accuracy of control, the fuzzy sets numbers for the output
variable can be increased [39]. Based on the above analysis,
in this paper each of the input variables has three fuzzy
sets: {positive, zero, negative} or {P, Z, N}; the output adopts
five fuzzy sets: {positive big, positive small, zero, negative
small, negative big} or {PB, PS, Z, NS, NB}. The Mamdani
fuzzy controller can use the following 9 knowledge rules
shown in the Table 2 (e.g., if u'(k) is P and Au'(k) is P
then f [u'(k), Au' (k)] is NB), which imitating the control
principle of biological immune feedback. The input and
output membership functions of the fuzzy controller are
shown in Figures 10(a)-10(c).

And then, the fuzzy output can be obtained by the
fuzzy inference synthesis algorithm according to the rules of
Table 2.

Finally, according to the fuzzy rules, defuzzification will
transform the output f(e) of the fuzzy controller from a fuzzy
set to a crisp number by using the gravity method (centroid)
and the Zadeh fuzzy logic operation (AND). The relationship
surface figure of the output and input in the universe of
discourse is shown in Figure 10(d).

3.2. Genetic Optimization Dual Fuzzy Immune
PID (GODFIP) Controller

3.2.1. The Structure of GODFIP. It can also be seen from (11)
that the PID parameters (kp, ki, kd) have the same change rate
(K,) which should be different in the actual control process,
thus affecting the control effect to some extent. In this paper,
by adding a fuzzy PID parameter adjusting controller on the
general fuzzy immune PID controller to adjust the increment
values of the PID parameters in (11), making kp', ki', kd'
variable in the process of control shown in (12), the change



Mathematical Problems in Engineering

—

0.8 +
0.6 |
0.4
0.2}
0 " " " " " " " " "
-1 -08 -06 -04 -02 0 02 04 06 038 1
Input variable: u' (k)

(a)

Degree of membership

1 s T ToNs T T 7 T Toes T T P

0.8 |
0.6 -

0.4 1
0.2} E f

0
-1 -0.8 -06 -04 -02 0 02 04 06 08 1
Output variable: f

(©

Degree of membership

Degree of membership

-1 -08 -0.6 -04 -02 O 02 04 06 08 1
Input variable: Au' (k)

(b

0.5 0

-0.5 -1 1 N

(d)

FIGURE 10: Degree of membership function plots (a) u' (k), (b) Au' (), (c) fand (d) relationship surface figure of the output and input.
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FIGURE 11: Structure of the genetic optimization dual fuzzy immune PID (GODFIP) controller.

rates of the PID parameters (kp, ki, kd) in (11) are not the
same.

kp' (k) = kp' + Akp' (k),

ki' (k) = ki’ + Aki' (k), (12)

kd' (k) = kd' + Akd' (k).

In addition, in the process of control, there is some
difficulty in selecting the parameters (kp', ki', kd', k, n),
which is often time consuming and affects the control effect
to some extent. Moreover, a reasonable adjustment of k
and 7 is also crucial, and it will enable the control system
to have smaller overshoot and faster response. So genetic
algorithm is adopted to optimize the parameters of the
GODFIP controller, and the optimal control is realized.

Therefore, in this paper, a genetic optimization dual fuzzy
immune PID (GODFIP) controller is designed, which not
only can improve the limitation of the general fuzzy immune
PID control but also can find the optimal parameters (kp', ki,

kd', k, and ) according to the control situation. The structure
of GODFIP controller is as shown in Figure 11.

In Figure 11, r(k) is the reference target input; e(k) is the
error between the output and the target value; de/dt is the
change rate of e; u'(k) is the output of the PID controller
after parameter adjustment (i.e., the input of fuzzy immune
controller); f(e) is the nonlinear function; u(k) is the immune
controller’s output which can control the drying time; the
drying model is the controlled object; y(k) is the output of
model (i.e., the output grain moisture).

Taking the output grain moisture y(k) as the controlled
variable and the output of the fuzzy immune controller u(k)
as the control variable, the drying time of grain T, (k) in the
dryer can be adjusted to realize the control target.

In the drying experiment, by the experiment of calcu-
lating the grain weight of being discharged from the dryer
within an hour (20 HZ: 3.126 t/h; 10 HZ: 1.753 t/h), the linear
inverse relationship between the speed of discharging motor
and the drying time is obtained ((u = —k,, * Ty, (k) + ¢)).
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TABLE 3: PID parameters tuning rules of fuzzy PID parameters controller.
de/dt
Akp' Aki' Akd'

NB NM NS ZE PS PM PB NB NM NS ZE PS PM PB NB NM NS ZE PS PM PB

NB PB PB PM PM PS ZE ZE NB NB NM NM NS ZE ZE PS NS NB NB NB NM PS
NM PB PB PM PS PS ZE ZE NB NB NM NS NS ZE ZE PS NS NB NB NB NM PS
NS PM PM PM PM ZE NS NS NB NM NS NS ZE PS PS ZE NS NM NM NS NS ZE

e ZE PM PM PS ZE NS NM NM NM NM NS ZE PS PM PM ZE NS NS NS NS NS ZE
PS PS PS ZE NS NS NM NM NM NS ZE PS PS PM PB ZE ZE ZE ZE ZE ZE ZE
PM PS ZE NS NM NM NM NB ZE ZE PS PS PM PB PB PB NS PS PS PS PS PB
PBZE ZE NM NM NM NB NB ZE ZE PS PM PM PB PB PB PM PM PM PS PS PB

A brief introduction to the design principle of fuzzy PID
parameter controller and genetic algorithm of the control
structure of GODFIP are as follows (Sections 3.2.2 and 3.2.3).

3.2.2. Fuzzy PID Parameter Controller. In Figure 11, there are
two inputs for the fuzzy PID parameter controller, e and
de/dt; three outputs, Akp', Aki', and Akd' (i.e., three PID
parameters increment values); the universe of discourse of
the input and output is [-3, 3]; Akp’, Aki', and Akd' can be
deduced from the fuzzy rules shown in Table 3. The fuzzy PID
parameter controller can change the increment values of the
PID parameters dynamically according to the fuzzy rules by
tracking the error signal and its change rate.

3.2.3. Genetic Optimization Algorithm. Genetic algorithm is
a stochastic global optimization method that mimics the
metaphor of the natural biological evolution. According
to the fitness function value, the global optimal solution
can be obtained by the genetic evolution. The fitness value
of each individual in the population is calculated by the
fitness function and provided to the operator for selection,
crossover, and mutation and screening individuals to find the
best by retaining the best fitness value and eliminating the
poor fitness values. If the termination condition is satisfied,
then the optimal individual is used to be assigned to the
parameters of the controller; otherwise continue to calculate
the new species until the global optimal value is found.

So we can use genetic algorithm to optimize the control
parameters (kp', ki', kd', k, 7). The basic genetic processes
are selection, crossover, and mutation. The process of genetic
algorithm is as follows:

(1) Parameter coding: real code is adopted, and for a
given parameter range [min, max], the real number
coding is equal to min + (max — min) * rand.

(2) Population initialization: the individual coding length
is 8 (kp, ki, kd, k, n, and 3 proportional coefficients
used in the control structure), the population size
is 20, the generations of evolution are 100, and the
termination error is le — 6. In order to avoid the
blindness of searching for the best, the initial values
of parameters are firstly obtained by the first run of
the genetic algorithm and then take this as the center
to both sides to find the best.

(3) Determining fitness function: the minimum objective
function of parameter selection is obtained from the
aspects of reducing energy loss, stability, accuracy,
and rapidity and to be provided for the operator
selection and judgment. To prevent the control input
of the controlled object too large and save the energy
consumption, the output of the fuzzy immune con-
troller is also added to the objective function, and the
optimal function of the controller is shown in

J= LOO [w, le (O] + wyu (1)*] dt + wst,, (13)

where e(t) is the system error; u(t) is the output of the fuzzy
immune controller; ¢, is the rising time; w;, w,, and w; are
the weights.

In order to avoid overshoot, the penalty function is
adopted as shown in (14) (w, > w,), err y(t) = y(t)—y(t—1),
where y(t) is the output of the controlled object; § is the
size of the overshoot to be controlled; once the overshoot is
generated, it will be used as the optimal indicator.

if Je(®)|>96
then J

= L [w1 le (£)] + wyu® (t) + w, lerr y (t)” dt
+ wst,.

4. Simulation and Discussion

4.1. Control Simulation Based on NARX Model. In order to
verify the effectiveness of the proposed GODFIP controller
in the grain drying control, the following controllers, the
general PID controller, the fuzzy PID controller, the fuzzy
immune PID controller, and the GODFIP controller, are,
respectively, designed and simulated to be compared with
the GODFIP controller by programming in the Matlab. As
can be seen from Section 2.5, the NARX drying model has a
better modeling accuracy and performs much better than the
ARX drying model, so it can be considered to be a reliable
representative of the IRC dryer. In this control simulation,
the NARX model is selected to represent the actual drying
process to verify the control performance.
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FIGURE 12: The fitness curve of optimization simulation for the
GODFIP controller.

During the simulation, the controlled variable is the
output grain moisture content y(k) of which the initial
value is set to 26%; the control variable is the speed of the
discharging grain motor; the input of each model is the
step response function (final value = 15%) mimicking the
target grain moisture; the step response curves of different
controllers are compared within 100 sampling events.

The optimal solutions of control parameters of the
GODFIP controller are evaluated by a real-coded genetic
algorithm. The fitness curve of the optimization simulation
is shown in Figure 12, and the best objective function value ]
is equal to 1.6448 after 63 generations, and the optimal PID
parameters are, respectively, as follows:

(1) kp' = 2.601; (2) ki’ = 1.551; 3) kd' = 1.137; (4)
k = 2.53; (5) n = 8.328; (6)-(8) other three proportional
coeflicients: —8.426, 5.062, 1.939.

In order to achieve a fair comparison, the genetic opti-
mization algorithm is also used to optimize the other three
controllers. Moreover, three runs of the genetic optimization
algorithm program are made to avoid the stochastic error
for each controller; finally, the average value of the objective
function value J is considered as the performance measure of
each controller.

Figure 13 compares the performances of different con-
trollers in controlling the NARX drying model and the
control simulation results are as shown in Table 4, where the
definition of t,, 8%, y(t,), y(00), t,;, and £, is as follows.

The rising time to the target value ¢, is the time to reach
95% of the steady state for the first time in the transient
process.

Maximum overshoot §% is as shown in

oo = O (12) =2 (©) 09
¥ (c0)

where y(t,) is the first peak value of the system response and

y(00) is the steady value of the system response.

Adjusting time t;is the time required from the first peak
value y(t,) to the steady value y(co) that falls between
the deviations allowed (+5%) and is maintained within the
allowable range.

The adjusting time ¢, is the time to the steady value after
the interference disappears.

1

Output moisture content

10 20 30 40 50 60
Number of sample events (k)

(1) The general PID (4) The GODFIP
o controller - controller
__ (2) The Fuzzy PID —— 'The target value
controller
(3) The Fuzzy immune PID
controller

F1GURE 13: Simulation results comparison of different controllers for
the grain drying process of IRC dryer.

4.2. The Anti-Interference Test Simulation Based on NARX
Model. The dynamic influence factors of the grain drying
process are a lot, and the influence of various disturbance
factors in the control process easily leads to the variations
of the output grain moisture. In order to verify the anti-
interference performances of the controllers, the interference
signal with the amplitude of 0.02 at sampling number 105
is added to represent a possible increase in the initial
moisture of grain that enters the IRC dryer which is shown
in Figure 14(a), and this anti-interference simulation test is
within 200 sampling events. The anti-interference perfor-
mance comparison results are shown in Figure 14(b).

4.3. Simulation Result Discussion

(1) The Optimization Results. The genetic optimization algo-
rithm is used to achieve the optimal control of the GODFIP
controller, the fuzzy immune PID controller, the fuzzy PID
controller, and the general PID controller based on the
performance objective function from the aspects of energy
savings, stability, accuracy, and rapidity. As can be seen from
the comparison results shown in Table 4, the J value of
the GODFIP is equal to 1.6450 and is obviously less than
the compared controllers which is about 3.53% decrease
compared to the fuzzy immune PID controller, about 91.9%
decrease compared to the fuzzy PID controller, and about
93.68% decrease compared to the general PID controller.
Hence, the GODFIP controller has achieved the best control
performances in terms of accomplishing the least value of
J compared to the other three controllers, showing the
effectiveness of the GODFIP controller.

(2) The Overshoot, the Adjusting Time t;, and the Rising Time
t,. Overshoot, adjusting time, and rising time are important
indexes to judge a controller’s performance reflecting the
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FIGURE 14: The anti-interference effect comparisons between the GODFIP controller and the other controllers: (a) the interference signal and

(b) the anti-interference effect comparison results.

TaBLE 4: Control performance comparisons of different controllers.

Controllers ] 8 y(t,)  t, (number of samples)  t;; (number of samples) ¢, (number of samples)
General PID 26.046  0.13%  0.1502 57 0 39
Fuzzy PID 20.348  0.07%  0.1501 20 0 30
General fuzzy immune PID  1.7052  0.00%  0.1500 8 0 13
GODFIP 1.6450  0.00%  0.1500 5 0 10

control stability of the system, not oscillating wildly (in
the drying control reflecting the output moisture content
fluctuations), and the rapidity of the system response-rapidly
tracking control of the target signal. By the simulation com-
parisons of Figure 13 and the control performance values of
Table 4, owing to the adopted genetic optimization algorithm
on the controllers, the overshoot and the adjusting time ¢,
of all compared controllers are almost zero, showing the
excellent optimal ability of genetic algorithm. It can also be
seen that the rising time to the target value of the GODFIP
controller is 5 samplings which is about 37.5% decrease
compared to the general fuzzy immune PID controller (8
samples), about 75% decrease compared to the fuzzy PID
controller (20 samples), and about 91.2% decrease compared
to the general PID controller (57 samples), showing the
effectiveness of the GODFIP control algorithm.

Under the same optimization conditions, the PID con-
troller and the fuzzy PID controller need more samples to
the target value than the other two immune controllers (the
GODFIP and the fuzzy immune PID) in order to accomplish
the optimal control target; in fact, it is impractical for the
grain drying process because it will cause an inefficient energy
consumption and bad dried grain quality. The GODFIP
controller and the fuzzy immune PID controller are both
superior to the PID controller and the fuzzy PID controller,
which not only can the stability of the control system be
achieved, but also the system output can be rapidly adjusted to

the target value, showing the advantage of the immune algo-
rithm. In addition, the GODFIP controller has performed
better compared to the fuzzy immune PID controller, so the
GODFIP controller is more suitable for the IRC dryer than
the other compared controllers.

(3) The Anti-Interference Test. As can be seen from Fig-
ure 14, the GODFIP controller has the best anti-interference
performances compared to the other three controllers that
it can quickly respond to and track the interference signal
and can adjust the output value to the target value rapidly
and steadily after the interference disappears; moreover, the
fluctuations affected by the interference are less. However,
for the same test, the general PID controller and the fuzzy
PID controller have showed oscillatory behavior when an
interference exits during the drying process, of which the
general PID controller has taken nearly 39 samples and the
fuzzy PID controller has taken nearly 30 samples to reach
the desired moisture content level, showing the inefficiency
of handling the effect of interference by the two controllers
and inferior to the anti-interference ability of the GODFIP
controller. Moreover, the GODFIP controller has improved
the anti-interference performance of the fuzzy immune PID
controller of which 3 samples to the target value are reduced
compared to the fuzzy immune PID controller. The anti-
interference performance test further verifies the robustness
of the proposed GODFIP controller over an uncertainty
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range of condition and demonstrates that it is a suitable
controller for the IRC grain dryer.

5. Conclusion

In this paper, a genetic optimization dual fuzzy immune
PID (GODFIP) controller based on the immune feedback
mechanism is designed and simulated to control an IRC
grain dryer represented by an identified Autoregressive with
Exogenous input (NARX) model. The NARX model has a
higher model approximation accuracy (MSE: 1.062 * 107°;
R: 99.78%) than the identified linear ARX model (MSE:
229 % 107% R: 95.5%), so the NARX model is a better
candidate in representing the nonlinear dynamics of the
IRC grain dryer to verify the control performances of the
GODFIP controller. In order to achieve a fair comparison,
the genetic optimization algorithm is utilized to optimize the
proposed GODFIP controller and the other three compared
controllers based on the performance objective function J
from the aspects of energy savings, stability, accuracy, and
rapidity. Finally, the control simulation comparison and the
anti-interference simulation test are made. As can be seen
from the simulation results of Figures 13 and 14 and Table 4,
the GODFIP controller has the least value of J compared
to the other three controllers which is equal to 1.645 about
3.53% decrease compared to the fuzzy immune PID, about
91.9% decrease compared to the fuzzy PID controller, and
about 93.68% decrease compared to the PID and the shortest
rising time about 37.5% decrease compared to the fuzzy
immune PID, about 75% decrease compared to the fuzzy
PID, and about 91.2% decrease compared to the PID and
has the best anti-interference ability which can adjust the
output to the target value rapidly and steadily. It is tested
from the simulation results that the GODFIP controller has
improved the control performance of the fuzzy immune PID
controller and is obviously superior to the PID controller
and the fuzzy PID controller, so the GODFIP controller can
track the target value rapidly and steadily and can handle the
uncertainty conditions of complex systems to some extent
which is more suitable for such a complex system as grain
drying. The big difference between this control method and
the traditional control method is that it is not dependent on
the transfer function of the controlled object. The proposed
GODFIP controller can provide an effective reference for the
actual control strategy of the grain drying process and may be
applied to control the real IRC dryer in future works.
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