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Machine learning approaches have been widely used to tackle the problem of sensor array drift in E-Nose systems. However,
labeled data are rare in practice, which makes supervised learning methods hard to be applied. Meanwhile, current solutions
require updating the analytical model in an offline manner, which hampers their uses for online scenarios. In this paper, we
extended Target Domain Adaptation Extreme Learning Machine (DAELM T) to achieve high accuracy with less labeled samples
by proposing a Weighted Domain Transfer Extreme Learning Machine, which uses clustering information as prior knowledge to
help select proper labeled samples and calculate sensitive matrix for weighted learning. Furthermore, we converted DAELM T
and the proposed method into their online learning versions under which scenario the labeled data are selected beforehand.
Experimental results show that, for batch learning version, the proposed method uses around 20% less labeled samples while
achieving approximately equivalent or better accuracy. As for the online versions, themethodsmaintain almost the same accuracies
as their offline counterparts do, but the time cost remains around a constant value while that of offline versions grows with the
number of samples.

1. Introduction

Thewide spread of wireless sensor environment has provided
abundant sources to help improve the convenience and
prosperity of human life. Accordingly, the researches have
shifted from original construction and routing problems [1–
3] to more specific sensory data processing and analyzing
tasks [4–6]. With the fast development of sensor technology,
E-Nose systems comprised of gas sensor arrays have been
widely used in air qualitymonitors, security check points, and
other gas compound identification scenarios. Such devices
rely on the direct or indirect reactions between theirmaterials
and gas compounds. Taking metal-oxide sensor array as an
example, the one that uses chemiresistors will have different
electroconductivities when exposed to diverse gases [7].
Partly due to the mechanism of gas sensors, the detection of
such reaction may degrade after some time or be exposed in
the compound for too long.The phenomenon is called sensor

drift, which could hinder the performance of not only sensors
themselves, but also the pattern recognition techniques used
to determine the compounds. Therefore, an effective way of
dealing with the problem is essential for industries.

The cause of drift owes to two sources: the first-order
drift, which is due to the interaction process such as long
exposure in gas, sensor aging, or poisoning, and the second-
order drift, which arises in the experimental setting or system
noises [8–11]. Currently, researchers have been trying to
solve the problem in several different aspects, and various
drift compensation or calibration techniques have been
proposed to relieve the problem. Proper choosing of gas
sensors that have slow degradation was the first choice of
building E-Nose system [12, 13]. With the improvements
of materials technologies, durable sensor materials and the
proper selection methods have then occurred [7, 14–17].
However, these two types of approaches rely on the resilience
of materials or sensor individual differences, which do not
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tackle the degradation directly and have their limits. Another
alternative is to improve postprocessing techniques so that
the model continues to work after the degradation happens.

In the postprocessing of the sensor readings, techniques
that can track the patterns are suitable for classifying gases
when drift occurs. In the process, sensor readings are first
preprocessed into multifeatures reflecting different aspects of
the readings. Taking the data used in the paper, for example,
discrete readings 𝑋[𝑘] from a single sensor along time are
transformed into a 6-dimensional feature vector𝑋 reflecting
the steady-state, absorption, and desorption responses. The
pattern refers to the distribution of specific gas labeled in the
feature space, that is, 𝑃(𝑋 | 𝑌), where 𝑌 is the label and 𝑋
is a 𝑛-dimensional feature. The analytical model, which takes𝑋 as input, will output the probability of 𝑋 belonging to a
certain label 𝑌. Ideally, the probability of 𝑋 belonging to its
correct label is 1 and 0 for other labels. In the circumstance of
drift, the distributions before and after the drift are different;
that is, 𝑃(𝑋before drift | 𝑌) ̸= 𝑃(𝑋after drift | 𝑌). In this case,
the analytical model that works perfectly before drift is no
longer reliable. With current research work in sensor drift
compensation, it is commonly accepted that the drift is a slow
process and can be compensated by tracking the changes of
the sensor readings. Therefore, a detection mechanism based
on the features in the postprocessing that can adapt to the
distribution changes is required. Ideally, we wish to obtain a
mechanism, in which the distributions of specific gas before
and after drift are the same; that is, 𝑃(𝑋before drift | 𝑌) =𝑃(𝑋after drift | 𝑌).

From the perspective of model learning, sensor drift
problem can be viewed as concept drift in which the distribu-
tion of gas labels in the feature space changes over time. In the
past few decades, some researchers chose to gather different
classification models to build a robust one that could resist
the drift to some extent [10, 19, 20], while others attempt to
map the unknown response to a proper tuned model [21, 22].
Although the two types of models can somehow alleviate the
effect of sensor drift, ensemble based method may require
proper choosing of the subclassifier, and techniques like
transfer learning-based methods require manual labeling of
some samples in unknown domain. Additionally, few of the
methods considered the imbalanced nature of the samples
when building classifiers. In applications, supervised learning
is mature and accurate in general, while manual labeling pro-
cess is time-consuming. Unsupervised approaches require
no such labors but are less accurate than their supervised
counterparts. To balance between accuracy and time effi-
ciency, more accurate and advanced models with less human
involvement are imperative and promising.

In this paper, we are dedicated to building adaptive
semisupervised models that allow themselves to train and
learn patterns when dataset changes. In particular, we aimed
at two different scenarios, of which the first is an offline
semisupervised learning with a fewmanually labeled samples
and the second is an online semisupervised learning after
labeling samples are selected and unchanged. Our goal is
to provide classification models that use less human efforts
while maintaining the accuracy of gases identification at a
relatively high level. The contributions are threefold.

(i) The samples selected for labeling play key roles in the
models. To help select more representative samples
while increasing no extra human labor, we proposed a
Clustering-Aided Sample Selection (CSS) algorithm.

(ii) The unlabeled samples in DAELM contribute dif-
ferently to the model training because of the distri-
bution imbalances. Therefore, we proposed Weight-
ed Domain Transfer Extreme Learning Machine
(WDTELM), which uses clustering information and
a base classifier’s output to quantify the effects of
unlabeled samples for weighted learning.

(iii) The aforementioned online processing scenario
requires the model to update with the arrival of new
samples. To save time of retraining the model from
scratch, we derived online versions of Target Domain
Adaptation Extreme Learning Machine (DAELM T)
andWDTELM, namely, ODAELM and OWDTELM,
respectively, which allow the classification to begin
with few or none unlabeled samples and update the
model in an online manner.

To evaluate the effectiveness of the proposedmethods, we
conducted different experiments on two aforementioned sce-
narios. The improvements on the accuracy with less labeled
samples verified the feasibility of CSS and the weighted learn-
ing mechanism. In addition, ODAELM and OWDTELM
have also been proved to be able to update themselves in
a time-efficient way and achieve approximately equivalent
overall classification performances, when compared with
their batch learning versions. For distinguishing purpose, we
useDAELM to refer toDAELM T in L. Zhang andD. Zhang’s
work [21] in the following parts of the paper.

The remaining of the paper is organized as follows.
Section 2 provides some preliminaries on drift compensation
and extreme learning machine. Section 3 illustrates the
dataset used in the paper and details the CSS,WDTELM, and
online learning process. Experimental comparisons on the
classification performances have been provided as Section 4.
Discussions on the proposed methods and the conclusions
are drawn in Sections 5 and 6, respectively. For easy under-
standing of the terms in the paper, a list containing frequently
used abbreviations and corresponding full names is given at
the end of the paper.

2. Preliminaries

2.1. Analytical Model for Drift Compensation. Sensor drift is
one of the major obstacles that prevent E-Nose systems from
being effective for long period of their lifetimes. Therefore,
various analytical models have been invented to address the
issue.

Ensemble method is one of the most popular method-
ologies in the field. It uses a group of different classifiers
to classify diverse gas compounds so that the sensor drift
problem can be mitigated [10, 19, 20]. By doing this, the
lifetime of sensor array can be prolonged as well. However,
the learning procedures are supervised and require labeling
the sample first. Moreover, the method and its variants have
assumptions on the gas data, for example, the drift direction
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remains the same for different gases, which are sometimes not
true.

Unsupervised methods such as Sequential Minimal
Optimization- (SMO-) based ones have been proved to be
effective [23, 24]. Nevertheless, thesemethods can sometimes
mistakenly update the pattern by following the wrong ref-
erence class. Component Correction- (CC-) based methods
are said to have good results [25–27]. However, they assume
that the gases behave in a similar way in the drift process,
while the truth is quite the opposite. Drift is a slow process;
therefore adaptive methods can be used for it [28]. In [21],
the authors proposed a domain adaptive ELM using limited
manually labeled samples and semisupervised training pro-
cedure to achieve one of the highest accuracies. However,
the performance drops rapidly when the number of labeled
samples becomes small, and the imbalanced nature of data is
not considered either.

It is worth mentioning that some of the techniques,
although targeting different problems, can also help transfer
themodel fromone dataset to another using transfer learning
[22, 29]. Moreover, instead of detecting and learning the drift
problem directly, some of the researchers have contributed
by detecting sensors with degrading performance so as to
replace them [10, 30, 31]. Although these methods are not
included in the discussion of the paper, they do relief the drift
bymaintaining the performance of E-Nose system at a certain
level.

2.2. Extreme Learning Machine. In general, ELM is a three
layer feed forward neural networkwith fully connected nodes
between layers. Unlike other neural networks, ELM ran-
domizes the connections between input and hidden layers,
while leaving the ones between hidden and output layers
to be tuned. The randomness feature of ELM lightens the
burden of computing the optimal parameters. Together with
the generalized inverse used in the learning process, ELM
has been favored as a rapid learning algorithm with good
generalization ability [32, 33].

Typical ELM with 𝑚 hidden layer nodes can be formu-
lated as (1) where𝐻 is the corresponding hidden layer output
of 𝑛 training samples (see (2)), 𝛽 is the output weight matrix,
and 𝑇 is the target.

𝐻𝛽 = 𝑇, (1)

𝐻

=
[[[[[[
[

𝑔 (𝑎1, 𝑏1, 𝑥1) 𝑔 (𝑎2, 𝑏2, 𝑥1) ⋅ ⋅ ⋅ 𝑔 (𝑎�푚, 𝑏�푚, 𝑥1)
𝑔 (𝑎1, 𝑏1, 𝑥2) 𝑔 (𝑎2, 𝑏2, 𝑥2) ⋅ ⋅ ⋅ 𝑔 (𝑎�푚, 𝑏�푚, 𝑥2)... ... ...
𝑔 (𝑎1, 𝑏1, 𝑥�푛) 𝑔 (𝑎2, 𝑏2, 𝑥�푛) ⋅ ⋅ ⋅ 𝑔 (𝑎�푚, 𝑏�푚, 𝑥�푛)

]]]]]]
]
. (2)

The fast training speed resides in the fact that only 𝛽
needs to be determined. To calculate it, ELM tries to solve
an optimization problem (3). The solution can be given as𝛽 = 𝐻†𝑇 = (𝐻�푇𝐻)−1𝐻�푇𝑇, where 𝐻† is the generalized
inverse of 𝐻, also known as Moore-Penrose generalized
inverse. The good generalization of the method is largely

attributed to the Moore-Penrose generalized inverse which is
used to replace recursive calculation of 𝛽 in traditional neural
network algorithms.

min 󵄩󵄩󵄩󵄩𝐻𝛽 − 𝑇󵄩󵄩󵄩󵄩2 . (3)

Additionally, to better help the algorithm leverage the
effect of empirical errors and smallest norm of weights, the
optimization problem is modified as (4), where 𝐶 is a preset
parameter or penalty factor.

min 1
2 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩2 +

𝐶
2 󵄩󵄩󵄩󵄩𝐻𝛽 − 𝑇󵄩󵄩󵄩󵄩2 . (4)

For the past decade, there have been a number of
variants of ELM. Incremental ELM (IELM) was proposed to
change the network structure by adding more hidden layer
neurons [34, 35]. Online sequential ELM (OSELM) enables
the network to change its output weight matrix so as to
adapt to the changes in the data [36]. Kernel trick is not
new in machine learning, and the concept was widely used
in Supported Vector Machine (SVM). In ELM, the kernel is
defined as𝐾elm = 𝐻𝐻�푇, and, according to Huang et al.’s work
in [37], it improves the generalization performance. In recent
years, it is also used to speed up the training process [38].

In the past few years, ELM has been regarded as an
effective solution for various applications, like active recogni-
tion [39], speech emotion recognition [40], and medical data
classification [41], to name a few. With the fast developments
in big data and distributed systems, there are also literatures
dedicated to making the algorithm adaptive to large scale
datasets [42] or Map-Reduce framework [43, 44].

3. Semisupervised Methods for Gas Sensor
Drift Compensation

In this section, we first performed a brief analysis on the
dataset used in the paper, and then proposed CSS to improve
the selection of samples for labeling. Subsequently, we aimed
at two application scenarios, namely, offline training and
online training, and proposed online versions for DAELM
andWDTELM, respectively.

3.1. Specification of Dataset. The chemical gas sensor dataset
used in the paper has been published on UCI repository [45].
To properly characterize the features of such data, techniques
that transform the time-continuous raw data into discrete
values are commonly used [46–48]. In this paper, the data
are measurements on the conductivity of metal gas sensors
array’s responses to some gas compounds for continuous
36 months and have been preprocessed using Exponential
Moving Average (EMA). Each sample consists of readings
from a sensor array of 16 metal gas sensors. For one gas
sensor, each sample has 2 steady-state features and 6 dynamic
features. In total, there is a 128-dimension feature space for
the dataset.

Table 1 is a detailed data distribution of six gas compounds
from 10 batches in the dataset. As shown in the table, some of
the batches (e.g., batch (1)) have all the six gas compounds
while some (e.g., batch (3)) have only five. In addition, the
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Table 1: Data distribution [18].

Batch number Months Number of samples
Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

(1) 1, 2 83 30 70 98 90 74
(2) 3, 4, 8, 9, 10 100 109 532 334 164 5
(3) 11, 12, 13 216 240 275 490 365 0
(4) 14, 15 12 30 12 43 64 0
(5) 16 20 46 63 40 28 0
(6) 17, 18, 19, 20 110 29 606 574 514 467
(7) 21 360 744 630 662 649 568
(8) 22, 23 40 33 143 30 30 18
(9) 24, 30 100 75 78 55 61 101
(10) 36 600 600 600 600 600 600

number of some gas samples may be 20 times larger than
others (e.g., Toluene and Acetone in batch (2)). Moreover,
the distributions of the samples in their feature space are also
imbalanced.

Figure 1 shows the distributions of 10 batches after
Principal Component Analysis (PCA) [49]. The three axes
represent the first three dimensions after performing PCA
on the dataset. Different colors represent diverse labels.
It can be noted that for some labels, such as the purple,
the samples cover a large area for most batches while for
others, such as the yellow, the samples only expand in small
areas. It can also be seen that the data distributions for the
classes are scarcely alike. However, the relative position of
each class’s distribution stays still. For example, the purple
ones always stay on the right while the navy ones keep
themselves to the left. This phenomenon confirms that using
offline trained model on a single batch is highly unrealistic.
Nevertheless, some knowledge acquired on one batchmay be
applied to other batches and semisupervised learning with
limited representative samples may help in capturing the
differences.

3.2. Clustering-Aided Sample Selection. Due to the fact that
sensor data are of various sources and usually redundant,
a small size of samples can effectively approximate the
distribution of the data with little information loss [50, 51].
These data are called representative data. Therefore, in order
to perform semisupervised learning, a group of represen-
tative samples should be selected for manual labeling. The
selection of the to-be-labeled samples in L. Zhang and D.
Zhang’s paper [21] uses Kennard and Stone (KS) algorithm,
also called SSA in that paper, which is based on Euclidean
distance of the features. The effectiveness of L. Zhang and
D. Zhang’s work confirms that distance-based measurements
can be used to distinguish the samples. However, the method
treats the samples equally during selection, and it might
explain why the method has large degradation when the
number of selected samples is small. To further improve
the performance and include no extra human labor, we are
inspired to use another unsupervised distance-basedmethod
before KS to provide additional information for pruning the
selection process.

To achieve the goal, clustering is the first choice. By
using proper clustering method, we can classify the unla-
beled samples in an unsupervised way without extra human
involvement. If the clustering is accurate enough, the class
information will be provided. Although the exact labels are
still unknown, the difference of samples from diverse classes
is certain.

Following the intuition, we first examined different clus-
tering strategies in classifying the gas sensor data. Although
the following part belongs to the section of performance
evaluation,we place it here for better illustration purpose.The
performance was evaluated by the accuracy of classification.
Even though the clustering method has no concept of clas-
sification accuracy, we can define one here for examination
purpose. In this article, we assume the label of the majority
samples in the cluster is the label of the cluster. Therefore, we
can define the performance of the accuracy on each clustering
method using (5). Numberpos represents the number of
correctly labeled samples and Total Number is the number
of all the samples.

Accuracy = Numberpos
Total Number

. (5)

For each batch of the dataset, we conducted clustering
methods on it and summarized the majority label of the
samples. Consequently, the samples with the same label
in that cluster are considered correctly labeled. In total, 7
built-in hierarchical clustering methods in MATLAB were
used in this evaluation process, that is, unweighted aver-
age distance (Average), furthest distance (Furthest), cen-
troid distance (Centroid), weighted center of mass distance
(Median), shortest distance (Shortest), weighted average
distance (Weighted), and inner square distance (Inner).
The average accuracies for each methods are as follows:
Average: 53.3%; Furthest: 40.8%; Centroid: 52.7%; Median:
51.4%; Shortest: 40.8%; Weighted: 57.7%; and Inner: 69.1%.
Although some methods surpass Inner for specific batches,
for example, Centroid surpasses Inner in batch (2), the excess
part is not significant (around 0.5%), and the method has
terrible performance in other batches. To sum up, Inner is
the ideal choice among the methods in general. We also
conducted the same clustering process using the first 3
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Figure 1: Data distributions for 10 batches without normalization. The three axes represent the first 3 features after PCA transformation.
Labels of the samples are painted in different colors for better observation.

features after PCA on the dataset and the result remains the
same.

Although the clustering performance is relatively good, it
is not applicable in real scenario since we cannot decide the
exact label for each batch without manually labeling all the
samples or at least large amount of samples. Meanwhile, since
the data are unlabeled, we cannot find the majority class to
help determine the label of the cluster either. Fortunately, we
are to solve the problem in a semisupervised way. If we can
select the most representative samples from each cluster, the
problem can be solved to some extent.

In this paper, CSS uses KS on each cluster to select
samples to be labeled. The process can be described as in
Figure 2. The cloud-like items represent different clusters
and the circles in the figure are the selected samples. The
number in the circle represents the sequence of the selection.
The dataset in the figure is divided into four clusters and
the number of selected samples is 5. Different locations in a
cluster represent various values in feature space. In Figure 2,
the left upper and right lower clusters have 3 and 4 samples,
respectively. As for the other two clusters, the samples could
be hundreds, even thousands. As shown in the figure, KS
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Input:𝑘 fl the number of samples selected for each cluster;𝐶 fl the number of clusters;
Output:𝐿𝑎𝑏𝑒𝑙𝑒𝑑 fl the selected samples;𝑈𝑛𝑙𝑎𝑏𝑙𝑒𝑑 fl the unselected samples;
(1) Clustering 𝐶 clusters using inner square distance clustering;
(2) for each cluster do
(3) if the number of samples is less than 𝑘 then
(4) Put all the samples into 𝐿𝑎𝑏𝑒𝑙𝑒𝑑;
(5) else
(6) Calculate the distance between samples in this cluster;
(7) Selected the two samples with the largest distance and put them in 𝐿𝑎𝑏𝑒𝑙𝑒𝑑;
(8) Initialize 𝐹𝑙𝑎𝑔 fl 2;
(9) while 𝐹𝑙𝑎𝑔 < 𝑘 do
(10) Find the nearest distances of the remaining samples to the selected ones;
(11) Choose the one with largest distance and put it in 𝐿𝑎𝑏𝑒𝑙𝑒𝑑;
(12) 𝐹𝑙𝑎𝑔 = 𝐹𝑙𝑎𝑔 + 1;
(13) end while
(14) Put the unselected samples in 𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑;
(15) end if
(16) end for
(17) return 𝐿𝑎𝑏𝑒𝑙𝑒𝑑, 𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑;

Algorithm 1: Clustering-aided sampling.
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Figure 2: Sample selection in each cluster.

selects the pair with the farthest distance in each cluster, that
is, circles labeled 1 and 2, as labeled samples first. Then the
sample whose nearest distance to the selected samples is the
largest will be selected, that is, circles labeled 3, 4, and 5 in
sequence. The process keeps on until the maximum number
of samples (𝑘) has been selected in each cluster.

Note that it is possible that the number of samples in
some clusters may be less than 5 (see the left upper and right
lower clusters in Figure 2). In this case, we directly choose
all the samples as selected samples.The pseudocode of CSS is
listed in Algorithm 1. For semisupervised learning scenario
described in this paper, the exact or estimated number of
labels should be set first. As for the dataset in this paper,
we set it to 6 for there are 6 different compounds. The
maximum value 𝑘 should be set to be larger than 2 in order
for KS to be effective. Although some batches have less than
6 gas compounds, it does not hinder the effectiveness of the
method for the selected sampleswill be labeled.Moreover, the

weighted process described later ensures that the unlabeled
samples will not be affected by nonexisting label in the batch.

3.3. Weighted Domain Transfer Extreme Learning Machine.
Theobjective is to train a new classifier on the labeled samples
and leverage the effects of the unlabeled ones. In L. Zhang and
D. Zhang’s paper, the unlabeled samples are treated equally
in the function. However, leveraging the effect of unlabeled
sample requires distinguishing the difference of correctly and
incorrectly classified samples. To be more specific, to help
learn a more accurate model, the samples that are being
incorrectly classified should weigh less compared with the
weight of correct ones. If all the samples were treated equally,
the negative effects of the wrongly classified samples would
be amplified which would cause the learning to follow a
wrong pattern and reduce the classification accuracy. This
explains why the accuracy of DAELMdegrades quickly when
the labeled samples are few. In this paper, our proposed
method intends to employ weighted learning to emphasize
the effects of the samples that are less likely to be incorrectly
classified by the base classifier. Therefore, the optimization
problem becomes (6) by incorporating a sensitive matrix𝑤.

min 12 󵄩󵄩󵄩󵄩𝛽�푇󵄩󵄩󵄩󵄩2 +
𝐶�푡2 󵄩󵄩󵄩󵄩𝐻�푇𝛽�푇 − 𝑇�푇󵄩󵄩󵄩󵄩2

+ 𝐶�푇�푢2 󵄩󵄩󵄩󵄩𝑤 ∘ (𝐻�푇�푢𝛽�푇 − 𝐻�푇�푢𝛽�푆)󵄩󵄩󵄩󵄩2 .
(6)

In (6), 𝐻�푇 and 𝐻�푇�푢 are the hidden layer outputs of
the labeled and unlabeled samples, respectively. 𝑇�푇 is the
labels of the labeled samples. 𝐶�푇 and 𝐶�푇�푢 are two preset
parameters for regularization purpose.𝛽�푆 is the outputweight
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Figure 3: Demonstration of determining the effects of different
unlabeled samples.

of ELM trained in source domain (base ELM) and 𝛽�푇 is
the one for target domain classifier to be learned. Note
that the labeled samples are fixed and reliable with their
labels manually examined and determined. For unlabeled
samples, the third term wishes to learn their information
based on the output from a classifier trained from source
domain. However, 𝛽�푆 is not 100% reliable and the labels
could be wrong. Therefore, the learning algorithm should
learn the information of the samples whose labels are most
unlikely to be wrong and ignore the ones that are most
likely to have incorrectly classified labels. In this paper, we
solve the problem in the optimization by adding 𝑤 in the
third term in which the symbol ∘ represents Hadamard
product.

𝑤�푖 = [𝑃1 𝑃2 0 𝑃4 0 0] . (7)

In detail,𝑤 has the same number of rows as𝐻�푇�푢 and each
row represents the probabilities of the sample belonging to
specific labels. For example, let there be 3 labels, namely, 1,
2, and 4, in the cluster which the 𝑖th sample belongs to. The
number of labels in total is 6. Equation (7) is an example of
the 𝑖th row in 𝑤. The values in columns 1, 2, and 4 are the
probabilities of 𝑖th sample belonging to each class, denoted
by 𝑃1, 𝑃2, and 𝑃4. Since there are no more labels in the cluster,
the rest of the columns is 0.

The ideal value of 𝑤 is unknown for semisupervised
scenario for we do not know the exact labels of the unlabeled
samples. However, we can estimate it with the information
we collected from clustering process. In the labeling process,
the selected samples are labeled with certain label(s). It is
deterministic. Considering the fact that, in clustering, the
more closer the distance is, the more likely the samples
share the same label. We can further extend the idea to
the following: the more closer the samples are to certain
labeled sample, the more likely they belong to its labels. The
demonstration of the idea can be viewed in Figure 3. With
the help of CSS, the target domain is split into labeled and
unlabeled sets. The labeled samples are representative and
we assume that the labels of the unlabeled belong to the
ones of the labeled. Meanwhile, we partially trust 𝛽�푆 trained
from the source domain. Therefore, the output using 𝛽�푆, say
label 𝑗, may or may not be true. Note that the representative
samples are chosen based on the distances among samples.
Considering the fact that the real label is one of the labeled
samples, say label 𝑖, under the aforementioned assumption,

the probability of 𝑖 = 𝑗 can be calculated based on the
distance.

In this paper, we use the reciprocal of the distance to
a certain labeled sample as the degree to its label. If more
than one selected sample in a cluster belongs to the same
label, we use the one with smallest distance. The probability
of an unlabeled sample belonging to a given label can be
calculated based on all the degrees to all the labels in the
cluster.

Figure 4 is the example of calculating each value in (7).
There are 3 different labels in the example.The center circle is
the unlabeled sample that requires to be estimated and circles
labeled 1, 2, and 4 are the selected samples with their labels
being the numbers. The lines are the distances between the
unlabeled and the selected samples, tagged by 𝑑�푖, where 𝑖
is the label number. In this process, for a specific unlabeled
samples in one cluster, we assume that it can only belong to
the labels of the selected samples. If more than one selected
sample is of the same label, that is, 1 in the figure, we choose
the smaller or smallest one; that is, 𝑑1 is the smaller one
between 𝑑(1)1 and 𝑑(2)1 . By doing so, we can calculate the
distance of the unlabeled sample to each label, written as
dist(unlabeled, 𝑖), 𝑖 = 1, 2, 4. Subsequently, the probability
of the unlabeled belonging to each label 𝑗 is 𝑃�푗 where 𝑗 ∈{1, 2, 4}. For those labels (3, 5, and 6) that do not appear
in this cluster, we set the probability 𝑃�푘 to 0 where 𝑘 ∈{3, 5, 6}. Eventually, we have each estimated value of (7). The
calculation of probabilities is summarized as (8). In the same
way, we can calculate each row of 𝑤.
𝑃�푗

=
{{{{{{{

(1/𝑑�푗)
(∑�푖=1�푛 1/𝑑�푖) ; if 𝑗 ∈ the labels of selected samples

0; otherwise.
(8)

We call 𝑤 sensitive matrix in this paper, and the
pseudocode of calculating 𝑤 is given in Algorithm 2. For
each cluster generated in the clustering phase, the distances
between unlabeled and labeled samples are calculated within
the cluster. 𝑤 is formed with exact number of labels in the
dataset and each value in a column represent the probability
of an unlabeled sample belonging to a specific label. The
calculation ensures that, for each cluster, the unlabeled
samples only belong to the labels of the labeled ones in the
cluster, whichmakes the probability of belonging to the labels
that are not in the cluster 0, and the sum of each row equals 1.
In CSS, the number of clusters for each batch is set to 6, which
could make the samples belonging to a specific label be split
into two or more clusters. In this case, the sensitive matrix
calculation can still determine the probability that each of
the unlabeled samples belonging to a certain label for the
split cluster will have its representative samples of the same
label.

With the sensitive matrix calculated, we can further train
the classifier in a weighted learning way. To solve (6), we first
calculate the gradient with respect to 𝛽�푇 as (9). Let𝑤∘𝐻�푇�푢 be
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Figure 4: The probability of a sample belonging to a certain label.

Input:𝐿𝑎𝑏𝑒𝑙𝑒𝑑 fl the selected samples in a cluster;𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 fl the unlabeled samples in a cluster;
Output:𝑊 fl the sensitive matrix samples;
(1) Initialize𝑊 to a zero matrix;
(2) for each samples 𝑆 ∈ 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 do
(3) Find unique labels as 𝐿𝑎𝑏𝑒𝑙𝑠
(4) for each value 𝐿 ∈ 𝐿𝑎𝑏𝑒𝑙𝑠 do
(5) Find the samples with label 𝐿 ∈ 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 as 𝑇𝑒𝑚𝑝𝑆𝑒𝑡;
(6) Calculate the distances between 𝑆 and the samples in 𝑇𝑒𝑚𝑝𝑆𝑒𝑡;
(7) Set 𝑑�푗 to the nearest distance;
(8) Store 1/𝑑�푗 in𝑊;
(9) end for
(10) Replace the value with probability in𝑊 using (8);
(11) end for
(12) return𝑊;

Algorithm 2: Sensitive matrix calculation.

𝐻�푢. We can solve the equation by setting (9) to zero and we
get (10), in which 𝐼 is the identity matrix.

𝛿𝐿
𝛿𝛽�푇
= 𝛽�푇 + 𝐶�푇 (𝐻�푇�푇𝐻�푇𝛽�푇 − 𝐻�푇�푇𝑇�푇)
+ 𝐶�푇�푢 (𝑤 ∘ 𝐻�푇�푢)�푇 (𝑤 ∘ 𝐻�푇�푢) 𝛽�푇
− 𝐶�푇�푢 (𝑤 ∘ 𝐻�푇�푢)�푇 (𝑤 ∘ 𝐻�푇�푢) 𝛽�푆,

(9)

(𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢𝐻�푇�푢𝐻�푢) 𝛽�푇
= 𝐶�푇𝐻�푇�푇𝑇�푇 + 𝐶�푇�푢𝐻�푇�푢𝐻�푢𝛽�푆.

(10)

If 𝐻�푇 has more rows than columns, that makes (6) an
overdetermined problem and the least square solution is
unique. According to the work in [38, 52], a special RBF
function, that is, Gaussian RBF function, ensures that the
inverses of 𝐻�푇𝐻 and 𝐻𝐻�푇 exist. Therefore, we use this type
of function in the paper. Note that𝐶�푇 and𝐶�푇�푢 are positive. By
using the formulas of generalized inverse of sum of matrices
[53], it can be verified that 𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢𝐻�푇�푢𝐻�푢 has a

unique generalized inverse which is also the inverse. In this
case, 𝛽�푇 can be written as follows:

𝛽�푇 = (𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢𝐻�푇�푢𝐻�푢)−1
⋅ (𝐶�푇𝐻�푇�푇𝑇�푇 + 𝐶�푇�푢𝐻�푇�푢𝐻�푢𝛽�푆) .

(11)

For the case where 𝐻�푇 has less rows than columns, (6)
becomes an underdetermined problem. In L. Zhang and D.
Zhang’s work [21], they solved the problem by using Lagrange
multiplier.Themethod is equal to adding an assumption that𝛽�푇 is the linear combination of the columns of 𝐻�푇 and 𝐻�푇�푢;
that is, 𝛽�푇 = 𝐻�푇𝛼�푇 + 𝐻�푇�푢𝛼�푇�푢. It is hard to determine if it
applies to all cases. However, since the two separate cases are
divided based on the rows and columns of𝐻�푇, the unlabeled
term 𝐻�푇�푢 should be excluded. Therefore, in this paper, we
assume that 𝛽�푇 is a linear combination of the columns of𝐻�푇, written as (12), so as to get the unique solution. Then the
problem becomes solving 𝛼.

𝛽�푇 = 𝐻�푇�푇𝛼. (12)
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Input:𝑇𝑟𝑆𝑒𝑡 fl the training data set;𝑇𝑆𝑒𝑡 fl the unlabeled data set;𝐶 fl the number of clusters;𝑁 fl the number of hidden layer nodes;
Output:𝛽�푇 fl the output weight matrix for target domain classifier;
(1) Initialize a base classifier ELM with𝑁 nodes using 𝑇𝑟𝑆𝑒𝑡;
(2) Set the output weight to 𝛽�푆;
(3) Clustering 𝑇𝑆𝑒𝑡 into 𝐶 clusters;
(4) Select the label and unlabeled samples as 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 and 𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 using Algorithm 1;
(5) for each cluster do
(6) Update the weight matrix𝑊 using Algorithm 2.
(7) end for
(8) Initialize a new ELM with𝑁 nodes;
(9) if the number of samples in 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 > 𝑁 then
(10) Calculate the output weight matrix 𝛽�푇 using (11);
(11) else
(12) Calculate the output weight matrix 𝛽�푇 using (16);
(13) end if
(14) return 𝛽�푇;

Algorithm 3: Weighted Domain Transfer Extreme Learning Machine.

Bymultiplying (𝐻�푇�푇𝐻�푇)−1𝐻�푇 on both sides of (10), we can
get

(𝐻�푇�푇𝐻�푇)−1𝐻�푇𝛽�푇 + 𝐶�푇 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푇𝐻�푇𝛽�푇
+ 𝐶�푡𝑢 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푢𝐻�푇�푢 𝛽�푇

= 𝐶�푇 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푇𝑇�푇
+ 𝐶�푇�푢 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푢𝐻�푢𝛽�푆.

(13)

In order to solve 𝛼, we can substitute (12) into (13) and get
(𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푢𝐻�푢𝐻�푇�푇) 𝛼
= 𝐶�푇𝑇�푇 + 𝐶�푇�푢 (𝐻�푇�푇𝐻�푇)−1𝐻�푇𝐻�푇�푢𝐻�푢𝛽�푆.

(14)

For simple illustration purpose, let 𝑃 be𝐻�푇�푇𝐻�푇 and 𝑄 be𝐻�푇𝐻�푇�푢 . Similarly, we can verify that 𝐼 + 𝐶�푇𝑃 + 𝐶�푇�푢𝑃−1𝑄𝑄�푇
has inverse. Subsequently, we can get 𝛼 as (15), and 𝛽�푇 can be
written accordingly as (16).

𝛼 = (𝐼 + 𝐶�푇𝑃 + 𝐶�푇�푢𝑃−1𝑄𝑄�푇)−1
⋅ (𝐶�푇𝑇�푇 + 𝐶�푇�푢𝑃−1𝑄𝐻�푢𝛽�푆) ,

(15)

𝛽�푇 = 𝐻�푇�푇 (𝐼 + 𝐶�푇𝑃 + 𝐶�푇�푢𝑃−1𝑄𝑄�푇)−1
⋅ (𝐶�푇𝑇�푇 + 𝐶�푇�푢𝑃−1𝑄𝐻�푢𝛽�푆) .

(16)

The pseudocode for WDTELM with CSS is listed as
Algorithm 3. Before the training begins, we set the number
of clusters (𝐶) to the number of gases in the dataset. The

algorithm trains a new ELM with a preset number of hidden
layers using the source domain samples (line (1)). For target
domain denoted by 𝑇𝑆𝑒𝑡, it uses CSS to select a group of
labeled samples (lines (3)–(7)) and then initializes a new
ELM network with the same hidden layer neurons (line(8)). The output weight 𝛽�푇 of the ELM in target domain
is then calculated based on the aforementioned cases (lines(9)–(13)).
3.4. Online Domain Transfer Extreme Learning Machine.
In order for DAELM and WDTELM to be applicable, an
initial set of data is required. However, in real application
scenario, the datamay not be accessible in full.More common
situation is that data come in a one-by-one or chunk-by-
chunk manner. To retrain the classifier in an offline manner
would be unrealistic and time-consuming whenever the
data come. As DAELM and WDTELMT are all based on
batch training and updating, the problem remains the same.
Therefore, online learning process is needed.

In this section, we consider a simple online scenario
where the labeled samples have been determined or provided
beforehand. Then the unlabeled samples are fed into the
model in an one-by-one or chunk-by-chunk manner and
we wish to use the semisupervised method in previous
subsections without retraining the network from scratch.

The demonstration of ODTELM is provided in Figure 5.
The unlabeled samples are organized in a sequence as the left
rectangle. The target classifier is initialized with the labeled
sample using (4). For the online learning phase, we wish to
update the target classifier using current 𝛽�푇, the incremental
value 𝛿ℎ, and some intermediate result(s).

In this case, we have insufficient data to perform cluster-
ing before training. However, given the labeled samples, we
can still calculate the probability of each unlabeled sample.
To derive the proper formulas, we begin with unweighted
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Figure 5: Demonstration of online domain transfer extreme learning machine.

version, that is, DAELM. In this case, we use the same
objective function as follows:

min 12 󵄩󵄩󵄩󵄩𝛽�푇󵄩󵄩󵄩󵄩2 +
𝐶�푡2 󵄩󵄩󵄩󵄩𝐻�푇𝛽�푇 − 𝑇�푇󵄩󵄩󵄩󵄩2

+ 𝐶�푇�푢2 󵄩󵄩󵄩󵄩𝐻�푇�푢𝛽�푇 − 𝐻�푇�푢𝛽�푆󵄩󵄩󵄩󵄩2 .
(17)

Assume an incremental batch 𝛿𝑋 is added to the unla-
beled data in the target domain and let the corresponding
hidden layer output be 𝛿ℎ. The output weight 𝛽(�푘+1)�푇 can be
calculated in the aforementioned cases as (18), where 𝑃 =𝐻�푇𝐻�푇�푇 and 𝑄 = 𝐻�푇𝐻�푇�푇�푢.

𝛽�푇 = {{{
(𝐼 − 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢𝐻�푇�푇�푢𝐻�푇�푢)−1 (𝐶�푇𝐻�푇�푇𝑇�푇 + 𝐶�푇�푢𝐻�푇�푇�푢𝐻�푇�푢𝛽�푆) , 𝐻�푇 has more rows

𝐻�푇�푇 (𝐼 + 𝐶�푇𝑃 + 𝐶�푇�푢𝑃−1𝑄𝑄�푇)−1 (𝐶�푇𝑇�푇 + 𝐶�푇�푢𝑃−1𝑄𝐻�푇�푢𝛽�푆) , 𝐻�푇 has more columns. (18)

For the case where 𝐻�푇 has more rows than columns,
define the intermediate result 𝐾 as follows:

𝐾 = 𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢𝐻�푇�푇�푢𝐻�푇�푢. (19)

For simple illustration purpose, let Right = 𝐶�푇𝐻�푇�푇𝑇�푇 +𝐶�푇�푢𝐻�푇�푇�푢𝐻�푇�푢𝛽�푆. Let the intermediate result for current ELM
be 𝐾�푘, and the output weight matrix be 𝛽�푘�푇 = 𝐾−1�푘 Right�푘.
When new sample 𝛿𝑋 arrives,𝐾�푘+1 and Right�푘+1 change into

𝐾�푘+1 = 𝐼 + 𝐶�푇𝐻�푇�푇𝐻�푇 + 𝐶�푇�푢 (𝐻�푇�푇�푢𝐻�푇�푢 + 𝛿ℎ�푇𝛿ℎ)
= 𝐾�푘 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ,

Right�푘+1 = Right�푘 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ𝛽�푆.
(20)

Based on Sherman-Morrison-Woodbury formula, the
inverse of𝐾�푘+1 can be obtained as follows:

𝐾−1�푘+1 = (𝐾�푘 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ)−1
= 𝐾−1�푘
− 𝐶�푇�푢𝐾−1�푘 𝛿ℎ�푇 (𝐼 + 𝐶�푇�푢𝛿ℎ𝐾−1�푘 𝛿ℎ�푇)−1 𝛿ℎ𝐾−1�푘 .

(21)

Note that 𝛽�푘+1�푇 = 𝐾−1�푘+1Right�푘+1. By multiplying 𝐾�푘𝐾−1�푘
before Right�푘 in (20), we can obtain the formula for 𝛽�푘+1�푇 as
follows:

𝛽�푘+1�푇 = 𝐾−1�푘+1 (𝐾�푘𝐾−1�푘 Right�푘 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ𝛽�푆)
= 𝐾−1�푘+1 (𝐾�푘𝛽�푘�푇 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ𝛽�푆)
= 𝐾−1�푘+1 ((𝐾�푘+1 − 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ) 𝛽�푘�푇 + 𝐶�푇�푢𝛿ℎ�푇𝛿ℎ𝛽�푆)
= 𝛽�푘�푇 − 𝐾−1�푘+1𝐶�푇�푢𝛿ℎ�푇𝛿ℎ (𝛽�푘�푇 − 𝛽�푆) .

(22)

For the case where 𝐻�푇 has more columns than rows, we
can write intermediate result 𝐾�푘+1 as (23). Let 𝑄�푘+1𝑄�푇�푘+1 and
Right�푘+1 be (24) and (25), respectively.

𝐾�푘+1
= (𝐼 + 𝐶�푇𝑃 + 𝐶�푇�푢𝑃−1𝑄�푘𝑄�푇�푘 + 𝐶−1𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝐻�푇�푇)
= 𝐾�푘 + 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝐻�푇�푇 ,

(23)

𝑄�푘+1𝑄�푇�푘+1 = 𝐻�푇 [𝐻�푇�푇�푢 𝛿ℎ�푇] [𝐻�푇�푢𝛿ℎ ]𝐻�푇�푇
= 𝑄�푘𝑄�푇�푘 + 𝐻�푇𝛿ℎ�푇𝛿ℎ𝐻�푇�푇 ,

(24)
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Input:𝛽�푘�푇 fl the output weight matrix of ELM for target domain;𝑁 fl the number of hidden layer neurons;𝐾−1�푘 fl the intermediate result;𝐿𝑎𝑏𝑒𝑙𝑒𝑑 fl the labeled samples;𝑈 fl the increment of unlabeled samples;
Output:𝛽�푘+1�푇 fl the updated output weight matrix;𝐾−1�푘+1 fl the updated intermediate result;
(1) Calculate the hidden layer output for 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 as𝐻�푇;
(2) Calculate the hidden layer output for 𝑈 as 𝛿ℎ;
(3) if the rows of𝐻�푇 > 𝑁 then
(4) Calculate𝐾−1�푘+1 using (21);
(5) Calculate 𝛽�푘+1�푇 using (22);
(6) else
(7) Calculate𝐾−1�푘+1 using (26);
(8) Calculate 𝛽�푘+1�푇 using (27);
(9) end if
(10) return 𝛽�푘+1�푇 , 𝐾−1�푘+1;

Algorithm 4: Online Domain Transfer Extreme Learning Machine update.

Right�푘+1

= 𝐶�푇𝑇�푇 + 𝐶�푇�푢𝑃−1𝐻�푇 (𝐻�푇�푇�푢𝐻�푇�푢 + 𝛿ℎ�푇𝛿ℎ) 𝛽�푆
= Right�푘 + 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝛽�푆.

(25)

For illustration purpose, let 𝛿𝑘 = 𝛿ℎ𝐻�푇�푇 . Similarly,𝐾−1�푘+1 can be derived as (26) based on Sherman-Morrison-
Woodbury formula.

𝐾−1�푘+1 = 𝐾−1�푘 − 𝐾−1�푘 𝐶�푇�푢𝑃−1 (𝐼 + 𝛿𝑘�푇𝛿𝑘𝐾−1�푘 𝐶�푇�푢𝑃−1)−1
⋅ 𝛿𝑘�푇𝛿𝑘𝐾−1�푘 .

(26)

Consequently, the output weight 𝛽�푘+1�푇 can be derived as
follows:

𝛽�푘+1�푇 = 𝐻�푇�푇𝐾−1�푘+1Right�푘+1 = 𝐻�푇�푇𝐾−1�푘+1 (Right�푘
+ 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝛽�푆) = 𝐻�푇�푇𝐾−1�푘+1 (𝐾�푘𝐾−1�푘 Right�푘
+ 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝛽�푆)
= 𝐻�푇�푇𝐾−1�푘+1 ((𝐾�푘+1 − 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝐻�푇�푇)
⋅ 𝐾−1�푘 Right�푘 + 𝐶�푇�푢𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ𝛽�푆) = 𝛽�푘�푇
− 𝐶�푇�푢𝐻�푇�푇𝐾−1�푘+1𝑃−1𝐻�푇𝛿ℎ�푇𝛿ℎ (𝛽�푘�푇 − 𝛽�푆) .

(27)

The pseudocode for the updating procedure of ODAELM
is given in Algorithm 4. Whenever a new sample arrives,
the algorithm takes the intermediate result 𝐾�푘 and output
weight 𝛽�푘 calculated from last update and updates current
intermediate result and output weight in two cases. The
calculation saves time by using results calculated in previous
updates, so the training is time-saving, especially when the

unlabeled set becomes too large. It is essential to seamless
service especially for scenarios like antiterrorism, security
checkpoint, and so on.

Note that the formulas are derived from DAELM. If we
are to perform online learning forWDTELM, taking Figure 5
for example, the weight𝑤 can be calculated by comparing the
output from ELMwith 𝛽�푆 and the labeled samples. Let 𝛿𝑤 be
the weight for 𝛿𝑋. Then, we can simply switch𝐻�푇�푢 and 𝛿ℎ in
this subsection to 𝑤 ∘ 𝐻�푇�푢 and 𝛿𝑤 ∘ 𝛿ℎ, respectively, and the
formulas still stand.

4. Performance Evaluation

4.1. Experimental Setup. The experiments in the paper were
conducted in MATLAB on a Linux Workstation with an E5
2.6-GHzCPUand 32-GBRAM.We followed the setup in [21].
Thehidden layer neurons of the ELMnetworkwere by default
1000, with RBF function being their activation function. The
coefficients 𝐶�푆, 𝐶�푇, and 𝐶�푇�푢 were set to be 0.001, 100, and0.001, respectively. We also tested hidden layer neurons with
100 hidden layers to show the performance of the proposed
methods.

ForWDTELMand its counterparts, the experiments used
the current batch as source domain and the next batch as
target domain. For example, batch one was used as source
domain at first and batch two was target domain. After
classification of batch two was finished, the source domain
became batch two and target domain would be batch three.
The performance was evaluated by the classification accuracy
using (5). The proposed method was compared with SVM
with rbf kernel (SVM-rbf), ELM with rbf activation function
(ELM-rbf), ELM based ensemble methods (Ensemble ELM),
SVMbased ensemblemethod (Ensemble SVM), andDAELM
with diverse numbers of selected samples. The ensemble
methods trained subclassifiers on each batch using corre-
sponding algorithms and combined with previous learned
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Table 2: Comparisons of classification accuracy in 9 batches.

Batch
number

Accuracy (%)
Ensemble
SVM

Ensemble
ELM

SVM
-rbf

ELM
-rbf

DAELM
(30)

DAELM
(50)

WDTELM
(<30) WDTELM

(<48)
(2) 77.4 75.3 58.5 76.8 85.5 96.2 90.2 98.2
(3) 74.8 76.9 66.9 75.4 94.0 98.8 90.1 94.6
(4) 72.0 64.5 74.5 69.8 100 100 100 100
(5) 65.9 96.0 44.2 56.6 99.5 100 98.9 99.5
(6) 71.3 71.3 58.3 62.0 73.4 82.1 95.3 98.5
(7) 55.1 68.8 68.9 68.0 64.3 79.8 78.1 84.7
(8) 42.9 81.8 60.5 87.7 94.6 97.6 94.6 97.3
(9) 56.6 49.6 50.9 40.0 100 100 99.1 100
(10) 32.9 49.4 18.4 19.3 41.5 55.8 62.6 64.6
Ave. 64.1 72.5 55.7 61.7 83.8 90.1 89.9 93.0

Table 3: Comparisons of DAELM and WDTELM using different numbers of selected samples.

Batch number DAELM (%) WDTELM (%)
𝑘 = 20 𝑘 = 25 𝑘 = 30 𝑘 = 35 𝑘 = 40 𝑘 = 45 𝑘 ≤ 12 𝑘 ≤ 18 𝑘 ≤ 24 𝑘 ≤ 30 𝑘 ≤ 36 𝑘 ≤ 42

(2) 66.7 78.1 85.5 85.1 93.2 92.8 82.8 82.5 84.0 90.2 95.7 95.7
(3) 76.2 90.3 94.0 96.3 96.3 96.9 75.8 83.0 90.5 90.1 92.4 92.4
(4) 100 100 100 100 100 100 87.0 92.5 100 100 100 100
(5) 99.4 99.4 99.5 100 100 100 94.4 99.5 99.5 98.9 99.5 98.9
(6) 54.6 59.3 73.4 75.7 77.5 80.9 85.5 88.7 94.1 95.3 96.5 98.2
(7) 62.6 60.4 64.3 68.3 72.7 74.1 57.5 64.9 79.2 78.1 80.6 87.0
(8) 69.4 94.8 95.5 95.9 96.5 96.9 71.4 77.2 88.1 94.6 95.9 97.3
(9) 100 100 100 100 100 100 92.1 93.2 95.5 99.1 98.9 99.8
(10) 37.0 38.8 41.5 47.9 51.6 52.1 55.8 52.0 58.6 62.6 57.7 62.2
Ave. 73.9 80.1 83.8 85.5 87.6 88.2 76.9 81.5 87.7 89.9 90.8 92.4

subclassifiers to form a compact classifier. For example, when
batch (3) was target domain, targets 1 and 2 would be used
to train their subclassifiers, respectively. The weight for each
subclassifier followed the work in [20], which is the training
accuracy on the corresponding batch.

For online learning, the source and target domains were
divided in the same way as described in the previous para-
graph. The difference was that, after representative samples
were fixed, the unlabeled samples were tested in sequence
and fed to the classification model in a one-by-one manner
for updating. The overall accuracy was recorded when all the
unlabeled samples were used for updates.

4.2. Performance Evaluation. Table 2 shows the overall clas-
sification performances of different models used in the
experiments. The last row labeled “Ave.” refers to average
accuracy for each method which applies to Tables 2, 3, 5,
and 6 Note that the performance of WDTELM surpasses
all its counterparts except for batch (3) where it is around
3% to 4% less than that of DAELM. For batch (5) and (8),
although the accuracy of DAELM beats WDTELM by 0.1%
to 0.7%, the difference is not distinctive. As for ELM and
SVM, the two methods have over 20% accuracy lower than
those of DAELM and WDTELM. Ensemble based methods
have better classification accuracy in general. This is due to

the increasing training data used for generating subclassifiers.
Although the method can somehow alleviate the drift, it does
not perform as well as semisupervised methods do in the
paper. Although WDTELM has slightly lower performance
than that of DAELM for specific batches, say batch (3), in
an overall point of view, it beats DAELM. Taking batches (7)
and (10), where DAELM has its classification accuracy lower
than other batches, for example, WDTELM has 5% to 10%
accuracy increase. As for the other batches, WDTELM has
slightly better performance.Therefore, in general, WDTELM
captures the changes in the data more accurately and there-
fore can better help the gas sensors bounce back from
degradation caused by drift problem. Moreover, the labeled
samples for WDTELM are chosen with 𝑘 equal to 5 and
8, and the selection process will choose no more than 30
and 48 samples, respectively. Therefore, the selected samples
for WDTELM are no more than that of DAELM. For real
application scenario, the manual labeling process is more
time-consuming than that of training ELM from scratch. In
this sense, WDTELM is more time-saving than DAELM is.

The overall performance shown in Table 2 confirms
that proper choice of selected samples helps the model to
achieve better classification performance. To better show the
performance improvements of WDTELM over DAELM, we
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Table 4: Average classification accuracy.

Average accuracy (%)
𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8

ELM-rbf 44.8 41.5 42.9 46.0 47.1 50.8 51.0
SVM-rbf 69.7 72.0 73.5 74.4 76.5 77.9 79.0
DAELM 62.7 72.9 79.6 84.4 86.0 89.1 88.9
WDTELM 76.1 80.6 86.9 88.2 88.6 89.2 91.5

Table 5: Classification accuracy on ODAELM.

Batch number Accuracy of ODAELM (%)
𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8

(2) 67.5 79.6 83.3 87.5 94.4 93.0 96.4
(3) 78.8 94.6 97.7 97.8 97.7 99.0 97.9
(4) 100 100 100 100 100 100 100
(5) 99.4 99.4 100 100 100 100 100
(6) 54.2 72.0 75.3 79.1 78.6 81.9 84.9
(7) 65.3 65.5 71.0 73.4 80.3 81.4 81.7
(8) 67.6 93.8 95.2 96.2 96.5 96.9 97.2
(9) 100 100 100 100 100 100 100
(10) 40.1 40.2 46.2 48.0 53.2 52.6 51.8
Ave. 74.7 82.8 85.4 86.9 88.9 89.4 90.0

Table 6: Classification accuracy of OWDTELM.

Batch number Accuracy of OWDTELM (%)
𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8

(2) 81.7 82.6 83.2 88.9 95.3 94.8 98.0
(3) 74.9 83.0 91.4 88.8 94.6 92.4 89.3
(4) 87.0 99.4 100 100 100 100 100
(5) 94.4 99.5 99.5 99.0 99.5 99.0 99.5
(6) 83.4 89.0 95.7 95.4 98.6 97.4 98.2
(7) 56.8 64.2 79.3 78.7 80.8 84.7 86.5
(8) 71.8 77.9 82.9 95.9 96.6 97.3 98.3
(9) 92.1 93.4 95.1 98.9 99.6 99.8 100
(10) 45.1 54.5 55.3 61.7 59.1 61.8 65.2
Ave. 76.4 82.6 86.9 98.7 91.6 91.9 92.8

experimented on different numbers of selected samples for
DAELM and WDTELM. Table 3 shows the performance
of the two methods using 6 different numbers of selected
samples, respectively. The 𝑘 value represents the number
of selected samples and the rows show the classification
accuracies for different batches, among which the last row
shows the average classification performance of each 𝑘 value.
Note that for DAELM 𝑘 is the exact number of selected
samples, while for WDTELM it is the upper bound because
of CSS process.

In general, it can be noted that the average performance
increases as the number 𝑘 increases and it is almost the same
for all rows except for some disturbances such as batch (2)
with 𝑘 = 45. The increasing of selected samples almost
guarantees the performance increase. However, the price is
the manual labeling process. If the process was quick, there
would be no need for classification models. Therefore, the

maximum performance with minimum labeling is an ideal
solution for semisupervised learning scenario. In the table,
the classification accuracy of WDTELM increases around
10% in those settings where DAELM has low performance
before 𝑘 = 30, for example, 𝑘 = 20 for DAELM versus 𝑘 < 18
for WDTELM in batch (2). The performance of DAELM has
its almost maximum classification performance after 30. As
an exception, DAELM surpassesWDTELM in batch (3)with
around 4% after 𝑘 = 40. The difference is not large compared
with other batches where DAELM has low accuracy, and
the accuracies of both methods are over 90% as 𝑘 increases.
Therefore, we consider them both feasible for application
scenario. In general, together with Table 2, DAELM does
not surpass WDTELM unless the selected samples are large,
say 50. If manually determining the gas type takes 1 h for
one sample, DAELM would take 10 more hours before its
accuracy outperforms WDTELM for some batches.
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Figure 6: Classification performance of DAELM and WDTELM under 100 hidden layer nodes. The number of labeled samples is chosen
from [12, 18, 24, 30, 36, 42, 48] and the overall classification accuracies are recoded accordingly.

To better illustrate the differences of the performance of
DAELM and WDTELM, we conducted experiments on the
same number (𝑘) of selected samples for each batch. The
number of hidden layer is set to 100 so as to observe the effects
of a smaller ELM network. The results can be found as in
Figure 6, in which the red curves represent the classification
performance of WDAELM and the blue ones are of DAELM.
As can be observed from the figures, the red curves have
significant accuracy increase compared with the blue ones
in batches (2), (6), (7), and (10). The maximum amount of
increase reaches over 20%; for example, 𝑘 = 24 in batch (6).
For batches (4), (5), and (8), the lines intertwine together,
which indicate that the performance is similar. For batches(3) and (9), DAELM is better than WDTELM with around
5% to 10% accuracy increase. However, the performance
begins to overlap after 42. Taking batch (9), for example, the
difference after 𝑘 = 42 is hard to distinguish. The reason
for this phenomenon may be that the distribution of the
clusters in these two batches changes more seriously than
other batches which makes it hard for CSS in WDTELM
to capture representative ones in some clusters. Fortunately,
the performance difference can be decreased by increasing 𝑘.
Meanwhile, for the part where DAELM beats WDTELM, the

accuracies for bothmethods are relatively high, say over 90%.
Note that, when the numbers of selected samples are small,
for example, 12 and 18, the performance of DAELM is terrible.
For example, for batches (2), (6), and (8), the accuracies drop
below 60%, while WDTELM maintains its accuracy above
70%.

To further compare the significance of the two methods
regarding their classification accuracy, we performed Fried-
man’s test. Their performance is grouped by their 𝑘 values,
that is, each 𝑘 has the corresponding average accuracies of
the two methods on 9 batches. Therefore, there are 7 groups
in total. The 𝑝 value of Friedman’s test is 9.0214𝑒−18 which
means the classification performances are significantly unlike
each other. In order to show which one surpasses the other,
we summarized the average classification accuracy as Table 4,
together with other batch learning algorithms. To further
show that the improvements are not only due to the labeled
samples in target domain, we train ELM and SVM in a
way that the labeled samples in target domain are combined
with source domain for training the classifiers. Although
the average accuracy for SVM-rbf is higher than the one in
Table 2, it is still over 10% lower than those of DAELM and
WDTELM. ELM-rbf method has poor performance which is
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probably due to the insufficient hidden layer nodes. Hence,
the labeled samples in semisupervised methods are not the
only reason that results in a higher accuracy. It can also
be seen that WDTELM is better than DAELM in terms of
average classification performance. Therefore, WDTELM is
considered to be more effective than other tested methods in
general.

For online learning process, we wish to achieve approx-
imately the same if not better accuracies of their batch
learning versions. To evaluate the overall performance, we
conducted experiments on both DAELM and WDTELM.
For comparison purpose, we use SSA and CSS on DAELM
and OWDTELM, respectively, so as to see the difference
between them and their batch versions. Table 5 shows the
results on the online version of DAELM. It can be noted
that the performance of the online version reaches similar
classification accuracy as DAELM does. For some batches,
it surpasses its batch learning method, for example, batches(3) and (10). The reason may be because the online learning
process updates the model whenever a new sample arrives,
and this procedure may better help learn the difference
between samples.

Table 6 shows the classification accuracy of OWDTELM.
The accuracies were recorded after the method updates all
the unlabeled samples in each batch. As shown in the table,
the accuracy of OWDTELM remains the same as its batch
learning version does. Although little disturbance occurs,
for example, batches (2) and (3) when 𝑘 = 8, the gap is
not significant. For batches (2) and (3), it has less than 2%
accuracy decrease while for batch (10) it increases by 3%.
It can be noted that the average accuracy for OWDTELM
is higher than that of WDTELM for some values of 𝑘 such
as 𝑘 = 6. The difference is below 1.5% which can be partly
due to the experimental error caused by randomization of the
ELM neurons. In general, the OWDTELM achieves similar
performance as its batch learning version does.

The processing time was recorded whenever ODAELM
and OWDTELM updated the model. On average, the pro-
cessing time ofODAELM takes 0.0948 seconds and fluctuates
within 0.0139. OWDTELM takes slightly more time, that
is, 0.0958 on average, and fluctuates within 0.0125. This is
different from batch learning whose processing time will
increase with the size of the samples. We also replace the
online learning updating with their batch learning, that
is, DAELM and WDTELM, respectively. In this case, the
methods will retrain the model from scratch whenever the
new sample arrives.The processing time increases drastically.
With 400 unlabeled samples, the updating procedure took
over 0.2 seconds for both methods, which is over 2 times of
its online version. If the size of the samples grows too large,
the updating will take minutes, and even hours, to complete.

5. Discussion

In the evaluation of the proposed methods in the paper,
we compared their performances regarding the classification
accuracy. In general, the proposed CSS helps in choosing
more representative samples as KS in DAELM does, and
the weighted strategy further helps the learning process

to be more accurate. The online versions of DAELM and
WDTELM can achieve similar performance as their batch
learning versions do and are suitable for scenarios where
unlabeled samples are not accessible before training.

It should also be noted that the proposed methods in
this paper are not limited to E-Nose systems only. Other
domains that have similar characteristics are also worth try-
ing. Meanwhile, the online version of the proposed method
only considered a simple scenario as a head start. More
sophisticated cases including, but not limited to, labeled sam-
ple incremental learning, samples switched fromunlabeled to
labeled, and data distribution changes should be considered
for future researches.

6. Conclusions

In this paper, we proposed WDTELM to reduce the num-
ber of labeled samples in DAELM while achieving similar
or better performance. Then, aiming at online learning
process, we proposed online learning versions of DAELM
and WDTELM, named ODTELM and OWDTELM, respec-
tively, which allow the unlabeled samples to be added to
the classifier in a one-by-one or chunk-by-chunk manner
after labeled samples are given. The experimental results
show that WDTELM outperforms DAELM with less labeled
samples regarding the classification accuracy. Meanwhile, it
also possesses higher performance than other commonly
used approaches such as SVM, ELM, and ensemble based
methods. The experiments for online versions of DAELM
and WDTELM have verified that they each possess the same
classification accuracy as their batch learning version does.
The processing time also confirms that the online versions
are time-saving methods compared with their batch learning
versions.
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