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This paper has twin aims. Firstly, a multigrid design approach for optimization of an unconventional morphing wing is proposed.
The structural design problem is assigned to optimize wing mass, lift effectiveness, and buckling factor subject to structural safety
requirements. Design variables consist of partial topology, nodal positions, and component sizes of a wing internal structure. Such
a design process can be accomplished by using multiple resolutions of ground elements, which is called a multigrid approach.
Secondly, an opposite-based multiobjective population-based incremental learning (OMPBIL) is proposed for comparison with
the original multiobjective population-based incremental learning (MPBIL). Multiobjective design problems with single-grid and
multigrid design variables are then posed and tackled byOMPBIL andMPBIL.The results show that usingOMPBIL in combination
with a multigrid design approach is the best design strategy. OMPBIL is superior to MPBIL since the former provides better
population diversity. Aeroelastic trim for an elastic morphing wing is also presented.

1. Introduction

Design/optimization of a morphing wing aircraft structure
is a research field investigated throughout the world. It has
been found that the shape and structural flexibility of a
morphing aircraft greatly affect its flight performance [1].This
leads to continuous shape change and is called a morphing
concept, which is an attempt to avoid using conventional
hinged control surfaces. From the literature, external plane
transformation of thewing is a recent popularmorphing con-
cept [1].The idea is to changewing aerodynamic performance
by deforming the initial wing plane, which can be categorized
as wing camber variation [1–5], lateral wing bending [1], and
wing twisting [5–9]. The variable camber of an aircraft wing
is the most popular method [1], which can be implemented
via a conventional hinged mechanism, a smart material, or a
compliant mechanism. The compliant mechanism is the best
method for such a morphing aircraft wing concept [4]. In

the lateral wing bending concept, the wing can bend up and
down in a vertical direction so as to produce a wing span
camber. Using this concept, wing aerodynamic performance
can be varied and it is carried out by using an internal
mechanism. The last concept, the wing twisting, can adjust
a wing angle of attack by using structural flexibility and
applying external torque. Later, there has been some work
attempting to exploit adaptive internal structures [6]. The
concept can be thought of as a combined lateral wing bending
and variable camber concept. From the literature [1–4], it is
revealed that themorphing wing aircraft structure is actuated
directly by an external force to carry out such aircraft control.
Furthermore, the morphing wing structures are elastic rather
than perfectly rigid; thus, consideration of their aeroelastic
behavior is essential in a design process. This leads to recent
work in which the effects of the external force on aeroelastic
characteristic of a morphing aircraft wing are studied [10].
The result shows that the actuating force has a significant
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impact on the aeroelastic and mechanical characteristics and
these effects should be taken into account during the design
process of a morphing aircraft structure. Also, the aircraft
internal structure including the structural layout and sizes
significantly affects the aeroelastic characteristics.

In our recent work, it has been proposed to synthesize
new internal structural layouts of an aircraft wing [8] and
an aircraftmorphing wing [9] usingmultiobjective optimiza-
tion.The first study leads to an unconventional wing internal
layout, which is aeroelastically superior to a traditional rib-
spar layout. Design variables include partial topology and
sizes of segments on a structure, while design objectives are
wing weight, lift effectiveness, and buckling factor. The sec-
ond study found the unconventional wing structures subject
to external actuating torques which are practicable to apply
for the morphing aircraft. Design variables include partial
topology and sizes of segments on a structure like the first
study, but the second study included nodal displacements.
Design objectives are wing weight, percentage of change
in lift effectiveness, and buckling factor. In both study, the
combination of the two types of design variables is carried
out by using a ground element approach. The method used
to tackle the design problems is multiobjective population-
based incremental learning (MPBIL). The optimizer used
herein is one of the most powerful evolutionary methods for
solving structural topology optimization [11]. The method is
category as nongradient optimization methods, which does
not require gradient information to converge to a solution.
The design strategy proposed in these works can be used as a
numerical tool for synthesizing an internal structural layout
of a morphing wing, which usually requires high structural
and aeroelastic performance for flight operation [8, 9].

The main motivation of this research work is to initiate
an idea to synthesize unconventional aircraft wing structures
that are expected to outperform their conventional counter-
parts.This paper is intended as an extension of the above liter-
ature.Thework has two aims. Firstly, the use of several resolu-
tions of ground elements at the same time is proposed instead
of using one ground element resolution for a design problem
and this is termed a multigrid ground element approach.
Design variables are simultaneous topology, shape, and sizing
optimization. The second part is performance enhancement
of a multiobjective evolutionary optimizer MPBIL. The
opposite-based evolutionary optimization is used to improve
the search performance of the original MPBIL and it is
named opposite-based multiobjective PBIL (abbreviated as
OMPBIL). MPBIL and OMPBIL are employed to solve a
morphing wing synthesizing design problem with the use of
single-grid andmultigrid ground elements. Optimum results
reveal that OMPBIL is superior to MPBIL. The multigrid
approach leads to better design results than the single-grid
one, while the set of design variables that include structural
layout, nodal positions, and sizes gives the best structural
layout.

The rest of this paper is organized as follows. Section 2
details single- and multiground element design approaches
for synthesizing a wing’s internal structure. The opposite-
based multiobjective population-based incremental learning
is proposed in Section 3. A design problem and its conditions

as well as a numerical experiment are given in Section 4,
while the design results are in Section 5.The conclusions and
discussion of the study are finally drawn in Section 6.

2. Partial Topology, Shape, and
Sizing Optimization

Shape and sizing optimization [12] and simultaneous partial
topology integrate three different types of structural design
variables in the same design problem. This is somewhat
complicated but found to be an efficient design strategy
[8, 9, 13]. Such a design strategy can be achieved by using
the ground finite element technique. The ground element
technique is commonly used in a topology optimization
process. The basic idea is to generate ground finite elements
throughout a design domain being considered. Design vari-
ables determine pseudo-densities (such as element thickness
and modulus) of those ground elements. Having obtained
an optimum solution (e.g., from complianceminimization or
dynamic stiffness maximization), ground elements with low
pseudo-densities are assigned as holes on a structure whereas
elementswith high pseudo-density represent a structure.This
concept has been proven effective for many design cases
[11, 14, 15].

For simultaneous topology, shape, and sizing optimiza-
tion of an aircraft wing, ground elements include all possible
combinations of wing internal segments and wing skins.
Figures 1(a) and 1(b) display the ground elements or ground
segments for the wing internal structure used for design
demonstration in this work. The details of this simple wing-
box structure can be found in our previous work [8, 9].
Note that diagonal segments of a structure are used because
it has been found that such ground segments result in
aeroelastically superior structures compared to using only
chordwise and spanwise segments as with a conventional
wing structure [8]. The upper and lower wing skins shown
in Figure 2 are also set as design variables. It has been found
that the variable-thickness of element panels can enhance its
aeroelastic performance [5, 16].The combination of topology
and sizing variables of the wing is carried out by assigning
values to the thicknesses of those segments in meters (m).
For example, let 𝑥

𝑖
∈ [0.0005, 0.001]m be design variables

for segment thickness where the lower and upper bounds are
based on manufacturing tolerance. The 𝑖th ground segment
will be removed from the main structure if the value of 𝑥

𝑖

is close to its lower bound at the optimum point. Other
thickness values higher than the lower bounds are used for
structural sizing. It should be noted that the ideal lower
bounds for topological design variables are zero segment
thickness. However, in order to prevent singularity in a global
stiffness matrix of a wing, we have to use a small positive
value as lower bounds of the topological design variables.
Figure 1 illustrates how to transform from particular design
variables (Figure 1(a)) to be a wing structure (Figure 1(b)).
Shape design variables, on the other hand, can be added to
the partial topology and sizing optimization by assigning
positions of internal nodes of those ground segments as
design variables as illustrated in Figure 3. The shape design
variables determine the positions of the external nodes in
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Figure 1: Wing-box (a) ground segments without nodal position and (b) an internal structural layout of a wing-box.
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Figure 2: 6 × 3 ground segments for wing-box skins without nodal
position.

𝑥- and 𝑦-directions. Figure 4 shows the segments on lower
and upper wing skins as the internal nodes positions are
varied. The skin segments are also set as design variables.

The design problem is posed to minimize three design
objectives simultaneously, while fulfilling safety constraints.
A morphing wing in this study is based on the wing twisting
concept. To achieve flight control, the wing is subject to a
twisting actuating force on the wing internal structure as
shown in Figure 5. This means that the wing generates lift
variation through change of lift effectiveness due to actuation.
Thus, the first objective function is the difference percentage
betweenwing lift effectiveness with andwing lift effectiveness
without actuating force. This function can be expressed as

%Δ𝜂
𝐿
=

(𝜂
𝐿,Fe − 𝜂

𝐿
)

𝜂
𝐿

× 100, (1)

where 𝜂
𝐿,Fe is the lift effectiveness considering the effect of

an external force. The second objective function is set to
minimize structural mass, which is rather an unavoidable
requirement for aircraft structural design.The third objective,
buckling factor maximization, is set to increase the strength
of the structure. The wing is considered as a thin-wall
structure in which one of the most critical design criteria is
buckling instability. The multiobjective design problem can
be expressed as

min
{
{
{
{

{
{
{
{

{

𝑓
1
= −%Δ𝜂

𝐿

𝑓
2
= 𝑀

𝑓
3
= −𝜆

subject to 𝑉
𝐹
, 𝑉
𝐷
≥ 150m/s

𝜆 ≥ 1

𝑁 =

𝜎
𝑦𝑡

𝜎

≥ 1

0.0005 ≤ 𝑥
𝑖
≤ 0.001m

−0.075 ≤ 𝑑𝑐
𝑗
≤ 0.075m

−0.225 ≤ 𝑑𝑠𝑝
𝑗
≤ 0.225m,

(2)

where 𝑀 is the structural mass, 𝑉
𝐷
is the divergence speed,

𝑉
𝐹
is the flutter speed of the wing, 𝑁 is the safety factor,

𝜎 is the maximum equivalent stress on the wing due to
aerodynamic and actuating forces, 𝜎

𝑦𝑡
is the yield stress, 𝜆 is

the buckling factor, 𝑥
𝑖
is the thickness of a wing segment 𝑖,

𝑑𝑐
𝑗
is the nodal position in the chordwise direction of node

𝑗, and 𝑑𝑠𝑝
𝑗
is the nodal position in the spanwise direction of

node 𝑗. The last two constraints are assigned so as to prevent
node positions and wing segments overlapping each other
in cases of performing simultaneous partial topology, shape,
and sizing design. For details of structural and aeroelastic
models as well as other function evaluation procedures, see
Sleesongsom and Bureerat [8, 9].

A question always arises at the preprocess stage [17],
when using a ground element approach: what is the best
ground element resolution for a design problem? As a result,
using several sets of ground segments at the same time when
performing optimization is investigated and it is termed
a multigrid design approach. The multigrid approach is
said to be an extension of the ground segment strategy,
which has been proposed to solve a truss structure [18].
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Figure 3: Ground segments with nodal position variables (e) and an internal structural layout of a wing-box.
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Figure 4: 6 × 3 ground segments for wing-box skins with nodal
position variables.

Figure 6 shows three sets of ground segments with different
grid resolutions used in this study. The first set of ground
elements has 99 segments, which was used in the previous
study [8]. The second set has 82 segments, while the third
set has 53 segments. Using one set of ground elements is
simple to perform since we can assign thickness values to all
segments (and to nodal positions in cases of shape design
variables). Nevertheless, when using many ground segment
sets, a special encoding/decoding scheme for multiobjective
evolutionary optimization is needed [8]. From Figure 6, let
the first set of ground elements have 𝑁

11
segments and 𝑁

12

nodal positions. The second set has 𝑁
21

segments and 𝑁
22

nodal positions,while the third set has the numbers of ground
segments and nodal positions as 𝑁

31
and 𝑁

32
, respectively.

Given that 𝑁
11

≥ 𝑁
21

≥ 𝑁
31

and 𝑁
12

≥ 𝑁
22

≥ 𝑁
32
,

the variables encoding/decoding scheme for the multigrid
design approach can be detailed as in Algorithm 1. AsMPBIL
and OMPBIL use binary design variables, the conversion of
a binary string to become a real design vector x needs to be
performed before entering Algorithm 1.

3. MPBIL and OMPBIL

This section details the two algorithms MPBIL and the
new optimizer OMPBIL, which will be used to tackle the
optimization presented in Section 2. Evolutionary algorithms
(EAs) are alternative optimizers to classical gradient-based

optimizers such as a steepest descent method and sequential
linear programming. Unlike the gradient-based optimizers,
EAs search for optima based upon evolutionary concepts
in combination with randomization [11]. The methods, for
example, genetic algorithms, are simple to use, robust, and
capable of tackling global optimization. They can be used
for almost any kinds of optimum design problems (such as
discrete [11], continuous [14], and combinatorial optimization
[19]) since they can search for optimum solutions without
using function derivatives. In our design problem, there
is no accuracy guarantee for function evaluation especially
the flutter speed [10]. Apart from that, our new design
variables are mixed integer/continuous where it is difficult
to apply any gradient-based optimizer to solve the design
problem. The successful use of EAs for complex engineering
design has been reported, for example, in Lencus et al.
[20] and G. Nowak and I. Nowak [21]. EAs for multi-
objective optimization, traditionally termed multiobjective
evolutionary algorithms (MOEAs), have one outstanding
feature; that is, they can explore a nondominated front within
one simulation run. Although having several advantages,
two unavoidable drawbacks of EAs and MOEAs are the
lack of convergence rate and consistency [18]. This makes
EAs ineffective when solving topology optimization, which
is said to be a large-scale design problem with a large
number of design variables. Over the past two decades,
many attempts to improve search performance of EAs for
solving structural topology optimization have beenmade, for
example, amorphological geometric representation approach
[22], a chromosome repairing technique [23], a ground
element filtering technique [11], and antioptimization [24].
Thework in Kunakote and Bureerat [11] presents the compar-
ative performance of MOEAs for solving structural topology
optimization test problems based on the ground element
filtering technique.The establishedMOEAs includedMPBIL,
Pareto archive evolution strategy (PAES) [25], nondominated
sorting genetic algorithm (NSGA) [26], strength Pareto evo-
lutionary algorithm (SPEA) [27], and multiobjective particle
swarm optimization (MPSO) [28]. The results show that
MPBIL is the unanimous best optimizer [29]. The simple
concept of estimation of distribution algorithm embedded in
MPBIL gives an advantage when dealing with multiobjective
topology optimization. As a result, MPBIL is the only MOEA
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Initialization Generate three sets of ground segments and proper finite element grid for each set.
Input x sized (𝑁

11
+ 𝑁
12
+ 1) × 1

Output: Thicknesses of wing segments and nodal positions
Encoding
𝑥
1
∈ [1, 3] is used for selecting a set of ground elements

𝑥
2
to 𝑥
𝑁11+1

are used for segment thicknesses
𝑥
𝑁11+2

to 𝑥
𝑁11+𝑁12+1

are used for nodal position variables
Decoding
(1) Find 𝑛 = round(𝑥

1
) where round(⋅) is a round-off operator.

(2) If 𝑛 = 1
(2.1) 𝑥

2
to 𝑥
𝑁11+1

are set as𝑁
11
segment thicknesses

(2.2) 𝑥
𝑁11+2

to 𝑥
𝑁11+𝑁12+1

are set as𝑁
12
nodal position variables

(3) If 𝑛 = 2
(3.1) 𝑥

2
to 𝑥
𝑁21+1

are set as𝑁
21
segment thicknesses

(3.2) 𝑥
𝑁11+2

to 𝑥
𝑁11+𝑁22+1

are set as𝑁
22
nodal position variables

(4) If 𝑛 = 3
(3.1) 𝑥

2
to 𝑥
𝑁31+1

are set as𝑁
31
segment thicknesses

(2.2) 𝑥
𝑁11+2

to 𝑥
𝑁11+𝑁31+1

are set as𝑁
32
nodal position variables

Algorithm 1: Design variables encoding/decoding scheme for a multigrid design approach.
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Figure 5: Internal wing models with actuator torque.

chosen to solve this design problem. This section briefly
details the concept of MPBIL and then it is extended to
the opposition-basedmultiobjective population-based incre-
mental learning.

3.1. Multiobjective Population-Based Incremental Learning.
The principle of a PBIL search is governed by the learning
rule, which is iteratively limiting the design space depending
on current best design variables, and a random process [29].
The design space is iteratively narrowed until the optimum
is approached. Unlike the popular genetic algorithm and
other evolutionary algorithms (EAs), a binary population
used in PBIL is represented by an estimated probability
distribution for each binary bit, which is called a probability
vector. Table 1 shows three examples of probability vectors
and their corresponding binary populations given that a
design solution is a row of a population. The 𝑖th element of
a probability vector determines the probability of having a
string “1” on the 𝑖th column of the population. It can be seen
that one probability vector can produce a variety of binary
populations.

Unlike single objective PBIL, MPBIL uses several prob-
ability vectors to represent a binary population in order

Table 1: Probability vectors and corresponding binary populations.

Population 1 Population 2 Population 3
0 0 1 1, 1 1 1 0, 0 0 0 1
1 1 1 0, 0 1 0 0, 0 1 0 0
0 1 0 1, 1 0 1 1, 1 0 0 1
1 0 0 0, 0 0 0 1, 0 1 0 1

Probability vectors
[0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.5, 0.5] [0.25, 0.5, 0, 0.75]

to maintain population diversity. Thus, a set of probability
vectors is called a probability matrix [29]. The search pro-
cedure of MPBIL starts with an initial Pareto archive for
collecting nondominated solutions and a probability matrix
whose elements are full of “0.5.” Each row of the probability
matrix is a probability vector that will be used to create a
subpopulation. Let 𝑁

𝑃
be the number of design solutions in

a population, 𝑙 the number of probability vectors, and 𝑛
𝑏
the

number of binary bits for one design vector x.The probability
matrix, therefore, has the size of 𝑙 × 𝑛

𝑏
where each row of

the matrix results in approximately 𝑁
𝑃
/𝑙 design solutions as
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Figure 6: Three ground structure resolutions: (a) 99 internal segments, (b) 82 internal segments, and (c) 53 segments.
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Figure 7: Probability matrix and subpopulations.

one subpopulation. Each design variable is represented by
a binary string with 𝑛

𝑏
/𝑛 elements. Figure 7 displays a 3 × 4

probability matrix and its corresponding population (𝑁
𝑃

=

12), which is the union set of all three subpopulations
according to the three rows of the probability matrix [30].

Having generated the population and evaluated their
corresponding objective values, the nondominated members
sorted from the combination of members in the current
population and the old external Pareto archive are taken as
a new external Pareto set. If the external Pareto set is full,
some solutions are removed from the external Pareto set
using an archiving technique [29]. In MOEAs, the archiving
technique is proposed to filter some nondominated solutions

out of the archive matrix to prevent excessive memory usage
of a computer because MOEAs can normally explore a large
number of Pareto solutions within one run. The probability
matrix and the nondominated solutions are improved itera-
tively until the termination criterion is met.

For the updating scheme for the probability matrix on
each generation, the matrix is updated in such a way that
𝑛
0

< 𝑁
𝐴
binary solutions are randomly selected from the

current Pareto archive tomodify the 𝑖th row of the probability
matrix.The 𝑖th row of the probability matrix is updated using
the relation

𝑃
new
𝑖𝑗

= 𝑃
old
𝑖𝑗

(1 − 𝐿
𝑅
) + 𝑏
𝑗
𝐿
𝑅
, (3)

where 𝐿
𝑅

∈ (0, 1) is called the learning rate to be defined
and 𝑏
𝑗
is the average value of the 𝑗th bit position of those 𝑛

0

randomly selected nondominated solutions. In our work, the
learning rate is set as

𝐿
𝑅
= 0.5 + rand (+0.1 or −0.1) , (4)

where rand ∈ [0, 1] is a uniform random number. It is also
useful to apply mutation to the probability matrix at some
predefined probability as

𝑃
new
𝑖𝑗

= 𝑃
old
𝑖𝑗

(1 −ms) + rand (0 or 1) ⋅ms, (5)

where ms (default = 0.2) is the amount of shift used in the
mutation.

The procedure for MPBIL is detailed in Algorithm 2. For
more details ofMPBIL, see Bureerat and Sriworamas [29] and
Bureerat and Srisomporn [30].
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Initialization probability matrix P = [0.5]
𝑙×𝑛𝑏

, external Pareto archive Pareto = {}.
(1) Generate a binary population B from P (see Figure 8).
(2) Decode the binary population to be x

𝑛×𝑁𝑝
and find the objective values f

𝑚×𝑁𝑝
.

(3) Update Pareto by replacing it with the non-dominated solutions of a union set Pareto ∪ x.
(4) If the number of members in Pareto exceeds the predefined archive size𝑁

𝐴
, remove some of them by using an archiving

technique.
(5) If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
(6) Update P.
(6.1) For 𝑖 = 1 to 𝑙.

(6.1.1) Select 𝑛
0
binary solutions from Pareto randomly.

(6.1.2) Generate 𝐿
𝑅
using (4).

(6.1.3) Update the 𝑖th row of P by using (3).
(6.1.4) Generate rand ∈ [0, 1] a uniform random number.
(6.1.5) If rand < the predefined mutation probability, update the 𝑖th row of P using (5).

(6.2) Next 𝑖.
(7) Go to step 1.

Algorithm 2: MPBIL computational steps.

3.2. Opposite-Based Multiobjective Population-Based Incre-
mental Learning. MPBIL is governed by the probability
update rule (3), which is a variation of Hebb’s rule one of
the first neural network learning laws [31]. From (3), if 𝐿

𝑅

approaches one, the probability update rule quickly forgets
𝑃
old
𝑖𝑗

and remembers only the most recent 𝑏
𝑖
. Otherwise, the

probability update rule remembers only 𝑃
old
𝑖𝑗

and quickly
forgets 𝑏

𝑖
. A small value of learning rate is usually recom-

mended for the conventional PBIL [32]. This 𝐿
𝑅
setting is

not always effective for MPBIL as showed in Bureerat and
Srisomporn [30], which had good results from randomly
defining 𝐿

𝑅
value in the range of [0.4, 0.6]. The question

arises: how can we choose a proper value of 𝐿
𝑅
for a general

problem, which can accelerate a convergence rate or increase
search performance? A new idea to deal with such a problem
is motivated from Rahnamayan et al. [33] and Wang et al.
[34] as they proposed to enhance EAs using opposition-
based learning (OBL). Such a concept could be used for
improving population initialization [33] or a hybrid with
EA main operators [34, 35]. Both methods can enhance EA
search performance. Furthermore, it has been found that this
idea was used to maintain diversity in PBIL and increase its
performance [36] for single objective design cases.

Opposition is concerned with the relationship between
entities, objects, or their abstractions of the same nature,
which are completely different in some manner [37]. For
example, “remember” and “forget” are descriptions of the
brain, but completely different. The opposition-based think-
ing is a basic element of human thinking; it has been used
in many fields. In statistics, the Bernoulli distribution says
if the probability of an event is 𝑝, then the probability of
its contrary is 1 − 𝑝. Also, the pair (𝑥, −𝑥) represent oppo-
site real numbers. It had been proved mathematically and
experimentally that utilizing opposition in learning yields a
more efficient algorithm than using only pure randomness
[38]. For this reason, EAs were enhanced by using OBL.
When evaluating a solution x for a given problem, usually
computing its opposite solution is performed together. This

process will provide another chance for finding a candidate
solution, which is closer to the global optimum.

Definition 1 (opposite points, see [34]). Let𝑥 be a real number
defined on the interval [𝑎, 𝑏]. The opposite number 𝑥̆ is
defined as follows:

𝑥̆ = 𝑎 + 𝑏 − 𝑥. (6)

For 𝑎 = 0 and 𝑏 = 1, we have

𝑥̆ = 1 − 𝑥. (7)

Similarly, the opposite number in a multidimensional search
space can be defined.

Let x = {𝑥
1
, . . . , 𝑥

𝑛
}
𝑇 be a point in an 𝑛-dimensional

coordinate system with 𝑥
1
, . . . , 𝑥

𝑛
∈ R and 𝑥

𝑖
∈ [𝑎
𝑖
, 𝑏
𝑖
]. The

opposite point x̆ is defined by its coordinates 𝑥̆
1
, . . . , 𝑥̆

𝑛
where

𝑥̆
𝑖
= 𝑎
𝑖
+ 𝑏
𝑖
− 𝑥
𝑖
; 𝑖 = 1, . . . , 𝑛. (8)

The above opposition-based concept can be embedded
into MPBIL, which is governed by a probability update
rule. In MPBIL, a probability matrix represents a binary
population where 𝐿

𝑅
is a user-defined value in the range

of [0, 1]. When evaluating the value of 𝐿
𝑅
for a probability

matrixP, it is possible to simultaneously compute its opposite
𝐿
𝑅
(or 𝑂𝐿

𝑅
) for the opposite probability matrix (OP), which

will provide better population variety in a PBIL search
process. For OMPBIL, an initial probability matrix P and
its opposition OP are sized 𝑙/2 × 𝑛

𝑏
. A binary population is

generated using both matrices. When updating the 𝑖th row of
thematrix by using (3), the 𝑖th row of the opposite probability
matrix is also updated using 𝑂𝐿

𝑅
and the 𝑖th row of P as

𝑂𝑃
new
𝑖𝑗

= 𝑃
old
𝑖𝑗

(1 − 𝑂𝐿
𝑅
) + 𝑏
𝑖
𝑂𝐿
𝑅
, (9)

where 𝑂𝐿
𝑅
= 1 − 𝐿

𝑅
. Two binary subpopulations with 𝑁

𝑃
/𝑙

members based upon to the 𝑖th row of the probability matrix
and its opposite values obtained from (9) are then created.
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Initialization Probability matrix P = [0.5]
𝑙/2×𝑛𝑏

, opposite probability matrixOP = [0.5]
𝑙/2×𝑛𝑏

, external Pareto archive Pareto = {}.
(1) Generate a binary population B from P.
(2) Decode the binary population to be x

𝑛×𝑁𝑝
and find the objective values f

𝑚×𝑁𝑝
.

(3) Update Pareto by replacing it with the non-dominated solutions of a union set Pareto ∪ x.
(4) If the number of members in Pareto exceeds the predefined archive size𝑁

𝐴
, remove some of them by using an archiving

technique.
(5) If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
(6) Update P and create a binary population
(6.1) Set a binary population B = {}.
(6.2) For 𝑖 = 1 to 𝑙/2.

(6.2.1) Select 𝑛
0
binary solutions from Pareto randomly.

(6.2.2) Find 𝐿
𝑅
using (4).

(6.2.3) Update the 𝑖th row of P by using (3).
(6.2.4) Compute 𝑂𝐿

𝑅
= 1 − 𝐿

𝑅
and generate the 𝑖th row of the opposite probability matrixOP using (9).

(6.2.5) Generate rand ∈ [0, 1] a uniform random number.
(6.2.6) If rand < the predefined mutation probability, update the 𝑖th row of P andOP using (5).
(6.2.7) Generate binary subpopulations SB and SBO from the 𝑖th row of P andOP respectively.
(6.2.8) Set B = B ∪ SB ∪ SBO

(6.3) Next 𝑖.
(7) Go to step 2.

Algorithm 3: Procedure for OMPBIL.

Table 2: Four design cases.

Test case number Number of resolutions Number of variables
Resolution ID Internal components Skins Nodal positions Total

F1 1: Figure 6(a) 0 48 99 — 147
F2 1: Figure 6(a) 0 48 99 20 167
F3 3: Figures 6(a)–6(c) 1 48 99 148
F4 3: Figures 6(a)–6(c) 1 48 99 20 168

Other computational steps are similar to MPBIL.The outline
of the OMPBIL algorithm, which includes the opposition-
based concept, is shown in Algorithm 3.

4. Numerical Experiment

Thepurpose of this research is to find a new internal structure
for the morphing wings, which can adjust the aeroelastic
characteristics by applying external torque actuation.This can
be classified as a twisting morphing wing concept. Firstly,
we start with finding the internal structural layout of a
morphing aircraft wing three times a problem by employing
an optimization process to synthesize the unconventional
internal layout of the morphing aircraft wing. Then, we
investigate aeroelastic response due to an actuating torque at
a particular wing angle of attack to maintain or change the
altitude of flight.

4.1. Synthesizing the Internal Structure of a Morphing Aircraft
Wing. For the first purpose of this study, an initial design
domain was a simple rectangular unswept and untapered
wing-box. In order to laterally verify the proposed design
approach, four design problems are posed, while OMPBIL
and MPBIL are used to solve the design problems three
optimization runs for all test problems. The four sets of

design variables or test cases are presented in Table 2.The first
problem (F1) uses the partial topology and component sizing
variables, while the second problem (F2) uses the same set of
design variables of F1 with nodal positions design variables
being added.The third (F3) uses multigrid or multiple sets of
ground segments with topology and sizing design variables,
while the fourth (F4) design problem is similar to F3 with
shape design variables being added. The design variables sets
for F3 and F4 have one additional variable for indicating a set
of ground elements. According to Algorithm 1, the numbers
of segments and nodal positions for the three sets of ground
elements are set as 𝑁

11
= 147, 𝑁

12
= 20, 𝑁

21
= 123,

𝑁
22

= 16, 𝑁
31

= 82, and 𝑁
32

= 8. All design problems
have design objectives and constraints as presented in (2).The
root attachments of all wingmodels have a constant thickness
of 0.005m. The structures are modeled by using four-node
quadrilateral shell elements.

The aeroelastic constraints require that the flutter and
divergence speedsmust be greater or equal to 150m/s to avoid
the aircraft structural failure at a desired flight speed range
(100m/s). Buckling and stress constraints are also considered.
The void threshold is set to be 0.0005m.

The parameters used for all wing-box models are given in
Table 3. The wing is made of aluminum with Young modulus
𝐸 = 70GPa, Poisson’s ratio ] = 0.34, density 𝜌 = 2700 kg/m3,
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(1) Start with the initial interval of the root angle of attack [𝛼
1
, 𝛼
3
]. It should be noted that the lift of this interval covers

the given weight of an aircraft; otherwise, find a new interval.
(2) Calculate lift, 𝐿

𝛼1
and 𝐿

𝛼3
at 𝛼
1
and 𝛼

3
respectively.

(3) Find 𝛼
2
= (𝛼
1
+ 𝛼
3
)/2, then calculate 𝐿

𝛼2
.

(4) If 𝐿
𝛼2

−𝑊 is sufficiently small for accuracy requirement, then the procedure is stopped. Otherwise, the new interval of
angle of attack is determined.

(5) If 𝐿
𝛼2

< 𝑊, the new interval is 𝛼
1
= 𝛼
2
. Set 𝐿

𝛼1
= 𝐿
𝛼2
and go to step 3.

(6) Otherwise, the new interval is 𝛼
3
= 𝛼
2
. Set 𝐿

𝛼3
= 𝐿
𝛼2
and go to step 3.

Algorithm 4: Aircraft trimming.

Table 3: Wing-box parameters.

Number Parameter Value
1 Semispan length, 𝐿 (m) 1.5
2 Root chord length, RC (m) 0.6
3 Tip chord length,TC (m) 0.6
4 Sweep angle, Λ (degree) 0∘

and yield stress 𝜎
𝑦𝑡

= 100MPa. Aerodynamic analysis for
static and dynamic aeroelasticity is carried out by using the
vortex ring panel method [7–10].The wing lifting surface has
8 × 5 panels, while its wake has 8 × 30 panels.

Flutter analysis is computed through the discrete-time
aeroelastic model using a reduced-order aerodynamic model
with static correction [39]. Buckling factor and stress are
computed considering both aerodynamic force and actuator
torque. The first load (lift force) is computed at a wing
angle of attack 5∘, while the free stream velocity is 150m/s.
The actuator torques applied to twist a wing to increase or
decrease wing lift is ±60N-m (positive for clockwise torque).
The forces are applied at the first rib as shown in Figure 5.
All design constraints are computed where the prestressed
effects due to external actuation are taken into account. For
more details of each objective and constraint, see our previous
studies [8–10].

Themultidisciplinary optimization procedure is the com-
bination of a multiobjective evolutionary algorithm, aero-
dynamic analysis, aeroelastic analysis, and finite element
analysis. The vertex ring method for aerodynamic analysis is
coded in MATLAB, while ANSYS software is used for FEA.
Both optimization algorithms (MPBIL and OMPBIL) are
also coded using the MATLAB language. Structural analysis,
aerodynamic analysis, and an optimization algorithm are
connected using MATLAB.

For performance assessment of the propose method, the
conventional MPBIL and the new OMPBIL are employed to
solve all of the design problems where the population size
is set to be 50, the total number of generations is set to be
400, the external Pareto archive size is 50, and the number of
binary bits for each design variable is 4.The learning rate (𝐿

𝑅
)

is generated randomly in the interval [0.4, 0.6].Themutation
probability and mutation shift are 0.1 and 0.2, respectively.
These parameters settings were successfully usedwithMPBIL
in Bureerat and Sriworamas [29], Bureerat and Srisomporn
[30], Kunakote and Bureerat [11], and Sleesongsom and

Bureerat [8, 9]. Design constraints are handled by means
of the nondominated sorting scheme [40]. The procedure is
terminatedwhen reaching themaximumgeneration number.

4.2. Aircraft Trimming. For this study, the aeroelastic char-
acteristics and mechanical parameters need to be studied in
steady level flight to ensure that the new internal structure
can be used as a morphing aircraft wing. Normally, motion
of an aircraft depends upon forces acting on an aircraft such
as lift (𝐿), drag (𝐷), thrust (𝑇), and weight (𝑊). Both lift
and drag can be found by aerodynamic analysis in which
lift is perpendicular, while drag is parallel to the free stream
direction. Lift is created by the wing to carry the weight of
the aircraft whilst drag is a resistance of the aircraft motion,
which is against the thrust force produced by an engine or
propeller. At a steady level flight, with thrust vector aligned
with the direction of flight, the static equilibrium can be
expressed as follows:

𝐿 = 𝑊. (10)

Equation (10) shows lift is balanced by weight in steady
level flight. This equation has been used to study how much
the angle of attack for an aircraft is trimmed to maintain a
steady level flight if an aircraft is disturbed by changes in
the structural stiffness with moving of rotating spars [9]. For
our work, (10) is used to find the angle of attack to maintain
the aircraft at steady level flight. At this angle of attack, if an
aircraft is disturbed by input torque (control input) to change
the aircraft to other steady level flight, this implies that the
new internal structure can be used as the morphing aircraft
wing. To find an angle of attack at a flight speed and weight
of aircraft, the bisection method is employed in Algorithm 4.

The searching procedure for a required angle of attack to
maintain the aircraft in steady level flight is terminated when
𝐿
𝛼2
is equal to theweight of aircraft (Equation (10)) at the root

of the angle of attack 𝛼
2
.

5. Design Results

5.1. Unconventional Structures of a Morphing Aircraft Wing.
Nondominated fronts and the search history (front hyper-
volume versus generation numbers) of all design problems
obtained from the best runs of both MPBIL and OMPBIL
are shown in Figures 8 and 9, respectively. In Figure 8,
approximate surfaces are used to represent the Pareto fronts
as it is difficult to display a 3D front.The search history shows
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Table 4: Performance comparison based on hypervolume (HV).

MOEAS Number of runs Test problems
F1 F2 F3 F4

MPBIL

1 13.0720 15.4056 17.5563 20.4751
2 11.8899 12.4865 12.7354 15.8351
3 13.5215 10.8927 8.7126 6.6081

Average 12.8278 12.9283 13.0014 14.3061

OMPBIL

1 13.8675 16.3227 18.9464 24.2921
2 14.6692 13.7767 17.6144 18.2879
3 14.8824 13.3155 22.8222 26.7169

Average 14.4730 14.4716 19.7943 23.0990
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Figure 8: Nondominated front of MPBIL (×) and OMPBIL (∙) best runs for (a) F1, (b) F2, (c) F3, and (d) F4.

that OMPBIL outperforms MPBIL before the halfway point
of searching except for the case of F2 where the two methods
interchangeably outperform each other and OMPBIL won
at the end. The fronts obtained using OMPBIL are slightly
changed for the last 10 iterations. Therefore, we assume
that the optimizer converge to the global optimum. The
comparative Pareto fronts are somewhat difficult to observe.
As a result, a quantitative study, the use of a hypervolume
indicator, is conducted to compare the quality of the Pareto

fronts. This indicator determines an area (for two objectives)
or volume (for more than two objectives) covered by a
particular Pareto front with respect to a predefined reference
point [41].The hypervolumes of the fronts of all test problems
for all optimization runs are given in Table 4 where the
reference point for computing the hypervolumes is set to be
{0, 6.0 kg, −1}𝑇.

This table reveals that the fronts for all case studies
obtained from using OMPBIL are better (higher average
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Figure 9: Search histories of MPBIL and OMPBIL best run for (a) F1, (b) F2, (c) F, and (d) F4.

hypervolume) than those obtained from using a conven-
tional MPBIL. The simultaneous partial topology, shape,
and sizing design approach gives better results than the
approach without nodal position design variables as the
average hypervolume of F4 is higher than F3 and that of
F2 is higher than F1. In addition, the results from using a
multigrid approach are far superior to those fromusing single
resolution of ground segments (F1 versus F3 and F2 versus
F4).

Some unconventional internal structures for the third
and fourth design problems (first run) are selected using
an even Pareto filter technique [42]. The selected structures
of F3 with their aerodynamic (a.a.) and elastic axes (e.a.)
are shown in Figure 10 whereas their lower and upper skin

thickness distributions are given in Figure 11. The elastic axis
can be thought of as a beam representing a wing structure.
When the wing is subject to torsion, it will rotate with respect
to this axis. For all wings in Figure 10, the elastic axis is
backward behind the aerodynamic axis, which means the
wing under aerodynamic loads will have an increased angle
of attack and consequently higher value of lift effectiveness.
Moreover, some of the wings have forward swept elastic axes,
which means they behave like a forward swept wing (usually
have high lift effectiveness) although their wing shape are
unswept. The structures have various internal layouts and
skin thickness distributions. The optimum structures are
mostly from the ground segments withmedium (Figure 6(b))
and low (Figure 6(c)) resolutions. The use of high ground
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Figure 10: Internal structural layouts of the selected wing-boxes in Figure 8(c).
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Figure 11: (a) Upper and (b) lower skin thickness distribution of the selected wing-boxes in Figure 10 (skin thickness: ◻ = 0.0001m, ◼ =

0.001m).

element resolution (Figure 6(a)) is not a good choice for F1
and F2. However, in practice, a designer will never know,
which resolution is most suitable; therefore, employing a
multigrid approach is advantageous.

Figure 12 shows the selected wing structures of F4 where
their skin thickness distributions are illustrated in Figure 13.
Similarly to the case of F3 in Figure 10, all the wings in
Figure 12 have their elastic axes backward behind their
aerodynamic axes, while some of them behave like a forward
swept wing. It is shown that all the structures are from the
low ground element resolution.This shows that when adding
nodal positions to the design problems the proper ground
elements resolution is different from the F3 case. The use of
a multigrid approach automatically helps finding the suitable
resolution during the optimization process.

5.2. Results of Aircraft Trimming. To study the performance
of the new morphing aircraft wing, a steady level flight at
a flight speed of 100m/s is defined and the mass of the
whole aircraft is set to weigh 25 kg for simplicity. The wing-
box (4) illustrated in Figure 12 is selected for this study.
From the iterative procedure, it is found that an appropriate
angle of attack is 5∘. Next, the aeroelastic characteristics and
mechanical parameters need to be examined at this angle of
attack when an input torque is applied. An input torque in the
range of [−60, 60]N-m is applied to the wing at the first wing
rib by means of couple as shown in Figure 5. The aeroelastic
characteristics and mechanical parameters of the uncon-
ventional wing due to the various input torque values are
given in Table 5. The relationship between the input torques
and the aeroelastic parameters of the wing is illustrated in
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Figure 12: Internal structural layouts of the selected wing-boxes in Figure 8(d).
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Figure 13: (a) Upper and (b) lower skin thickness distribution of the selected wing-boxes in Figure 12 (skin thickness: ◻ = 0.0001m, ◼ =

0.001m).

Figure 14, while the buckling factor and the maximum von
Misses stress on the wings are displayed in Figure 15. The
lift effectiveness of the unconventional wing ranges between
0.967 and 1.045. This shows that the new unconventional
wing can change the lift effectiveness over a wider range
compared to the conventional two-spar wing in Sleesongsom
et al. [9].The lift effectiveness of the unconventional wings, in
cases of unloaded conditions, is 1.006. When increasing the
input torque in the positive direction, the lift effectiveness of
the wing is increased whereas it is decreased with negative
torques. The divergence speed of the unconventional wing
has maximum values when no external forces are applied
and it is slightly reduced as the torque magnitudes become
larger. The flutter speed of the wing has a similar trend to the

divergence speed as its value decreases with increasing input
torque. Buckling and stress on the wing are varied in such a
way that the higher external force magnitude will cause more
damage to the structure.The buckling factor is reduced, while
the maximum stress is increased.

6. Conclusions and Discussion

Two significant contributions of this paper are the improved
version of multiobjective PBIL based on an opposition-
based approach and the use of a multigrid ground element
strategy to synthesize a wing structure. Firstly, the multigrid
design approach for optimization of an unconventional
morphing wing is proposed. The new design strategy is the
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Table 5: Aeroelastic characteristics and mechanical parameters due to various input torques of wing-box (4) in Figure 14 at trimming angle
of attack = 5∘.

Torque
(N-m) Lift eff. Flutter speed

(m/s)
Divergence
speed (m/s) Buckling factor Max stress

(𝜎
𝑦
= 100MPa) Mass (kg)

60 1.045 245.549 151.797 2.297 96.868

4.252

45 1.036 259.348 155.042 2.924 74.624
30 1.026 269.558 157.150 4.014 52.380
15 1.016 273.997 158.471 6.347 30.155
0 1.006 279.534 159.053 13.464 7.998
−15 0.996 278.303 158.987 10.176 14.389
−30 0.987 272.400 158.280 4.739 36.598
−45 0.977 266.160 156.775 3.070 58.842
−60 0.967 257.898 153.326 2.267 81.085
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Figure 14: Input torque versus aeroelastic parameters: ◻ = lift
effectiveness, 󳵻 = divergence, and I = flutter from Table 3.
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procedure for simultaneous partial topology, sizing, and/or
shape optimization, which uses multiple ground segment
resolutions. This multigrid approach is more efficient than
using single-resolution ground elements in the sense that
the suitable grid resolution is automatically detected and
used in one optimization run. The simultaneous topology,
shape, and sizing design gives better results than design
without shape design variables.The approximate Pareto front
gives a variety of morphing wing internal layouts and skin
thickness distributions. Rather than guessing a resolution of
ground elements as in the case of using one resolution, an
optimizer will automatically find the proper resolutions for
design problems with the multigrid approach. The proposed
design approach can be extended for practical aircraft design.

Secondly, opposite-based multiobjective population-
based incremental learning is proposed to be compared with
the original multiobjective population-based incremental
learning. The multiobjective design problems of morphing
wing structure with single-grid and multigrid design
variables are then posed and tackled by both OMPBIL
and MPBIL. The optimum results show that the proposed
optimizer is superior to the traditional MPBIL. In addition,
the results show that using OMPBIL in combination with a
multigrid design approach is the best design strategy. The
proposed concept is said to be acceptable as an alternative
aircraft morphing wing design.

The proposed ideas can be extended real aircraftwing and
then realized and used in some type of aerial vehicles. For
a small unmanned aerial vehicle, the obtained complicated
wing structures can be manufactured by means of three-
dimensional printing such as the Southampton University
laser sintered aircraft [43, 44]. Our future work is to apply this
design concept to a real wing, which is made of high-grade
aluminum or carbon fiber composite. That means higher
lift effectiveness and structural strength can be expected.
Furthermore, rather than generating simple ground elements
as used in this paper, using chaos generation [45, 46] or
complex networks [47, 48] for generating unconventional
wing internal topologies can be a potential means to enhance
the wing performance. Moreover, it is also possible to use
chaos for improving EA search performance.
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